Skip to content
2000
Volume 19, Issue 3
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

Background

Allergic rhinitis (AR) is a leading public health problem with high prevalence, but the therapies remain limited. Cang Er Zi Powder (CEZP), a Traditional Chinese Medicine formula, has been used for the clinical treatment of chronic rhinitis and allergic rhinitis in China for decades. However, the underlying mechanism is unclear.

Objective

In this study, we aimed to clarify the pharmacological mechanism of CEZP on allergic rhinitis.

Methods

The active ingredients of CEZP were screened in the TCMSP (http://tcmspw.com/tcmsp.php) database. The targets related to “allergic rhinitis” were retrieved from MALACARDS, TTD, and DisGeNET disease target databases. The active ingredients and the candidate targets for AR were constructed and visualized using Cytoscape 3.7.2 software. The underlying mechanism involved in the treatment of CP against AR was analyzed using the WEB-based GEne SeT AnaLysis Toolkit. The effects of CEZP on levels of β-hexosaminidase, histamine, interleukin (IL)-4, and tumor necrosis factor (TNF)-α on DNP-IgE/HSA-stimulated rat basophilic leukemia cells were determined by enzyme-linked immunosorbent assay (ELISA) kits.

Results

A total of 78 active ingredients in 9 Chinese herbs of CEZP and 90 target overlap targets from CEZP and AR were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggested that the inflammation response and NF-κB signaling pathway were responsible for the therapeutic targets of CEZP on AR, and CEZP could suppress mast cell degranulation Toll-like receptor (TLR) and NF-κb signaling pathway.

Conclusion

Network pharmacology analysis and assays suggested that CEZP may exert therapeutic effects on AR by inhibiting the NF-κB signaling pathways.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708290725241022064414
2024-11-06
2026-02-21
Loading full text...

Full text loading...

References

  1. VarshneyJ. VarshneyH. Allergic rhinitis: An overview.Indian J. Otolaryngol. Head Neck Surg.20156714314910.1007/s12070‑015‑0828‑5
    [Google Scholar]
  2. MinY.G. The pathophysiology, diagnosis and treatment of allergic rhinitis.Allergy Asthma Immunol. Res.201022657610.4168/aair.2010.2.2.6520358020
    [Google Scholar]
  3. CvetkovskiB. TanR. KritikosV. YanK. AzziE. SrourP. Bosnic-AnticevichS. A patient-centric analysis to identify key influences in allergic rhinitis management.NPJ Prim. Care Respir. Med.20182813410.1038/s41533‑018‑0100‑z30213945
    [Google Scholar]
  4. ZhaoY. van HasseltC.A. WooJ.K. ChenG.G. WongY.O. WangL.H. LeungP.C. Effect of a Chinese herbal formula, Shi-Bi-Lin, on an experimental model of allergic rhinitis.Ann. Allergy Asthma Immunol.200696684485010.1016/S1081‑1206(10)61348‑816802773
    [Google Scholar]
  5. ZhaoY. WooK.S. MaK.H. van HansseltC.A. WongK.C. ChengK.F. LamC.W.K. LeungP.C. Treatment of perennial allergic rhinitis using Shi-Bi-Lin, a Chinese herbal formula.J. Ethnopharmacol.2009122110010510.1016/j.jep.2008.12.00519118617
    [Google Scholar]
  6. ZhangW. HuaiY. MiaoZ. QianA. WangY. Systems pharmacology for investigation of the mechanisms of action of traditional Chinese medicine in drug discovery.Front. Pharmacol.20191074310.3389/fphar.2019.0074331379563
    [Google Scholar]
  7. HopkinsA.L. Network pharmacology: The next paradigm in drug discovery.Nat. Chem. Biol.200841168269010.1038/nchembio.11818936753
    [Google Scholar]
  8. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑1324735618
    [Google Scholar]
  9. RappaportN. TwikM. PlaschkesI. NudelR. Iny SteinT. LevittJ. GershoniM. MorreyC.P. SafranM. LancetD. MalaCards: An amalgamated human disease compendium with diverse clinical and genetic annotation and structured search.Nucleic Acids Res.201745D1D877D88710.1093/nar/gkw101227899610
    [Google Scholar]
  10. WangY. ZhangS. LiF. ZhouY. ZhangY. WangZ. ZhangR. ZhuJ. RenY. TanY. QinC. LiY. LiX. ChenY. ZhuF. Therapeutic target database 2020: Enriched resource for facilitating research and early development of targeted therapeutics.Nucleic Acids Res.202048D1D1031D104131691823
    [Google Scholar]
  11. PiñeroJ. BravoÀ. Queralt-RosinachN. Gutiérrez-SacristánA. Deu-PonsJ. CentenoE. García-GarcíaJ. SanzF. FurlongL.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants.Nucleic Acids Res.201745D1D833D83910.1093/nar/gkw94327924018
    [Google Scholar]
  12. ChenL. CaoY. ZhangH. LvD. ZhaoY. LiuY. YeG. ChaiY. Network pharmacology-based strategy for predicting active ingredients and potential targets of Yangxinshi tablet for treating heart failure.J. Ethnopharmacol.201821935936810.1016/j.jep.2017.12.01129366769
    [Google Scholar]
  13. LiaoY. WangJ. JaehnigE.J. ShiZ. ZhangB. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs.Nucleic Acids Res.201947W1W199W20510.1093/nar/gkz40131114916
    [Google Scholar]
  14. ZauggJ. EickmeierE. RuedaD.C. HeringS. HamburgerM. HPLC-based activity profiling of Angelica pubescens roots for new positive GABAA receptor modulators in Xenopus oocytes.Fitoterapia201182343444010.1016/j.fitote.2010.12.00121147202
    [Google Scholar]
  15. WangC.C. LaiJ.E. ChenL.G. YenK.Y. YangL.L. Inducible nitric oxide synthase inhibitors of Chinese herbs. Part 2: Naturally occurring furanocoumarins.Bioorg. Med. Chem.20008122701270710.1016/S0968‑0896(00)00200‑511131161
    [Google Scholar]
  16. LinC.H. ChangC.W. WangC.C. ChangM.S. YangL.L. Byakangelicol, isolated from Angelica dahurica, inhibits both the activity and induction of cyclooxygenase-2 in human pulmonary epithelial cells.J. Pharm. Pharmacol.20105491271127810.1211/00223570232040212512356282
    [Google Scholar]
  17. YokozawaT. TanakaT. KimuraT. Examination of the nitric oxide production-suppressing component in Tinospora tuberculata.Biol. Pharm. Bull.200124101153115610.1248/bpb.24.115311642322
    [Google Scholar]
  18. LeeS.H. VeeriahV. LevineF. Liver fat storage is controlled by HNF4α through induction of lipophagy and is reversed by a potent HNF4α agonist.Cell Death Dis.202112660310.1038/s41419‑021‑03862‑x34117215
    [Google Scholar]
  19. JiangY. YuL. WangM.H. N-trans-feruloyltyramine inhibits LPS-induced NO and PGE2 production in RAW 264.7 macrophages: Involvement of AP-1 and MAP kinase signalling pathways.Chem. Biol. Interact.2015235566210.1016/j.cbi.2015.03.02925843058
    [Google Scholar]
  20. RedhuN.S. SalehA. ShanL. GerthofferW.T. KungS.K. HalaykoA.J. LamkhiouedB. GounniA.S. Proinflammatory and Th2 cytokines regulate the high affinity IgE receptor (FcepsilonRI) and IgE-dependant activation of human airway smooth muscle cells.PLoS One200947e615310.1371/journal.pone.000615319582151
    [Google Scholar]
  21. LinX. LvJ. GeD. Heme oxygenase-1 alleviates eosinophilic inflammation by inhibiting STAT3-SOCS3 signaling.Pediatr. Pulmonol.55614401447202010.1002/ppul.2475932297710
    [Google Scholar]
  22. SantanaF.P.R. da SilvaR.C. GreccoS.S. PinheiroA.J.M.C.R. CaperutoL.C. Arantes-CostaF.M. ClaudioS.R. YoshizakiK. MacchioneM. RibeiroD.A. TibérioI.F.L.C. Lima-NetoL.G. LagoJ.H.G. PradoC.M. Inhibition of MAPK and STAT3-SOCS3 by sakuranetin attenuated chronic allergic airway inflammation in mice.Mediators Inflamm.2019201911410.1155/2019/135635631565031
    [Google Scholar]
  23. WuZ. Mehrabi NasabE. AroraP. AthariS.S. Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-kB signaling pathway.J. Transl. Med.202220113010.1186/s12967‑022‑03337‑335296330
    [Google Scholar]
  24. IannucciA. CaneparoV. RaviolaS. DebernardiI. ColangeloD. MiggianoR. GriffanteG. LandolfoS. GariglioM. De AndreaM. Toll-like receptor 4-mediated inflammation triggered by extracellular IFI16 is enhanced by lipopolysaccharide binding.PLoS Pathog.2020169e100881110.1371/journal.ppat.100881132903274
    [Google Scholar]
  25. ZhangD. LiuB. JieX. DengJ. LuZ. LuF. LiuX. Uncovering bupi yishen formula pharmacological mechanisms against chronic kidney disease by network pharmacology and experimental validation.Front. Pharmacol.20211276157210.3389/fphar.2021.76157234867380
    [Google Scholar]
  26. LiH. KreinerJ.M. WongA.R. LiM. SunY. LuL. LiuJ. YangA.W.H. Oral application of Chinese herbal medicine for allergic rhinitis: A systematic review and meta-analysis of randomized controlled trials.Phytother. Res.20213563113312910.1002/ptr.703733533107
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708290725241022064414
Loading
/content/journals/raiad/10.2174/0127722708290725241022064414
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test