- Home
- A-Z Publications
- Recent Advances in Food Nutrition & Agriculture
- Previous Issues
- Volume 13, Issue 1, 2022
Recent Advances in Food Nutrition & Agriculture - Volume 13, Issue 1, 2022
Volume 13, Issue 1, 2022
-
-
Phytochemicals as Potential Inhibitors of Advanced Glycation End Products: Health Aspects and Patent Survey
Background: The glycation of proteins and lipids synthesizes the advanced glycation end products (AGEs), i.e., substances that irreversibly damage macromolecules present in tissues and organs, which contribute to the impairment of biological functions. For instance, the accumulation of AGEs induces oxidative stress, the inflammatory responses, and consequently the on set/worsening of diseases, including obesity, asthma, cognitive impairment, and cancer. There is a current demand on natural and low-cost sources of anti-AGE agents. As a result, food phytochemicals presented promising results to inhibit glycation and consequently, the formation of AGEs. Objective: Here we describe how the AGEs are present in food via Maillard reaction and in organs via natural aging, as well as the effects of AGEs on the worsening of diseases. Also we described the methods used to detect AGEs in samples, and the current findings on the use of phytochemicals (phenolic compounds, phytosterols, carotenoids, terpenes and vitamins) as natural therapeuticals to inhibit health damages via inhibition of AGEs in vitro and in vivo. Methods: This manuscript reviewed publications available in the PubMed and Science Direct databases dated from the last 20 years on the uses of phytochemicals for the inhibition of AGEs. Recent patents on the use of anti-AGEs drugs were reviewed with the use of Google Advanced Patents database. Results and Discussion: There is no consensus about which concentration of AGEs in blood serum should not be hazardous to the health of individuals. Food phytochemicals derived from agroindustry wastes, including peanut skins, and the bagasses derived from citrus and grapes are promising anti-AGEs agents via scavenging of free radicals, metal ions, the suppression of metabolic pathways that induces inflammation, the activation of pathways that promote antioxidant defense, and the blocking of AGE connection with the receptor for advanced glycation endproducts (RAGE). Conclusion: Phytochemicals derived from agroindustry are promising anti-AGEs, which can be included to replace synthetic drugs to inhibit AGE formation, and consequently to act as therapeutical strategy to prevent and treat diseases caused by AGEs, including diabetes, ovarian cancer, osteoporosis, and Alzheimer’s disease.
-
-
-
Therapeutic Effects of Gut Microbiota on Metabolic Syndrome: A Patent Review
Authors: Shivani Singhal and Vibha RaniBackground: The balanced composition of the gut microbiota is essential for human health. The dysbiotic condition may develop various complex diseases. A metabolic syndrome is a group of biochemical and physiological abnormalities that can increase the risk of cardiovascular diseases, diabetes, and inflammatory diseases. It has become a serious concern worldwide because there is no acceptable medication to overcome this problem. Objective: This review aims to evaluate the relationship between gut microbiota and metabolic syndrome. The balance of gut microbiota relates to human health as well as diseases. Patents related to significant findings on probiotics, prebiotics, synbiotics, and fecal microbiota transplantation signify the importance of the proposed theme and provide promising therapeutic strategies to modulate the dysbiotic condition and reoccurrence of beneficial microbial species during metabolic syndromes. Screening of patents-related databases can be worth full to track new technology. Therefore, some selected recent patents related to gut microbiota and associated therapies have been discussed in the present manuscript. Conclusion: Under the existing situation, the role of gastrointestinal microbiota as a therapeutic agent is becoming more utilized for treating human health issues and various metabolic syndromes including obesity, diabetes, and cardiovascular diseases. Understanding gut dysbiosis and associated complex interactions between microbes and hosts would be effective for designing future therapeutic interventions for metabolic syndrome. Our detailed patent analysis reflects that gut dysbiosis has a prominent role in metabolic syndromes and dietary therapeutic strategies can improve health by modulating the human microbiota, their metabolites ad stability.
-
-
-
Drug-food Interactions in the Era of Molecular Big Data, Machine Intelligence, and Personalized Health
Authors: Romy Roy, Shamsudheen Marakkar, Munawar P. Vayalil, Alisha Shahanaz, Athira Panicker Anil, Shameer Kunnathpeedikayil, Ishaan Rawal, Kavya Shetty, Zahrah Shameer, Saraswathi Sathees, Adarsh Pooradan Prasannakumar, Oommen Kaleeckal Mathew, Lakshminarayanan Subramanian, Khader Shameer and Kamlesh K. YadavThe drug-food interaction brings forth changes in the clinical effects of drugs. While favourable interactions bring positive clinical outcomes, unfavourable interactions may lead to toxicity. This article reviews the impact of food intake on drug-food interactions, the clinical effects of drugs, and the effect of drug-food in correlation with diet and precision medicine. Emerging areas in drug-food interactions are the food-genome interface (nutrigenomics) and nutrigenetics. Understanding the molecular basis of food ingredients, including genomic sequencing and pharmacological implications of food molecules, helps to reduce the impact of drug-food interactions. Various strategies are being leveraged to alleviate drug-food interactions; measures including patient engagement, digital health, approaches involving machine intelligence, and big data are a few of them. Furthermore, delineating the molecular communications across dietmicrobiome- drug-food-drug interactions in a pharmacomicrobiome framework may also play a vital role in personalized nutrition. Determining nutrient-gene interactions aids in making nutrition deeply personalized and helps mitigate unwanted drug-food interactions, chronic diseases, and adverse events from their onset. Translational bioinformatics approaches could play an essential role in the next generation of drug-food interaction research. In this landscape review, we discuss important tools, databases, and approaches along with key challenges and opportunities in drug-food interaction and its immediate impact on precision medicine.
-
-
-
Antimicrobial, Pesticidal and Food Preservative Applications of Lemongrass Oil Nanoemulsion: A Mini-Review
Authors: Deepika Balasubramanian, Agnishwar Girigoswami and Koyeli GirigoswamiBackground: Essential oils that are extracted from plants have shown beneficial effects on humans and animals, evidenced by traditional medicine. They possess many essential phytocomponents that act as antimicrobial agents, and most of them are safe for external usage. Introduction: Lemongrass essential oil is extracted from the grass, such as Cymbopogon flexuosus, and is used for antimicrobial activity for a long time. The efficacy of this oil is limited due to the poor solubility and microbial penetration, easy vaporization, and lower stability. Nanoformulations and nanoencapsulations are nanotechnology fields that aim to improve the bioavailability of many natural compounds and enhance their stability. Lemongrass oil has also been nanoformulated as nanoemulsion, and various antimicrobial activities against various pathogens have been demonstrated, which are superior to free lemongrass oil. Methodology: We have used the search engines PubMed and Google Scholar for the mentioned keywords and selected the recent references related to this topic. Conclusion: In this review, we have discussed various antimicrobial properties of lemongrass essential oil nanoemulsion and its application, such as antibacterial, antifungal, pesticidal, food preservative, and antibiofilm activity.
-
-
-
A Patent Data Analysis of the Innovation Trends in Biological Control Agent Formulations
By Ahmed FatimiBackground: Biological control (i.e., biocontrol) can be defined as the use of microbial inoculants with a direct and purposeful manipulation of natural enemies, potentially replacing harmful pesticides, to control pests, plant pathogens, and weeds. This study concerns patent analysis of biocontrol agent-based formulations. This form of patent analysis encapsulates information that could be used as a reference by researchers in the fields of agriculture and plants, as well as those interested, especially in biocontrol agents for agriculture. Methods: The state has been reviewed by introducing what has been patented concerning Biocontrol Agents (BCAs). Four patent databases have been used, and different keywords and related terms to BCAs were used, and patents were searched according to title, abstract, and claims. The search was then filtered regarding publication year, patent families, patent classifications, inventors, applicants, owners, and jurisdictions. Results: During a search, 2371 patent documents were found between 1982 and 2021. The United States was ranked first with 694 patent documents. 2015 was the year with the maximum number of patent documents (278). The patent classification codes reveal that most inventions are intended for biocides, pest repellants or attractants, or plant growth regulators containing or obtained from microorganisms, viruses, microbial fungi, etc. Moreover, they are also intended for biocidal, pest repellant, pest attractant, or plant growth regulatory activities of chemical compounds or preparations, such as fungicides, athropodicides, and nematocides, which are concentrated in most patents. Conclusion: The knowledge clusters and expert driving factors of this patent analysis indicate that the research and development based on the formulation of biocontrol agents are concentrated in most patents.
-
Volumes & issues
Most Read This Month
Most Cited Most Cited RSS feed
-
-
Drug-food Interactions in the Era of Molecular Big Data, Machine Intelligence, and Personalized Health
Authors: Romy Roy, Shamsudheen Marakkar, Munawar P. Vayalil, Alisha Shahanaz, Athira Panicker Anil, Shameer Kunnathpeedikayil, Ishaan Rawal, Kavya Shetty, Zahrah Shameer, Saraswathi Sathees, Adarsh Pooradan Prasannakumar, Oommen Kaleeckal Mathew, Lakshminarayanan Subramanian, Khader Shameer and Kamlesh K. Yadav
-
- More Less