Skip to content
2000
image of Current State of Scientific Knowledge on Curcumin Encapsulation and Applications

Abstract

The yellow pigment curcumin has long been used in traditional medicine for its anti-inflammatory, antibacterial and antioxidant activities. Over the past half-century, scientific investigations have shown that curcumin is endowed with additional health benefits because it can modify key molecular targets associated with a number of pathologies, such as diabetes, cancer, and arthritis, in addition to cardiovascular, multiple sclerosis, Alzheimer's, and Crohn's diseases. However, this molecule has several disadvantages, such as low bioavailability and solubility, severe oxidative destruction, light sensitivity, fast systemic clearance and breakdown at alkaline pH levels. To address these drawbacks, several methods of microencapsulation employing a variety of shell materials have been investigated. These techniques contributed toward the increase of curcumin's solubility and stability against heat, light, oxygen, and an alkaline pH. The various shell materials and methods used to microencapsulate this chemical are the main topics of this review. The use of microencapsulated curcumin in food, medicine, and cosmetics is also discussed in more detail. Recent relevant research from the last few years has been given in this area, along with future difficulties.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X330008240827052241
2024-10-07
2024-11-18
Loading full text...

Full text loading...

References

  1. Priyadarsini K. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014 19 12 20091 20112 10.3390/molecules191220091 25470276
    [Google Scholar]
  2. Rhizoma curcuma longa. WHO Monographs on Selected Medicinal Plants WHO Geneva, Switzerland 1999
    [Google Scholar]
  3. CAC/MISC 6-2013: List of codex specifications for food additives. 2013 Codex Alimentarius Rome
    [Google Scholar]
  4. Aggarwal B.B. Kumar A. Bharti A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 2003 23 1A 363 398 12680238
    [Google Scholar]
  5. Basu P. Mittimanj K. Shah N.J. Siriki R. Rahaman K. NirajAtluri Jr Brown R. Curcumin, anti-oxidant, and pioglitazone therapy with inclusion of vitamin e in non-alcoholic fatty liver disease-a randomized open label placebo controlled clinical prospective trial (captive). J. Clin. Exp. Hepatol. 2013 3 1 S26 S27 10.1016/j.jceh.2013.03.054
    [Google Scholar]
  6. Porro C. Cianciulli A. Trotta T. Lofrumento D.D. Panaro M.A. Curcumin regulates anti-inflammatory responses by jak/stat/socs signaling pathway in bv-2 microglial cells. Biology (Basel) 2019 8 3 51 10.3390/biology8030051 31252572
    [Google Scholar]
  7. Li W. Wu M. Tang L. Pan Y. Liu Z. Zeng C. Wang J. Wei T. Liang G. Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity. Toxicol. Appl. Pharmacol. 2015 282 2 175 183 10.1016/j.taap.2014.12.001 25497288
    [Google Scholar]
  8. Pae H.O. Jeong G.S. Jeong S.O. Kim H.S. Kim S.A. Kim Y.C. Yoo S.J. Kim H.D. Chung H.T. Roles of heme oxygenase-1 in curcumin-induced growth inhibition in rat smooth muscle cells. Exp. Mol. Med. 2007 39 3 267 277 10.1038/emm.2007.30 17603281
    [Google Scholar]
  9. Pagano E. Romano B. Izzo A.A. Borrelli F. The clinical efficacy of curcumin-containing nutraceuticals: An overview of systematic reviews. Pharmacol. Res. 2018 134 79 91 10.1016/j.phrs.2018.06.007 29890252
    [Google Scholar]
  10. Wei X.C. Synthesis and antitumor activity curcumin analogs. Guangdong University of Technology 2011
    [Google Scholar]
  11. Li M. Xin M. Guo C. Lin G. Wu X. New nanomicelle curcumin formulation for ocular delivery: Improved stability, solubility, and ocular anti-inflammatory treatment. Drug Dev. Ind. Pharm. 2017 43 11 1846 1857 10.1080/03639045.2017.1349787 28665151
    [Google Scholar]
  12. Al-Obaidi H. Lawrence M.J. Shah S. Moghul H. Al-Saden N. Bari F. Effect of drug–polymer interactions on the aqueous solubility of milled solid dispersions. Int. J. Pharm. 2013 446 1-2 100 105 10.1016/j.ijpharm.2013.02.009 23410988
    [Google Scholar]
  13. Scientific Opinion on the reevaluation of curcumin (E 100) as a food additive. EFSA J. 2010 8 1679
    [Google Scholar]
  14. Refined exposure assessment for curcumin (E 100). EFSA J. 2014 12 10 3876 10.2903/j.efsa.2014.3876
    [Google Scholar]
  15. Safety of aluminum from dietary intake. Scientific Opinion of the Panel on Food Additives, Flavorings, Processing Aids and Food Contact Materials. EFSA J. 2008 6 7 754
    [Google Scholar]
  16. Sharifi-Rad J. Rayess Y.E. Rizk A.A. Sadaka C. Zgheib R. Zam W. Sestito S. Rapposelli S. Neffe-Skocińska K. Zielińska D. Salehi B. Setzer W.N. Dosoky N.S. Taheri Y. El Beyrouthy M. Martorell M. Ostrander E.A. Suleria H.A.R. Cho W.C. Maroyi A. Martins N. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol. 2020 11 01021 10.3389/fphar.2020.01021 33041781
    [Google Scholar]
  17. Notice G.R.A.S. 822, Curcumin. U.S. Food and Drug Administration 2018
    [Google Scholar]
  18. Kim Y.J. Lee H.J. Shin Y. Optimization and validation of high-performance liquid chromatography method for individual curcuminoids in turmeric by heat-refluxed extraction. J. Agric. Food Chem. 2013 61 46 10911 10918 10.1021/jf402483c 24164304
    [Google Scholar]
  19. Takenaka M. Ohkubo T. Okadome H. Sotome I. Itoh T. Isobe S. Effective extraction of curcuminoids by grinding turmeric (Curcuma longa) with medium-chain triacylglycerols. Food Sci. Technol. Res. 2013 19 4 655 659 10.3136/fstr.19.655
    [Google Scholar]
  20. Ali I. Haque A. Saleem K. Separation and identification of curcuminoids in turmeric powder by HPLC using phenyl column. Anal. Methods 2014 6 8 2526 2536 10.1039/C3AY41987H
    [Google Scholar]
  21. Tripathy S. Verma D.K. Thakur M. Patel A.R. Srivastav P.P. Singh S. Gupta A.K. Chávez-González M.L. Aguilar C.N. Chakravorty N. Verma H.K. Utama G.L. Curcumin extraction, isolation, quantification and its application in functional foods: A review with a focus on immune enhancement activities and COVID-19. Front. Nutr. 2021 8 747956 10.3389/fnut.2021.747956 34621776
    [Google Scholar]
  22. Pawar H.A. Gavasane A.J. Choudhary P.D. A novel and simple approach for extraction and isolation of curcuminoids from turmeric rhizomes. Nat. Prod. Chem. Res. 2018 6 300
    [Google Scholar]
  23. Lee K.J. Kim Y.S. Jung P.M. Ma J.Y. Optimization of the conditions for the analysis of curcumin and a related compound in Curcuma longa with mobile-phase composition and column temperature via RP-HPLC. Asian J. Chem. 2013 25 11 6306 6310 10.14233/ajchem.2013.14471
    [Google Scholar]
  24. Heffernan C. Ukrainczyk M. Gamidi R.K. Hodnett B.K. Rasmuson Å.C. Extraction and purification of curcuminoids from crude curcumin by a combination of crystallization and chromatography. Org. Process Res. Dev. 2017 21 6 821 826 10.1021/acs.oprd.6b00347
    [Google Scholar]
  25. Wang C. Yang H. Li J. Combination of microwave, ultrasonic, enzyme assisted method for curcumin species extraction from turmeric ( curcuma longa l.) and evaluation of their antioxidant activity. eFood 2021 2 2 73 80 10.2991/efood.k.210329.001
    [Google Scholar]
  26. Nagavekar N. Singhal R.S. Supercritical fluid extraction of Curcuma longa and Curcuma amada oleoresin: Optimization of extraction conditions, extract profiling, and comparison of bioactivities. Ind. Crops Prod. 2019 134 134 145 10.1016/j.indcrop.2019.03.061
    [Google Scholar]
  27. Kurmudle N. Kagliwal L.D. Bankar S.B. Singhal R.S. Enzyme-assisted extraction for enhanced yields of turmeric oleoresin and its constituents. Food Biosci. 2013 3 36 41 10.1016/j.fbio.2013.06.001
    [Google Scholar]
  28. Sahne F. Mohammadi M. Najafpour G.D. Moghadamnia A.A. Enzyme-assisted ionic liquid extraction of bioactive compound from turmeric (Curcuma longa L.): Isolation, purification and analysis of curcumin. Ind. Crops Prod. 2017 95 686 694 10.1016/j.indcrop.2016.11.037
    [Google Scholar]
  29. Li W. Wang S. Feng J. Xiao Y. Xue X. Zhang H. Wang Y. Liang X. Structure elucidation and NMR assignments for curcuminoids from the rhizomes of Curcuma longa. Magn. Reson. Chem. 2009 47 10 902 908 10.1002/mrc.2478 19569074
    [Google Scholar]
  30. Abdul Zahar Z. Mohsin H.F. Ibtisam A.W. The study on curcuminoids in chromatography, spectroscopy and regioisomerism. J. Phys. Conf. Ser. 2020 1529 2 022035 10.1088/1742‑6596/1529/2/022035
    [Google Scholar]
  31. Jiang H. Somogyi Á. Jacobsen N.E. Timmermann B.N. Gang D.R. Analysis of curcuminoids by positive and negative electrospray ionization and tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2006 20 6 1001 1012 10.1002/rcm.2401 16479557
    [Google Scholar]
  32. Phillips J. Moore-Medlin T. Sonavane K. Ekshyyan O. McLarty J. Nathan C.A.O. Curcumin inhibits UV radiation-induced skin cancer in SKH-1 mice. Otolaryngol. Head Neck Surg. 2013 148 5 797 803 10.1177/0194599813476845 23386626
    [Google Scholar]
  33. Chowdhury R. Nimmanapalli R. Graham T. Reddy G. Curcumin attenuation of lipopolysaccharide induced cardiac hypertrophy in rodents. ISRN Inflamm. 2013 2013 1 8 10.1155/2013/539305 24236240
    [Google Scholar]
  34. Marczylo T.H. Verschoyle R.D. Cooke D.N. Morazzoni P. Steward W.P. Gescher A.J. Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother. Pharmacol. 2007 60 2 171 177 10.1007/s00280‑006‑0355‑x 17051370
    [Google Scholar]
  35. Liu W. Zhai Y. Heng X. Che F.Y. Chen W. Sun D. Zhai G. Oral bioavailability of curcumin: problems and advancements. J. Drug Target. 2016 24 8 694 702 10.3109/1061186X.2016.1157883 26942997
    [Google Scholar]
  36. Wang S. Chen P. Zhang L. Yang C. Zhai G. Formulation and evaluation of microemulsion-based in situ ion-sensitive gelling systems for intranasal administration of curcumin. J. Drug Target. 2012 20 10 831 840 10.3109/1061186X.2012.719230 22934854
    [Google Scholar]
  37. Dovigo L.N. Carmello J.C. de Souza Costa C.A. Vergani C.E. Brunetti I.L. Bagnato V.S. Pavarina A.C. Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis. Med. Mycol. 2013 51 3 243 251 10.3109/13693786.2012.714081 22934533
    [Google Scholar]
  38. Chen X. Zhi F. Jia X. Zhang X. Ambardekar R. Meng Z. Paradkar A.R. Hu Y. Yang Y. Enhanced brain targeting of curcumin by intranasal administration of a thermosensitive poloxamer hydrogel. J. Pharm. Pharmacol. 2013 65 6 807 816 23647674
    [Google Scholar]
  39. Madane R.G. Mahajan H.S. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study. Drug Deliv. 2016 23 4 1326 1334 10.3109/10717544.2014.975382 25367836
    [Google Scholar]
  40. Heng M.C.Y. Topical curcumin: a review of mechanisms and uses in dermatology. Int. J. Dermatol. Clin. Res. 2017 3 1 10 17
    [Google Scholar]
  41. Anand P. Kunnumakkara A.B. Newman R.A. Aggarwal B.B. Bioavailability of curcumin: problems and promises. Mol. Pharm. 2007 4 6 807 818 10.1021/mp700113r 17999464
    [Google Scholar]
  42. Heger M. van Golen R.F. Broekgaarden M. Michel M.C. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol. Rev. 2014 66 1 222 307 10.1124/pr.110.004044 24368738
    [Google Scholar]
  43. Pan M.H. Huang T.M. Lin J.K. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab. Dispos. 1999 27 4 486 494 10101144
    [Google Scholar]
  44. Ireson C. Orr S. Jones D.J. Verschoyle R. Lim C.K. Luo J.L. Howells L. Plummer S. Jukes R. Williams M. Steward W.P. Gescher A. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res. 2001 61 3 1058 1064 11221833
    [Google Scholar]
  45. Cheng A.L. Hsu C.H. Lin J.K. Hsu M.M. Ho Y.F. Shen T.S. Ko J.Y. Lin J.T. Lin B.R. Ming-Shiang W. Yu H.S. Jee S.H. Chen G.S. Chen T.M. Chen C.A. Lai M.K. Pu Y.S. Pan M.H. Wang Y.J. Tsai C.C. Hsieh C.Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001 21 4B 2895 2900 11712783
    [Google Scholar]
  46. Sharma R.A. Euden S.A. Platton S.L. Cooke D.N. Shafayat A. Hewitt H.R. Marczylo T.H. Morgan B. Hemingway D. Plummer S.M. Pirmohamed M. Gescher A.J. Steward W.P. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin. Cancer Res. 2004 10 20 6847 6854 10.1158/1078‑0432.CCR‑04‑0744 15501961
    [Google Scholar]
  47. Luca S.V. Macovei I. Bujor A. Miron A. Skalicka-Woźniak K. Aprotosoaie A.C. Trifan A. Bioactivity of dietary polyphenols: The role of metabolites. Crit. Rev. Food Sci. Nutr. 2020 60 4 626 659 10.1080/10408398.2018.1546669 30614249
    [Google Scholar]
  48. Tan S. Calani L. Bresciani L. Dall’asta M. Faccini A. Augustin M.A. Gras S.L. Del Rio D. The degradation of curcuminoids in a human faecal fermentation model. Int. J. Food Sci. Nutr. 2015 66 7 790 796 10.3109/09637486.2015.1095865 26471074
    [Google Scholar]
  49. Li Z. Sun Y. Song M. Li F. Xiao H. Gut microbiota dictate metabolic Fate of Curcumin in the colon. J. Nutr. Metab. 2017 2017 1367984 10.1096/fasebj.31.1_supplement.646.12
    [Google Scholar]
  50. Metzler M. Pfeiffer E. Schulz S.I. Dempe J.S. Curcumin uptake and metabolism. Biofactors 2013 39 1 14 20 10.1002/biof.1042 22996406
    [Google Scholar]
  51. Poncelet D. Microencapsulation: fundamentals, methods and applications. Surf. Chem. Biomed. Environ. Sci. 2006 228 23 34 10.1007/1‑4020‑4741‑X_3
    [Google Scholar]
  52. Panyam J. Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 2003 55 3 329 347 10.1016/S0169‑409X(02)00228‑4 12628320
    [Google Scholar]
  53. Acharya S. Sahoo S.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev. 2011 63 3 170 183 10.1016/j.addr.2010.10.008 20965219
    [Google Scholar]
  54. Vert M. Doi Y. Hellwich K.H. Hess M. Hodge P. Kubisa P. Rinaudo M. Schué F. Terminology for biorelated polymers and applications (iupac recommendations 2012), handbook of biochemistry and molecular biology. Boca Raton, FL CRC Press 2018 885 900
    [Google Scholar]
  55. Allahyari M. Mohit E. Peptide/protein vaccine delivery system based on PLGA particles. Hum. Vaccin. Immunother. 2016 12 3 806 828 10.1080/21645515.2015.1102804 26513024
    [Google Scholar]
  56. Holzer M. Vogel V. Mäntele W. Schwartz D. Haase W. Langer K. Physico-chemical characterisation of PLGA nanoparticles after freeze-drying and storage. Eur. J. Pharm. Biopharm. 2009 72 2 428 437 10.1016/j.ejpb.2009.02.002 19462479
    [Google Scholar]
  57. Nomura T. Routh A.F. Benign preparation of aqueous core poly lactic-co-glycolic acid (PLGA) microcapsules. J. Colloid Interface Sci. 2018 513 1 9 10.1016/j.jcis.2017.11.007 29128617
    [Google Scholar]
  58. Berkland C. Pollauf E. Raman C. Silverman R. Kim K.K. Pack D.W. Macromolecule release from monodisperse PLG microspheres: control of release rates and investigation of release mechanism. J. Pharm. Sci. 2007 96 5 1176 1191 10.1002/jps.20948 17455338
    [Google Scholar]
  59. Makadia H.K. Siegel S.J. Poly lactic-co-glycolic acid (plga) as biodegradable controlled drug delivery carrier. Polymers (Basel) 2011 3 3 1377 1397 10.3390/polym3031377 22577513
    [Google Scholar]
  60. Park J. Wrzesinski S.H. Stern E. Look M. Criscione J. Ragheb R. Jay S.M. Demento S.L. Agawu A. Licona Limon P. Ferrandino A.F. Gonzalez D. Habermann A. Flavell R.A. Fahmy T.M. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater. 2012 11 10 895 905 10.1038/nmat3355 22797827
    [Google Scholar]
  61. des Rieux A. Fievez V. Garinot M. Schneider Y.J. Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J. Control. Release 2006 116 1 1 27 10.1016/j.jconrel.2006.08.013 17050027
    [Google Scholar]
  62. Luz P.P. Magalhães L.G. Pereira A.C. Cunha W.R. Rodrigues V. Andrade e Silva M.L. Curcumin-loaded into PLGA nanoparticles. Parasitol. Res. 2012 110 2 593 598 10.1007/s00436‑011‑2527‑9 21739309
    [Google Scholar]
  63. Busari Z.A. Dauda K.A. Morenikeji O.A. Afolayan F. Oyeyemi O.T. Meena J. Sahu D. Panda A.K. Antiplasmodial activity and toxicological assessment of curcumin plga-encapsulated nanoparticles. Front. Pharmacol. 2017 8 622 10.3389/fphar.2017.00622 28932197
    [Google Scholar]
  64. Anand P. Nair H.B. Sung B. Kunnumakkara A.B. Yadav V.R. Tekmal R.R. Aggarwal B.B. RETRACTED: Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem. Pharmacol. 2010 79 3 330 338 10.1016/j.bcp.2009.09.003 19735646
    [Google Scholar]
  65. Jamali Z. Khoobi M. Hejazi S.M. Eivazi N. Abdolahpour S. Imanparast F. Moradi-Sardareh H. Paknejad M. Evaluation of targeted curcumin (CUR) loaded PLGA nanoparticles for in vitro photodynamic therapy on human glioblastoma cell line. Photodiagn. Photodyn. Ther. 2018 23 190 201 10.1016/j.pdpdt.2018.06.026 29969678
    [Google Scholar]
  66. Akl M.A. Kartal-Hodzic A. Oksanen T. Ismael H.R. Afouna M.M. Yliperttula M. Samy A.M. Viitala T. Factorial design formulation optimization and in vitro characterization of curcumin-loaded PLGA nanoparticles for colon delivery. J. Drug Deliv. Sci. Technol. 2016 32 10 20 10.1016/j.jddst.2016.01.007
    [Google Scholar]
  67. Tiwari S.K. Agarwal S. Seth B. Yadav A. Nair S. Bhatnagar P. Karmakar M. Kumari M. Chauhan L.K.S. Patel D.K. Srivastava V. Singh D. Gupta S.K. Tripathi A. Chaturvedi R.K. Gupta K.C. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 2014 8 1 76 103 10.1021/nn405077y 24467380
    [Google Scholar]
  68. Huang N. Lu S. Liu X.G. Zhu J. Wang Y.J. Liu R.T. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer’s disease mice. Oncotarget 2017 8 46 81001 81013 10.18632/oncotarget.20944 29113362
    [Google Scholar]
  69. Koczkur K.M. Mourdikoudis S. Polavarapu L. Skrabalak S.E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015 44 41 17883 17905 10.1039/C5DT02964C 26434727
    [Google Scholar]
  70. Xian J. Hua Q. Jiang J. Ma Y. Huang W. Size-dependent interaction of the PVP capping ligand with Pd nanocrystals. Langmuir 2012 28 6736 6741 10.1021/la300786w 22509730
    [Google Scholar]
  71. Prosapio V. De Marco I. Scognamiglio M. Reverchon E. Folic acid–PVP nanostructured composite microparticles by supercritical antisolvent precipitation. Chem. Eng. J. 2015 277 286 294 10.1016/j.cej.2015.04.149
    [Google Scholar]
  72. He Y. Liu H. Bian W. Liu Y. Liu X. Ma S. Zheng X. Du Z. Zhang K. Ouyang D. Molecular interactions for the curcumin-polymer complex with enhanced anti-inflammatory effects. Pharmaceutics 2019 11 9 442 10.3390/pharmaceutics11090442 31480578
    [Google Scholar]
  73. Rahma A. Munir M.M. Khairurrijal M. Prasetyo A. Suendo V. Rachmawati H. Intermolecular interactions and the release pattern of electrospun curcumin-polyvinyl(pyrrolidone) fiber. Biol. Pharm. Bull. 2016 39 2 163 173 10.1248/bpb.b15‑00391 26830478
    [Google Scholar]
  74. Chhouk K. Diono W. Kanda H. Goto M. Micronization for enhancement of curcumin dissolution via electrospraying technique. ChemEngineering 2018 2 4 60 10.3390/chemengineering2040060
    [Google Scholar]
  75. Kuskov A.N. Voskresenskaya A.A. Goryachaya A.V. Artyukhov A.A. Shtilman M.I. Tsatsakis A.M. Preparation and characterization of amphiphilic poly-N-vinylpyrrolidone nanoparticles containing indomethacin. J. Mater. Sci. Mater. Med. 2010 21 5 1521 1530 10.1007/s10856‑010‑4029‑1 20177741
    [Google Scholar]
  76. Luss A.L. Kulikov P.P. Romme S.B. Andersen C.L. Pennisi C.P. Docea A.O. Kuskov A.N. Velonia K. Mezhuev Y.O. Shtilman M.I. Tsatsakis A.M. Gurevich L. Nanosized carriers based on amphiphilic poly-N-vinyl-2-pyrrolidone for intranuclear drug delivery. Nanomedicine 2018 13 7 703 715 10.2217/nnm‑2017‑0311 29629829
    [Google Scholar]
  77. Pinho E. Grootveld M. Soares G. Henriques M. Cyclodextrin-based hydrogels toward improved wound dressings. Crit. Rev. Biotechnol. 2014 34 4 328 337 10.3109/07388551.2013.794413 23919239
    [Google Scholar]
  78. Marques H.M.C. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragrance J. 2010 25 5 313 326 10.1002/ffj.2019
    [Google Scholar]
  79. Waleczek K. Marques H.M.C. Hempel B. Schmidt P.C. Phase solubility studies of pure (−)-α-bisabolol and camomile essential oil with β-cyclodextrin. Eur. J. Pharm. Biopharm. 2003 55 2 247 251 10.1016/S0939‑6411(02)00166‑2 12637105
    [Google Scholar]
  80. Garnero C. Zoppi A. Genovese D. Longhi M. Studies on trimethoprim:hydroxypropyl-β-cyclodextrin: Aggregate and complex formation. Carbohydr. Res. 2010 345 17 2550 2556 10.1016/j.carres.2010.08.018 20933225
    [Google Scholar]
  81. Guo S. Encapsulation of curcumin into β-cyclodextrins inclusion: A review. E3S Web. Conf. 2019 131 01100 10.1051/e3sconf/201913101100
    [Google Scholar]
  82. Kasapoglu-Calik M. Ozdemir M. Synthesis and controlled release of curcumin‐β‐cyclodextrin inclusion complex from nanocomposite poly( N ‐isopropylacrylamide/sodium alginate) hydrogels. J. Appl. Polym. Sci. 2019 136 21 47554 10.1002/app.47554
    [Google Scholar]
  83. Mangolim C.S. Moriwaki C. Nogueira A.C. Sato F. Baesso M.L. Neto A.M. Matioli G. Curcumin–β-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem. 2014 153 361 370 10.1016/j.foodchem.2013.12.067 24491741
    [Google Scholar]
  84. Maria D.N. Mishra S.R. Wang L. Abd-Elgawad A.H. Soliman O.A. El-Dahan M.S. Jablonski M.M. Water-soluble complex of curcumin with cyclodextrins: Enhanced physical properties for ocular drug delivery. Curr. Drug Deliv. 2017 14 6 875 886 27501714
    [Google Scholar]
  85. Yadav V.R. Suresh S. Devi K. Yadav S. Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech 2009 10 3 752 762 10.1208/s12249‑009‑9264‑8 19495987
    [Google Scholar]
  86. Li N. Wang N. Wu T. Qiu C. Wang X. Jiang S. Zhang Z. Liu T. Wei C. Wang T. Preparation of curcumin-hydroxypropyl-β-cyclodextrin inclusion complex by cosolvency-lyophilization procedure to enhance oral bioavailability of the drug. Drug Dev. Ind. Pharm. 2018 44 12 1966 1974 10.1080/03639045.2018.1505904 30059244
    [Google Scholar]
  87. Yadav V.R. Prasad S. Kannappan R. Ravindran J. Chaturvedi M.M. Vaahtera L. Parkkinen J. Aggarwal B.B. Cyclodextrin-complexed curcumin exhibits anti-inflammatory and antiproliferative activities superior to those of curcumin through higher cellular uptake. Biochem. Pharmacol. 2010 80 7 1021 1032 10.1016/j.bcp.2010.06.022 20599780
    [Google Scholar]
  88. Celebioglu A. Uyar T. Fast-dissolving antioxidant curcumin/cyclodextrin inclusion complex electrospun nanofibrous webs. Food Chem. 2020 317 126397 10.1016/j.foodchem.2020.126397 32078994
    [Google Scholar]
  89. Herzberger J. Niederer K. Pohlit H. Seiwert J. Worm M. Wurm F.R. Frey H. Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: Synthesis, novel polymer architectures, and bioconjugation. Chem. Rev. 2016 116 4 2170 2243 10.1021/acs.chemrev.5b00441 26713458
    [Google Scholar]
  90. Roy D. Cambre J.N. Sumerlin B.S. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 2010 35 1-2 278 301 10.1016/j.progpolymsci.2009.10.008
    [Google Scholar]
  91. Yang L. Alexandridis P. Physicochemical aspects of drug delivery and release from polymer-based colloids. Curr. Opin. Colloid Interface Sci. 2000 5 1-2 132 143 10.1016/S1359‑0294(00)00046‑7
    [Google Scholar]
  92. Alexandridis P. Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers. Chem. Eng. Technol. 2011 34 1 15 28 10.1002/ceat.201000335
    [Google Scholar]
  93. Agnely F. Djedour A. Bochot A. Grossiord J.L. Properties of various thermoassociating polymers: pharmaceutical and cosmetic applications. J. Drug Deliv. Sci. Technol. 2006 16 1 3 10 10.1016/S1773‑2247(06)50001‑2
    [Google Scholar]
  94. Tadros T. Viscoelastic properties of sterically stabilised emulsions and their stability. Adv. Colloid Interface Sci. 2015 222 692 708 10.1016/j.cis.2015.03.001 25900262
    [Google Scholar]
  95. Azeem A. Anwer M.K. Talegaonkar S. Niosomes in sustained and targeted drug delivery: Some recent advances. J. Drug Target. 2009 17 9 671 689 10.3109/10611860903079454 19845484
    [Google Scholar]
  96. Rajera R. Nagpal K. Singh S.K. Mishra D.N. Niosomes: A controlled and novel drug delivery system. Biol. Pharm. Bull. 2011 34 7 945 953 10.1248/bpb.34.945 21719996
    [Google Scholar]
  97. Sahu A. Kasoju N. Goswami P. Bora U. Encapsulation of curcumin in Pluronic block copolymer micelles for drug delivery applications. J. Biomater. Appl. 2011 25 6 619 639 10.1177/0885328209357110 20207782
    [Google Scholar]
  98. Das R.K. Kasoju N. Bora U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine 2010 6 1 153 160 10.1016/j.nano.2009.05.009 19616123
    [Google Scholar]
  99. Vaidya F.U. Sharma R. Shaikh S. Ray D. Aswal V.K. Pathak C. Pluronic micelles encapsulated curcumin manifests apoptotic cell death and inhibits pro‐inflammatory cytokines in human breast adenocarcinoma cells. Cancer Rep. 2019 2 1 e1133 10.1002/cnr2.1133 32721127
    [Google Scholar]
  100. Xu Y.Q. Chen W.R. Tsosie J.K. Xie X. Li P. Wan J.B. He C.W. Chen M.W. Niosome encapsulation of curcumin: Characterization and cytotoxic effect on ovarian cancer cells. J. Nanomater. 2016 2016 1 9 10.1155/2016/6365295
    [Google Scholar]
  101. Santos C. Silva C.J. Guimaraes R. Buttel Z. Tamagnini P. Zille A. Fabrication and characterization of PVA, PVA/chitosan, and PVA/cyanobacterial exopolysaccharide nanofibrous composite nanofiltration membranes prepared by electrospinning Abstr. Pap. Am. Chem 2013 245
    [Google Scholar]
  102. Kong M. Chen X.G. Xing K. Park H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010 144 1 51 63 10.1016/j.ijfoodmicro.2010.09.012 20951455
    [Google Scholar]
  103. Cruz-Romero M.C. Murphy T. Morris M. Cummins E. Kerry J.P. Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control 2013 34 2 393 397 10.1016/j.foodcont.2013.04.042
    [Google Scholar]
  104. Estevinho B.N. Rocha F. Santos L. Alves A. Microencapsulation with chitosan by spray drying for industry applications – A review. Trends Food Sci. Technol. 2013 31 2 138 155 10.1016/j.tifs.2013.04.001
    [Google Scholar]
  105. Agnihotri S.A. Mallikarjuna N.N. Aminabhavi T.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release 2004 100 1 5 28 10.1016/j.jconrel.2004.08.010 15491807
    [Google Scholar]
  106. Lucas J. Ralaivao M. Estevinho B.N. Rocha F. A new approach for the microencapsulation of curcumin by a spray drying method, in order to value food products. Powder Technol. 2020 362 428 435 10.1016/j.powtec.2019.11.095
    [Google Scholar]
  107. Sowasod N. Nakagawa K. Charinpanitkul T. Tanthapanichakoon W. Encapsulation of curcumin loaded oil droplets with chitosan based cryogel: influence of freezing condition on nanocapsule properties. Food Sci. Technol. Res. 2013 19 4 633 640 10.3136/fstr.19.633
    [Google Scholar]
  108. Parize A.L. Stulzer H.K. Laranjeira M.C.M. Brighente I.M.C. Souza T.C.R. Evaluation of chitosan microparticles containing curcumin and crosslinked with sodium tripolyphosphate produced by spray drying. Quim. Nova 2012 35 6 1127 1132 10.1590/S0100‑40422012000600011
    [Google Scholar]
  109. Hwang S.W. Shin J.S. Pectin-coated curcumin-chitosan microparticles crosslinked with mg 2+ for delayed drug release in the digestive system. Int. J. Polym. Sci. 2018 2018 1 7 10.1155/2018/2071071
    [Google Scholar]
  110. Ang L. Darwis Y. Por L. Yam M. Microencapsulation curcuminoids for effective delivery in pharmaceutical application. Pharmaceutics 2019 11 9 451 10.3390/pharmaceutics11090451 31480767
    [Google Scholar]
  111. Al-Kinani M.A. Haider A.J. Al-Musawi S. Design, construction and characterization of intelligence polymer coated core–shell nanocarrier for curcumin drug encapsulation and delivery in lung cancer therapy purposes. J. Inorg. Organomet. Polym. Mater. 2021 31 1 70 79 10.1007/s10904‑020‑01672‑w
    [Google Scholar]
  112. Thangavel P. Saravanakumar I. Sundaram M.K. Rathinam B. Muthuvijayan V. Preparation and characterization of a jelly fig (Ficus awkeotsang Makino) polysaccharide-based bioactive 3D scaffold for improved vascularization and skin tissue engineering applications. Int. J. Biol. Macromol. 2024 259 Pt 1 129199 10.1016/j.ijbiomac.2024.129199 38176487
    [Google Scholar]
  113. Ponrasu T. Yang R.F. Chou T.H. Wu J.J. Cheng Y.S. Core-Shell Encapsulation of Lipophilic substance in jelly fig (Ficus awkeotsang Makino) Polysaccharides using an inexpensive acrylic-based Millifluidic device. Appl. Biochem. Biotechnol. 2020 191 1 360 375 10.1007/s12010‑019‑03209‑5 31879860
    [Google Scholar]
  114. Hartini N. Ponrasu T. Wu J.J. Sriariyanun M. Cheng Y.S. Microencapsulation of curcumin in crosslinked jelly fig pectin using vacuum spray drying technique for effective drug delivery. Polymers (Basel) 2021 13 16 2583 10.3390/polym13162583 34451123
    [Google Scholar]
  115. Chen J.F. Chen X.W. Guo J. Yang X.Q. Zein-based core–shell microcapsules for the potential delivery of algae oil and lipophilic compounds. Food Funct. 2019 10 3 1504 1512 10.1039/C8FO02302F 30785152
    [Google Scholar]
  116. Wang F. Zhang L. Bai X. Cao X. Jiao X. Huang Y. Li Y. Qin Y. Wen Y. Stimuli-responsive nanocarrier for codelivery of MiR-31 and doxorubicin to suppress high MtEF4 cancer. ACS Appl. Mater. Interfaces 2018 10 26 22767 22775 10.1021/acsami.8b07698 29897733
    [Google Scholar]
  117. Lin J. Li C. Zhao Y. Hu J. Zhang L.M. Co-electrospun nanofibrous membranes of collagen and zein for wound healing. ACS Appl. Mater. Interfaces 2012 4 2 1050 1057 10.1021/am201669z 22242622
    [Google Scholar]
  118. Shi K. Yu H. Lee T.C. Huang Q. Improving ice nucleation activity of zein film through layer-by-layer deposition of extracellular ice nucleators. ACS Appl. Mater. Interfaces 2013 5 21 10456 10464 10.1021/am4016457 24106783
    [Google Scholar]
  119. Mei L. Teng Z. Zhu G. Liu Y. Zhang F. Zhang J. Li Y. Guan Y. Luo Y. Chen X. Wang Q. Silver nanocluster-embedded zein films as antimicrobial coating materials for food packaging. ACS Appl. Mater. Interfaces 2017 9 40 35297 35304 10.1021/acsami.7b08152 28926224
    [Google Scholar]
  120. Chen S. McClements D.J. Jian L. Han Y. Dai L. Mao L. Gao Y. Core–shell biopolymer nanoparticles for codelivery of curcumin and piperine: Sequential electrostatic deposition of hyaluronic acid and chitosan shells on the zein core. ACS Appl. Mater. Interfaces 2019 11 41 38103 38115 10.1021/acsami.9b11782 31509373
    [Google Scholar]
  121. Liu F. Ma D. Luo X. Zhang Z. He L. Gao Y. McClements D.J. Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol. Food Hydrocoll. 2018 79 450 461 10.1016/j.foodhyd.2018.01.017
    [Google Scholar]
  122. Khan M.K.I. Nazir A. Maan A.A. Electrospraying: a novel technique for efficient coating of foods. Food Eng. Rev. 2017 9 2 112 119 10.1007/s12393‑016‑9150‑6
    [Google Scholar]
  123. Wang J. Jansen J.A. Yang F. Electrospraying: possibilities and challenges of engineering carriers for biomedical applications—a mini review. Front Chem. 2019 7 258 10.3389/fchem.2019.00258 31106194
    [Google Scholar]
  124. He Y. Huang Y. Wang W. Cheng Y. Integrating micromixer precipitation and electrospray drying toward continuous production of drug nanoparticles. Chem. Eng. J. 2011 168 2 931 937 10.1016/j.cej.2011.01.092
    [Google Scholar]
  125. Gomez-Estaca J. Balaguer M.P. Gavara R. Hernandez-Munoz P. Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocoll. 2012 28 1 82 91 10.1016/j.foodhyd.2011.11.013
    [Google Scholar]
  126. Yuan S. Lei F. Liu Z. Tong Q. Si T. Xu R.X. Coaxial electrospray of curcumin–loaded microparticles for sustained drug release. PLoS One 2015 10 7 e0132609 10.1371/journal.pone.0132609 26208167
    [Google Scholar]
  127. Mai Z. Chen J. He T. Hu Y. Dong X. Zhang H. Huang W. Ko F. Zhou W. Electrospray biodegradable microcapsules loaded with curcumin for drug delivery systems with high bioactivity. RSC Advances 2017 7 3 1724 1734 10.1039/C6RA25314H
    [Google Scholar]
  128. Chen X. Zou L.Q. Niu J. Liu W. Peng S.F. Liu C.M. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 2015 20 8 14293 14311 10.3390/molecules200814293 26251892
    [Google Scholar]
  129. Takahashi M. Inafuku K. Miyagi T. Oku H. Wada K. Imura T. Kitamoto D. Efficient preparation of liposomes encapsulating food materials using lecithins by a mechanochemical method. J. Oleo Sci. 2007 56 1 35 42 10.5650/jos.56.35 17693697
    [Google Scholar]
  130. Jangle R.D. Thorat B.N. Effect of freeze‒thawing study on curcumin liposomes for obtaining better freeze-dried product. Dry. Technol. 2013 31 9 966 974 10.1080/07373937.2013.769003
    [Google Scholar]
  131. Feng T. Wei Y. Lee R. Zhao L. Liposomal curcumin and its application in cancer. Int. J. Nanomedicine 2017 12 6027 6044 10.2147/IJN.S132434 28860764
    [Google Scholar]
  132. Khan F.I. Ghoshal A.K. Removal of volatile organic compounds from polluted air. J. Loss Prev. Process Ind. 2000 13 527 545 10.1016/S0950‑4230(00)00007‑3
    [Google Scholar]
  133. Chen H. Wu J. Sun M. Guo C. Yu A. Cao F. Zhao L. Tan Q. Zhai G. N-trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin. J. Liposome Res. 2012 22 2 100 109 10.3109/08982104.2011.621127 22007962
    [Google Scholar]
  134. Gu J.J. Deng Y.J. Preparation of curcumin liposomes and its oral pharmacokinetics in rats. J Chengdu Med Coll. 2010 5 2 97 100
    [Google Scholar]
  135. Sun J. Han M. Preparation of novel curcumin liposomes and associated preliminary stability study. World Sci. Technol. 2008 10 4 66 72
    [Google Scholar]
  136. Matloob A.H. Mourtas S. Klepetsanis P. Antimisiaris S.G. Increasing the stability of curcumin in serum with liposomes or hybrid drug-in-cyclodextrin-in-liposome systems: A comparative study. Int. J. Pharm. 2014 476 1-2 108 115 10.1016/j.ijpharm.2014.09.041 25269006
    [Google Scholar]
  137. Pamunuwa G. Karunaratne V. Karunaratne D.N. Effect of lipid composition on in vitro release and skin deposition of curcumin encapsulated liposomes. J. Nanomater. 2016 2016 1 9 10.1155/2016/4535790
    [Google Scholar]
  138. Ou C.F. Liang Y.L. Shen S.W. Han X. Preparation of liposomal in curcumin using ethanol injection method. J. South Agric. 2011 42 10 1259 1264
    [Google Scholar]
  139. Zhao Y.Z. Lu C.T. Zhang Y. Xiao J. Zhao Y.P. Tian J.L. Xu Y.Y. Feng Z.G. Xu C.Y. Selection of high efficient transdermal lipid vesicle for curcumin skin delivery. Int. J. Pharm. 2013 454 1 302 309 10.1016/j.ijpharm.2013.06.052 23830940
    [Google Scholar]
  140. Li C. Deng L. Zhang Y. Su T.T. Jiang Y. Chen Z.B. Silica-coated ethosome as a novel oral delivery system for enhanced oral bioavailability of curcumin. Yao Xue Xue Bao 2012 47 11 1541 1547 23387090
    [Google Scholar]
  141. Zang G. Zhao Y. Pan L. Liu C.H. Preparation and quality evaluation of curcumin liposomes modified with vitamin A. Carol. J. Pharm. 2011 42 6 431 434
    [Google Scholar]
  142. Hasan M. Latifi S. Kahn C.J.F. Tamayol A. Habibey R. Passeri E. Linder M. Arab-Tehrany E. The positive role of curcumin-loaded salmon nanoliposomes on the culture of primary cortical neurons. Mar. Drugs 2018 16 7 218 10.3390/md16070218 29941790
    [Google Scholar]
  143. Gamboa J.M. Leong K.W. In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv. Drug Deliv. Rev. 2013 65 6 800 810 10.1016/j.addr.2013.01.003 23415952
    [Google Scholar]
  144. Puras G. Mashal M. Zárate J. Agirre M. Ojeda E. Grijalvo S. Eritja R. Diaz-Tahoces A. Martínez Navarrete G. Avilés-Trigueros M. Fernández E. Pedraz J.L. A novel cationic niosome formulation for gene delivery to the retina. J. Control. Release 2014 174 1 27 36 10.1016/j.jconrel.2013.11.004 24231407
    [Google Scholar]
  145. Xie X. Xu A.M. Leal-Ortiz S. Cao Y. Garner C.C. Melosh N.A. Nanostraw-electroporation system for highly efficient intracellular delivery and transfection. ACS Nano 2013 7 5 4351 4358 10.1021/nn400874a 23597131
    [Google Scholar]
  146. Obeid M.A. Khadra I. Albaloushi A. Mullin M. Alyamani H. Ferro V.A. Microfluidic manufacturing of different niosomes nanoparticles for curcumin encapsulation: Physical characteristics, encapsulation efficacy, and drug release. Beilstein J. Nanotechnol. 2019 10 1826 1832 10.3762/bjnano.10.177 31579065
    [Google Scholar]
  147. Obeid M.A. Gebril A.M. Tate R.J. Mullen A.B. Ferro V.A. Comparison of the physical characteristics of monodisperse non-ionic surfactant vesicles (NISV) prepared using different manufacturing methods. Int. J. Pharm. 2017 521 1-2 54 60 10.1016/j.ijpharm.2017.02.007 28163227
    [Google Scholar]
  148. Ge X. Wei M. He S. Yuan W.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics 2019 11 2 55 10.3390/pharmaceutics11020055 30700021
    [Google Scholar]
  149. Gong W.J. Nadzir M.M. Hisham S.F. Kalidas S.R. Size, entrapment efficiency and stability of curcumin niosomes prepared at different ph conditions. Asian J. Sci. Res. 2019 13 1 23 28 10.3923/ajsr.2020.23.28
    [Google Scholar]
  150. Kumar K. Rai A.K. Development and evaluation of proniosome- encapsulated curcumin for transdermal administration. Trop. J. Pharm. Res. 2011 10 6 697 703 10.4314/tjpr.v10i6.1
    [Google Scholar]
  151. Alemi A. Zavar Reza J. Haghiralsadat F. Zarei Jaliani H. Haghi Karamallah M. Hosseini S.A. Haghi Karamallah S. Paclitaxel and curcumin coadministration in novel cationic PEGylated niosomal formulations exhibit enhanced synergistic antitumor efficacy. J. Nanobiotech. 2018 16 1 28 10.1186/s12951‑018‑0351‑4 29571289
    [Google Scholar]
  152. Mistlberger G. Medina-Castillo A.L. Borisov S.M. Mayr T. Fernández-Gutiérrez A. Fernandez-Sanchez J.F. Klimant I. Mini-emulsion solvent evaporation: a simple and versatile way to magnetic nanosensors. 2011 172 3-4 299 308
    [Google Scholar]
  153. Song C.X. Labhasetwar V. Murphy H. Qu X. Humphrey W.R. Shebuski R.J. Levy R.J. Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J. Control. Release 1997 43 2-3 197 212 10.1016/S0168‑3659(96)01484‑8
    [Google Scholar]
  154. Silva-Buzanello R.A. Souza M.F. Oliveira D.A. Bona E. Leimann F.V. Cardozo Filho L. Araújo P.H.H. Ferreira S.R.S. Gonçalves O.H. Preparation of curcumin-loaded nanoparticles and determination of the antioxidant potential of curcumin after encapsulation. Polímeros 2016 26 3 207 214 10.1590/0104‑1428.2246
    [Google Scholar]
  155. Pernetti M. van Malssen K.F. Flöter E. Bot A. Structuring of edible oils by alternatives to crystalline fat. Curr. Opin. Colloid Interface Sci. 2007 12 4-5 221 231 10.1016/j.cocis.2007.07.002
    [Google Scholar]
  156. Marangoni A.G. Organogels: an alternative edible oil-structuring method. J. Am. Oil Chem. Soc. 2012 89 5 749 780 10.1007/s11746‑012‑2049‑3
    [Google Scholar]
  157. Shapiro Y.E. Structure and dynamics of hydrogels and organogels: An NMR spectroscopy approach. Prog. Polym. Sci. 2011 36 9 1184 1253 10.1016/j.progpolymsci.2011.04.002
    [Google Scholar]
  158. Yu H. Shi K. Liu D. Huang Q. Development of a food-grade organogel with high bioaccessibility and loading of curcuminoids. Food Chem. 2012 131 1 48 54 10.1016/j.foodchem.2011.08.027 23265454
    [Google Scholar]
  159. Yu H. Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J. Agric. Food Chem. 2012 60 21 5373 5379 10.1021/jf300609p 22506728
    [Google Scholar]
  160. Turck D. Bohn T. Castenmiller J. De Henauw S. Hirsch-Ernst K.I. Maciuk A. Mangelsdorf I. McArdle H.J. Naska A. Pelaez C. Pentieva K. Siani A. Thies F. Tsabouri S. Vinceti M. Cubadda F. Frenzel T. Heinonen M. Marchelli R. Neuhäuser-Berthold M. Poulsen M. Prieto Maradona M. Schlatter J.R. van Loveren H. Ackerl R. Kouloura E. Knutsen H.K. Safety of tetrahydrocurcuminoids from turmeric (Curcuma longa L.) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021 19 12 e06936 34987620
    [Google Scholar]
  161. Sowbhagya H.B. Smitha S. Sampathu S.R. Krishnamurthy N. Bhattacharya S. Stability of water-soluble turmeric colourant in an extruded food product during storage. J. Food Eng. 2005 67 367 371 10.1016/j.jfoodeng.2004.05.003
    [Google Scholar]
  162. Wang Y. Lu Z. Lv F. Bie X. Study on microencapsulation of curcumin pigments by spray drying. Eur. Food Res. Technol. 2009 229 3 391 396 10.1007/s00217‑009‑1064‑6
    [Google Scholar]
  163. Wang Y.F. Shao J.J. Zhou C.H. Zhang D.L. Bie X.M. Lv F.X. Zhang C. Lu Z.X. Food preservation effects of curcumin microcapsules. Food Control 2012 27 1 113 117 10.1016/j.foodcont.2012.03.008
    [Google Scholar]
  164. Wang Y. Lu Z. Wu H. Lv F. Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. Int. J. Food Microbiol. 2009 136 1 71 74 10.1016/j.ijfoodmicro.2009.09.001 19775769
    [Google Scholar]
  165. Vitaglione P. Barone Lumaga R. Ferracane R. Radetsky I. Mennella I. Schettino R. Koder S. Shimoni E. Fogliano V. Curcumin bioavailability from enriched bread: the effect of microencapsulated ingredients. J. Agric. Food Chem. 2012 60 13 3357 3366 10.1021/jf204517k 22401804
    [Google Scholar]
  166. Sharma M. Inbaraj B.S. Dikkala P.K. Sridhar K. Mude A.N. Narsaiah K. Preparation of curcumin hydrogel beads for the development of functional kulfi: a tailoring delivery system. Foods 2022 11 2 182 10.3390/foods11020182 35053917
    [Google Scholar]
  167. Plianbangchang P. Tungpradit W. Tiyaboonchai W. Efficacy and safety of curcuminoids loaded solid lipid nanoparticles facial cream as an anti-aging agent. NUJST 2013 15 2 73 81
    [Google Scholar]
  168. Ganesan P. Choi D.K. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int. J. Nanomed. 2016 11 1987 2007 10.2147/IJN.S104701 27274231
    [Google Scholar]
  169. Suwannateep N. Wanichwecharungruang S. Haag S.F. Devahastin S. Groth N. Fluhr J.W. Lademann J. Meinke M.C. Encapsulated curcumin results in prolonged curcumin activity in vitro and radical scavenging activity ex vivo on skin after UVB-irradiation. Eur. J. Pharm. Biopharm. 2012 82 3 485 490 10.1016/j.ejpb.2012.08.010 22954772
    [Google Scholar]
  170. Kaur C.D. Saraf S. Topical vesicular formulations of Curcuma longa extract on recuperating the ultraviolet radiation-damaged skin. J. Cosmet. Dermatol. 2011 10 4 260 265 10.1111/j.1473‑2165.2011.00586.x 22151933
    [Google Scholar]
  171. Tavano L. Muzzalupo R. Picci N. de Cindio B. Co-encapsulation of lipophilic antioxidants into niosomal carriers: Percutaneous permeation studies for cosmeceutical applications. Collo. Surf. B Biointer. 2014 114 144 149 10.1016/j.colsurfb.2013.09.055 24176892
    [Google Scholar]
  172. Coradini K. Lima F.O. Oliveira C.M. Chaves P.S. Athayde M.L. Carvalho L.M. Beck R.C.R. Co-encapsulation of resveratrol and curcumin in lipid-core nanocapsules improves their in vitro antioxidant effects. Eur. J. Pharm. Biopharm. 2014 88 1 178 185 10.1016/j.ejpb.2014.04.009 24780440
    [Google Scholar]
  173. Friedrich R.B. Kann B. Coradini K. Offerhaus H.L. Beck R.C.R. Windbergs M. Skin penetration behavior of lipid-core nanocapsules for simultaneous delivery of resveratrol and curcumin. Eur. J. Pharm. Sci. 2015 78 204 213 10.1016/j.ejps.2015.07.018 26215463
    [Google Scholar]
  174. Basnet P. Hussain H. Tho I. Skalko-Basnet N. Liposomal delivery system enhances anti-inflammatory properties of curcumin. J. Pharm. Sci. 2012 101 2 598 609 10.1002/jps.22785 21989712
    [Google Scholar]
  175. Rogers N.M. Stephenson M.D. Kitching A.R. Horowitz J.D. Coates P.T.H. Amelioration of renal ischaemia–reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen‐presenting cells. Br. J. Pharmacol. 2012 166 1 194 209 10.1111/j.1476‑5381.2011.01590.x 21745189
    [Google Scholar]
  176. Witika B.A. Makoni P.A. Matafwali S.K. Mweetwa L.L. Shandele G.C. Walker R.B. Enhancement of biological and pharmacological properties of an encapsulated polyphenol: Curcumin. Molecules 2021 26 14 4244 10.3390/molecules26144244 34299519
    [Google Scholar]
  177. Wang X. Jiang Y. Wang Y.W. Huang M.T. Ho C.T. Huang Q. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem. 2008 108 2 419 424 10.1016/j.foodchem.2007.10.086 26059118
    [Google Scholar]
  178. Chen P. Zhang H. Cheng S. Zhai G. Shen C. Development of curcumin loaded nanostructured lipid carrier based thermosensitive in situ gel for dermal delivery. CollO. Surf. A Physicochem. Eng. Asp. 2016 506 356 362 10.1016/j.colsurfa.2016.06.054
    [Google Scholar]
  179. Sadeghi Ghadi Z. Ebrahimnejad P. Curcumin entrapped hyaluronan containing niosomes: preparation, characterisation and in vitro/in vivo evaluation. J. Microencapsul. 2019 36 2 169 179 10.1080/02652048.2019.1617360 31104531
    [Google Scholar]
  180. Manca M.L. Castangia I. Zaru M. Nácher A. Valenti D. Fernàndez-Busquets X. Fadda A.M. Manconi M. Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring. Biomaterials 2015 71 100 109 10.1016/j.biomaterials.2015.08.034 26321058
    [Google Scholar]
  181. Kianvash N. Bahador A. Pourhajibagher M. Ghafari H. Nikoui V. Rezayat S.M. Dehpour A.R. Partoazar A. Evaluation of propylene glycol nanoliposomes containing curcumin on burn wound model in rat: biocompatibility, wound healing, and anti-bacterial effects. Drug Deliv. Transl. Res. 2017 7 5 654 663 10.1007/s13346‑017‑0405‑4 28707264
    [Google Scholar]
  182. Liu C.H. Huang H.Y. In vitro anti-propionibacterium activity by curcumin containing vesicle system. Chem. Pharm. Bull. (Tokyo) 2013 61 4 419 425 10.1248/cpb.c12‑01043 23546001
    [Google Scholar]
  183. Konrádsdóttir F. Ogmundsdóttir H. Sigurdsson V. Loftsson T. Drug targeting to the hair follicles: a cyclodextrin-based drug delivery. AAPS PharmSciTech 2009 10 1 266 269 10.1208/s12249‑009‑9205‑6 19280346
    [Google Scholar]
  184. Jung S. Otberg N. Thiede G. Richter H. Sterry W. Panzner S. Lademann J. Innovative liposomes as a transfollicular drug delivery system: penetration into porcine hair follicles. J. Invest. Dermatol. 2006 126 8 1728 1732 10.1038/sj.jid.5700323 16645589
    [Google Scholar]
  185. Abdulbaqi I.M. Darwis Y. Khan N.A. Assi R.A. Khan A.A. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomed. 2016 11 2279 2304 10.2147/IJN.S105016 27307730
    [Google Scholar]
  186. El-Mahdy M. Hassan A. El-Badry M. El-Gindy G. Performance of curcumin in nanosized carriers niosomes and ethosomes as potential anti-inflammatory delivery system for topical application. Bulletin of Pharmaceutical Sciences. Bullet. Pharma. Scie. Assiut 2020 43 1 105 122
    [Google Scholar]
  187. Jin-guang C Preparation of curcumin ethosomes. Afr. J. Pharm. Pharmacol. 2013 7 31 2246 2251 10.5897/AJPP12.435
    [Google Scholar]
  188. Madhavi B.B. Vennela K.S. Masana P. Madipoju B. Enhanced transdermal drug penetration of curcumin via ethosomes. Malays. J. Pharm. Sci. 2013 11 1 49 58
    [Google Scholar]
  189. Gunjan J. Swarnlata S. Topical delivery of curcuma longa extract loaded nanosized ethosomes to combat facial wrinkles. J. Pharm. Drug Deliv. Res. 2014 3 1
    [Google Scholar]
  190. Guo T. Lu J. Fan Y. Zhang Y. Yin S. Sha X. Feng N. TPGS assists the percutaneous administration of curcumin and glycyrrhetinic acid coloaded functionalized ethosomes for the synergistic treatment of psoriasis. Int. J. Pharm. 2021 604 120762 10.1016/j.ijpharm.2021.120762 34082000
    [Google Scholar]
  191. Zhang Y. Xia Q. Li Y. He Z. Li Z. Guo T. Wu Z. Feng N. CD44 assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: A new strategy for clustering drug in inflammatory skin. Theranostics 2019 9 1 48 64 10.7150/thno.29715 30662553
    [Google Scholar]
  192. Partoazar A. Kianvash N. Darvishi M. Nasoohi S. Rezayat S. Bahador A. Ethosomal curcumin promoted wound healing and reduced bacterial flora in second degree burn in rat. Drug Res. 2016 66 12 660 665 10.1055/s‑0042‑114034 27626605
    [Google Scholar]
  193. Ailioaie L.M. Litscher G. Curcumin and Photobiomodulation in Chronic Viral Hepatitis and Hepatocellular Carcinoma. Int. J. Mol. Sci. 2020 21 19 7150 10.3390/ijms21197150 32998270
    [Google Scholar]
  194. Pan M.H. Chang W.L. Lin-Shiau S.Y. Ho C.T. Lin J.K. Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J. Agric. Food Chem. 2001 49 3 1464 1474 10.1021/jf001129v 11312881
    [Google Scholar]
  195. Desai S.J. Prickril B. Rasooly A. Mechanisms of phytonutrient modulation of Cyclooxygenase-2 (COX-2) and inflammation related to cancer. Nutr. Cancer 2018 70 3 350 375 10.1080/01635581.2018.1446091 29578814
    [Google Scholar]
  196. Squires M.S. Hudson E.A. Howells L. Sale S. Houghton C.E. Jones J.L. Fox L.H. Dickens M. Prigent S.A. Manson M.M. Relevance of mitogen activated protein kinase (MAPK) and phosphotidylinositol-3-kinase/protein kinase B (PI3K/PKB) pathways to induction of apoptosis by curcumin in breast cells. Biochem. Pharmacol. 2003 65 3 361 376 10.1016/S0006‑2952(02)01517‑4 12527329
    [Google Scholar]
  197. Xia Q. Xu M. Zhang P. Liu L. Meng X. Dong L. Therapeutic potential of autophagy in glioblastoma treatment with phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway inhibitors. Front. Oncol. 2020 10 572904 10.3389/fonc.2020.572904 33123479
    [Google Scholar]
  198. Li B. Takeda T. Tsuiji K. Wong T.F. Tadakawa M. Kondo A. Nagase S. Yaegashi N. Curcumin induces cross-regulation between autophagy and apoptosis in uterine leiomyosarcoma cells. Int. J. Gynecol. Cancer 2013 23 5 803 808 10.1097/IGC.0b013e31828c9581 23532091
    [Google Scholar]
  199. Paolino D. Vero A. Cosco D. Pecora T.M.G. Cianciolo S. Fresta M. Pignatello R. Improvement of Oral Bioavailability of Curcumin upon Microencapsulation with Methacrylic Copolymers. Front. Pharmacol. 2016 7 485 10.3389/fphar.2016.00485 28066239
    [Google Scholar]
  200. Chen Y. Lu Y. Lee R.J. Xiang G. Nano Encapsulated Curcumin: And Its Potential for Biomedical Applications. Int. J. Nanomedicine 2020 15 3099 3120 10.2147/IJN.S210320 32431504
    [Google Scholar]
  201. Prasad C. Bhatia E. Banerjee R. Curcumin Encapsulated Lecithin Nanoemulsions: An Oral Platform for Ultrasound Mediated Spatiotemporal Delivery of Curcumin to the Tumor. Sci. Rep. 2020 10 1 8587 10.1038/s41598‑020‑65468‑1 32444829
    [Google Scholar]
  202. El-Saadony M.T. Yang T. Korma S.A. Sitohy M. Abd El-Mageed T.A. Selim S. Al Jaouni S.K. Salem H.M. Mahmmod Y. Soliman S.M. Mo’men S.A.A. Mosa W.F.A. El-Wafai N.A. Abou-Aly H.E. Sitohy B. Abd El-Hack M.E. El-Tarabily K.A. Saad A.M. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Front. Nutr. 2023 9 1040259 10.3389/fnut.2022.1040259 36712505
    [Google Scholar]
  203. Apiratikul N. Penglong T. Suksen K. Svasti S. Chairoungdua A. Yingyongnarongkul B. In vitro delivery of curcumin with cholesterol-based cationic liposomes. Bioorg. Khim. 2013 39 4 497 503 10.7868/S0132342313030032 24707732
    [Google Scholar]
  204. Hardwick J. Taylor J. Mehta M. Satija S. Paudel K.R. Hansbro P.M. Chellappan D.K. Bebawy M. Dua K. Targeting Cancer using Curcumin Encapsulated Vesicular Drug Delivery Systems. Curr. Pharm. Des. 2021 27 1 2 14 10.2174/18734286MTA4dNTgg2 32723255
    [Google Scholar]
  205. Zhang L. Man S. Qiu H. Liu Z. Zhang M. Ma L. Gao W. Curcumin-cyclodextrin complexes enhanced the anti-cancer effects of curcumin. Environ. Toxicol. Pharmacol. 2016 48 31 38 10.1016/j.etap.2016.09.021 27716533
    [Google Scholar]
  206. Sahab-Negah S. Ariakia F. Jalili-Nik M. Afshari A.R. Salehi S. Samini F. Rajabzadeh G. Gorji A. Curcumin loaded in niosomal nanoparticles improved the antitumor effects of free curcumin on glioblastoma stem-like cells: An In vitro study. Mol. Neurobiol. 2020 57 8 3391 3411 10.1007/s12035‑020‑01922‑5 32430842
    [Google Scholar]
  207. Urošević M. Nikolić L. Gajić I. Nikolić V. Dinić A. Miljković V. Curcumin: Biological activities and modern pharmaceutical forms. Antibiotics 2022 11 2 135 10.3390/antibiotics11020135 35203738
    [Google Scholar]
  208. Zhang Z. Jiang M. Fang J. Yang M. Zhang S. Yin Y. Li D. Mao L. Fu X. Hou Y. Fu X. Fan C. Sun B. Enhanced therapeutic potential of nanocurcumin against subarachnoid hemorrhage-induced blood‒brain barrier disruption through inhibition of inflammatory response and oxidative stress. Mol. Neurobiol. 2017 54 1 1 14 10.1007/s12035‑015‑9635‑y 26708209
    [Google Scholar]
  209. Dende C. Meena J. Nagarajan P. Nagaraj V.A. Panda A.K. Padmanaban G. Nanocurcumin is superior to native curcumin in preventing degenerative changes in Experimental Cerebral Malaria. Sci. Rep. 2017 7 1 10062 10.1038/s41598‑017‑10672‑9 28855623
    [Google Scholar]
  210. Wang W. Zhu R. Xie Q. Li A. Xiao Y. Li K. Liu H. Wang S. Cui D. Wang S. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int. J. Nanomedicine 2012 7 3667 3677 10.2147/IJN.S30428 22888226
    [Google Scholar]
  211. Meng N. Gong Y. Zhang J. Mu X. Song Z. Feng R. Zhang H. A novel curcumin-loaded nanoparticle restricts atherosclerosis development and promotes plaques stability in apolipoprotein E deficient mice. J. Biomater. Appl. 2019 33 7 946 954 10.1177/0885328218815328 30541364
    [Google Scholar]
  212. Mimche P.N. Taramelli D. Vivas L. The plant-based immunomodulator curcumin as a potential candidate for the development of an adjunctive therapy for cerebral malaria. Malar. J. 2011 10 S1 S10 10.1186/1475‑2875‑10‑S1‑S10 21411011
    [Google Scholar]
  213. Martí Coma-Cros E. Biosca A. Lantero E. Manca M.L. Caddeo C. Gutiérrez L. Ramírez M. Borgheti-Cardoso L.N. Manconi M. Fernàndez-Busquets X. Antimalarial activity of orally administered curcumin incorporated in eudragit®-containing liposomes. Int. J. Mol. Sci. 2018 19 5 1361 10.3390/ijms19051361 29734652
    [Google Scholar]
  214. Akhtar F. Rizvi M.M.A. Kar S.K. Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice. Biotechnol. Adv. 2012 30 1 310 320 10.1016/j.biotechadv.2011.05.009 21619927
    [Google Scholar]
  215. Kurup V.P. Barrios C.S. Raju R. Johnson B.D. Levy M.B. Fink J.N. Immune response modulation by curcumin in a latex allergy model. Clin. Mol. Allergy 2007 5 1 1 12 10.1186/1476‑7961‑5‑1 17254346
    [Google Scholar]
  216. Zhu T. Chen Z. Chen G. Wang D. Tang S. Deng H. Wang J. Li S. Lan J. Tong J. Li H. Deng X. Zhang W. Sun J. Tu Y. Luo W. Li C. Curcumin attenuates asthmatic airway inflammation and mucus hypersecretion involving a PPAR γ -Dependent NF - κ b signaling pathway in vivo and in vitro. Mediators Inflamm. 2019 2019 1 15 10.1155/2019/4927430 31073274
    [Google Scholar]
  217. Wong J-Y. Yin Ng Z. Mehta M. Shukla S.D. Panneerselvam J. Madheswaran T. Gupta G. Negi P. Kumar P. Pillay V. Hsu A. Hansbro N.G. Wark P. Bebawy M. Hansbro P.M. Dua K. Chellappan D.K. Curcumin-loaded niosomes downregulate mRNA expression of pro-inflammatory markers involved in asthma: an in vitro study. Nanomedicine 2020 15 30 2955 2970 10.2217/nnm‑2020‑0260 33252322
    [Google Scholar]
  218. Park J.Y. Chu G.E. Park S. Park C. Aryal S. Kang W.J. Cho W.G. Key J. Therapeutic efficacy of curcumin enhanced by microscale discoidal polymeric particles in a murine asthma model. Pharmaceutics 2020 12 8 739 10.3390/pharmaceutics12080739 32781576
    [Google Scholar]
  219. Wang W. Zhu R. Xie Q. Li A. Xiao Y. Li K. Liu H. Wang S. Cui D. Wang S. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int. J. Nanomed. 2012 7 3667 3677 10.2147/IJN.S30428 22888226
    [Google Scholar]
  220. Salehi B. Del Prado-Audelo M.L. Cortés H. Leyva-Gómez G. Stojanović-Radić Z. Singh Y.D. Patra J.K. Das G. Martins N. Martorell M. Sharifi-Rad M. Cho W.C. Sharifi-Rad J. Therapeutic applications of curcumin nanomedicine formulations in cardiovascular diseases. J. Clin. Med. 2020 9 3 746 10.3390/jcm9030746 32164244
    [Google Scholar]
  221. Pillai S.C. Borah A. Le M.N.T. Kawano H. Hasegawa K. Kumar D.S. Co-delivery of curcumin and bioperine via plga nanoparticles to prevent atherosclerotic foam cell formation. Pharmaceutics 2021 13 9 1420 10.3390/pharmaceutics13091420 34575496
    [Google Scholar]
  222. J B V.K. Ramakrishna S. Madhusudhan B. Preparation and characterisation of atorvastatin and curcumin-loaded chitosan nanoformulations for oral delivery in atherosclerosis. IET NanobiotecH. 2017 11 1 96 103 10.1049/iet‑nbt.2016.0062 28476969
    [Google Scholar]
  223. Marton L.T. Pescinini-e-Salzedas L.M. Camargo M.E.C. Barbalho S.M. Haber J.F.S. Sinatora R.V. Detregiachi C.R.P. Girio R.J.S. Buchaim D.V. Cincotto dos Santos Bueno P. The effects of curcumin on diabetes mellitus: A systematic review. Front. Endocrinol. 2021 12 669448 10.3389/fendo.2021.669448 34012421
    [Google Scholar]
  224. Chauhan P. Mahajan S. Prasad G.B.K.S. Preparation and characterization of CS-ZnO-NC nanoparticles for imparting anti-diabetic activities in experimental diabetes. J. Drug Deliv. Sci. Technol. 2019 52 738 747 10.1016/j.jddst.2019.05.020
    [Google Scholar]
  225. Shamsi-Goushki A. Mortazavi Z. Mirshekar M.A. Mohammadi M. Moradi-Kor N. Jafari-Maskouni S. Shahraki M. Comparative effects of curcumin versus nano-curcumin on insulin resistance, serum levels of apelin and lipid profile in type 2 diabetic rats. Diabetes Metab. Syndr. Obes. 2020 13 2337 2346 10.2147/DMSO.S247351 32753918
    [Google Scholar]
  226. Gouda W. Hafiz N.A. Mageed L. Alazzouni A.S. Khalil W.K.B. Afify M. Abdelmaksoud M.D.E. Effects of nano-curcumin on gene expression of insulin and insulin receptor. Bull. Natl. Res. Cent. 2019 43 1 128 10.1186/s42269‑019‑0164‑0
    [Google Scholar]
  227. Tong F. Chai R. Jiang H. Dong B. In vitro/vivo drug release and anti-diabetic cardiomyopathy properties of curcumin/PBLG-PEG-PBLG nanoparticles. Int. J. Nanomed. 2018 13 1945 1962 10.2147/IJN.S153763 29662310
    [Google Scholar]
  228. Grama C.N. Suryanarayana P. Patil M.A. Raghu G. Balakrishna N. Kumar M.N.V.R. Reddy G.B. Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model. PLoS One 2013 8 10 e78217 10.1371/journal.pone.0078217 24155984
    [Google Scholar]
  229. Yogaraj V. Gautham G. Akshata C. Manikandan R. Murugan E. Arumugam M. Quaternary ammonium poly (amidoamine) dendrimeric encapsulated nanocurcumin efficiently prevents cataract of rat pups through regulation of pro-inflammatory gene expression. J. Drug Deliv. Sci. Technol. 2020 58 101785 10.1016/j.jddst.2020.101785
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X330008240827052241
Loading
/content/journals/rafna/10.2174/012772574X330008240827052241
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: cosmetic ; Curcumin ; pharmaceutical industry ; food ; microencapsulation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test