Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

The buccal cavity, also known as the oral cavity, is a complex anatomical structure that plays a crucial role in various physiological processes. It serves as a gateway to the digestive system and facilitates the initial stages of food digestion and absorption. However, its significance extends beyond mere digestion as it presents a promising route for drug delivery, particularly to the brain. Transferosomes are lipid-based vesicles that have gained significant attention in the field of drug delivery due to their unique structure and properties. These vesicles are composed of phospholipids that form bilayer structures capable of encapsulating both hydrophilic and lipophilic drugs. Strategies for the development of buccal transferosomes for brain delivery have emerged as promising avenues for pharmaceutical research. This review aims to explore the various approaches and challenges associated with harnessing the potential of buccal transferosomes as a means of enhancing drug delivery to the brain. By understanding the structure and function of both buccal tissue and transferosomes, researchers can develop effective formulation methods and characterization techniques to optimize drug delivery. Furthermore, strategic approaches and success stories in buccal transferosome development are highlighted, showcasing inspiring examples that demonstrate their potential to revolutionize brain delivery.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878312336240802113811
2024-12-01
2025-01-20
Loading full text...

Full text loading...

References

  1. FueserH. MuellerM.T. WeissL. HössS. TraunspurgerW. Ingestion of microplastics by nematodes depends on feeding strategy and buccal cavity size.Environ. Pollut.2019255Pt 211322710.1016/j.envpol.2019.113227 31574393
    [Google Scholar]
  2. HuangN. PérezP. KatoT. SARS-CoV-2 infection of the oral cavity and saliva.Nat. Med.202127589290310.1038/s41591‑021‑01296‑8 33767405
    [Google Scholar]
  3. SapkotaR. DashA.K. Liposomes and transferosomes: A breakthrough in topical and transdermal delivery.Ther. Deliv.202112214515810.4155/tde‑2020‑0122 33583219
    [Google Scholar]
  4. JoshiS. HussainM.T. RocesC.B. Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs.Int. J. Pharm.2016514116016810.1016/j.ijpharm.2016.09.027 27863660
    [Google Scholar]
  5. SrivastavaN. AslamS. Recent advancements and patents on buccal drug delivery systems: A comprehensive review.Recent Pat. Nanotechnol.202216430832510.2174/1872210515666210609145144 34126916
    [Google Scholar]
  6. Oller-SalviaB. Sánchez-NavarroM. GiraltE. TeixidóM. Blood–brain barrier shuttle peptides: An emerging paradigm for brain delivery.Chem. Soc. Rev.201645174690470710.1039/C6CS00076B 27188322
    [Google Scholar]
  7. HuS. PeiX. DuanL. A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery.Nat. Commun.2021121168910.1038/s41467‑021‑21989‑5 33727548
    [Google Scholar]
  8. SweeneyM.D. SagareA.P. ZlokovićB.V. Blood–brain barrier breakdown in Alzheimer’s disease and other neurodegenerative disorders.Nat. Rev. Neurol.201814313315010.1038/nrneurol.2017.188 29377008
    [Google Scholar]
  9. TeleanuD.M. ChircovC. GrumezescuA.M. VolceanovA. TeleanuR.I. Blood-Brain delivery methods using nanotechnology.Pharmaceutics201810426910.3390/pharmaceutics10040269 30544966
    [Google Scholar]
  10. BnyanR. KhanI. EhtezaziT. Surfactant effects on lipid-based vesicles properties.J. Pharm. Sci.201810751237124610.1016/j.xphs.2018.01.005 29336980
    [Google Scholar]
  11. XiangE. YangS. CaoC. Visualizing complex anatomical structure in bamboo nodes based on X-ray microtomography.J. Renew. Mater.2021991531154010.32604/jrm.2021.015346
    [Google Scholar]
  12. XuH. ZhongL. DengJ. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa.Int. J. Oral Sci.2020121810.1038/s41368‑020‑0074‑x 32094336
    [Google Scholar]
  13. MizumotoA. OhashiS. HirohashiK. AmanumaY. MatsudaT. MutoM. Molecular mechanisms of acetaldehyde-mediated carcinogenesis in squamous epithelium.Int. J. Mol. Sci.2017189194310.3390/ijms18091943 28891965
    [Google Scholar]
  14. HanT. DasD.B. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: A review.Eur. J. Pharm. Biopharm.20158931232810.1016/j.ejpb.2014.12.020 25541440
    [Google Scholar]
  15. ChoeA. HaS.K. ChoiI. ChoiN. SungJ.H. Microfluidic Gut-liver chip for reproducing the first pass metabolism.Biomed. Microdevices2017191410.1007/s10544‑016‑0143‑2 28074384
    [Google Scholar]
  16. MohananN. MontazerZ. SharmaP.K. LevinD.B. Microbial and enzymatic degradation of synthetic plastics.Front. Microbiol.20201158070910.3389/fmicb.2020.580709 33324366
    [Google Scholar]
  17. PatraJ.K. DasG. FracetoL.F. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  18. HeB. GeJ. YueP. Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage.Food Chem.20172211671167710.1016/j.foodchem.2016.10.120 27979145
    [Google Scholar]
  19. FachelF.N.S. NemitzM.C. Medeiros-NevesB. A novel, simplified and stability-indicating high-throughput ultra-fast liquid chromatography method for the determination of rosmarinic acid in nanoemulsions, porcine skin and nasal mucosa.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2018108323324110.1016/j.jchromb.2018.03.020 29554519
    [Google Scholar]
  20. ChedeL.S. WagnerB.A. BuettnerG.R. DonovanM.D. Electron spin resonance evaluation of buccal membrane fluidity alterations by sodium caprylate and L-Menthol.Int. J. Mol. Sci.202122191070810.3390/ijms221910708 34639049
    [Google Scholar]
  21. KabouridisP.S. LasradoR. McCallumS. Microbiota controls the homeostasis of glial cells in the gut lamina propria.Neuron201585228929510.1016/j.neuron.2014.12.037 25578362
    [Google Scholar]
  22. RamanathanM. BalasundharamS. ChristabelA. MuraliP. PandemS. Simultaneous occurrence of a midline sublingual dermoid cyst with respiratory epithelium and submental dermoid cyst in a paediatric patient: A case report and review of literature.J. Maxillofac. Oral Surg.201817218819210.1007/s12663‑016‑0972‑9 29618884
    [Google Scholar]
  23. XueJ. NiuY.F. HuangT. YangW.D. LiuJ.S. LiH.Y. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation.Metab. Eng.2015271910.1016/j.ymben.2014.10.002 25447640
    [Google Scholar]
  24. SenkalC.E. SalamaM.F. SniderA.J. Ceramide is metabolized to acylceramide and stored in lipid droplets.Cell Metab.201725368669710.1016/j.cmet.2017.02.010 28273483
    [Google Scholar]
  25. KonishiM. ImamuraA. FujikawaK. AndoH. IshidaH. KisoM. Extending the glucosyl ceramide cassette approach: Application in the total synthesis of ganglioside GalNAc-GM1b.Molecules20131812151531518110.3390/molecules181215153 24335571
    [Google Scholar]
  26. WangF. Beck-GarcíaK. ZorzinC. SchamelW.W.A. DavisM.M. Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol.Nat. Immunol.201617784485010.1038/ni.3462 27213689
    [Google Scholar]
  27. WolferS. ElstnerS. Schultze-MosgauS. Degree of keratinization is an independent prognostic factor in oral squamous cell carcinoma.J. Oral Maxillofac. Surg.201876244445410.1016/j.joms.2017.06.034 28738193
    [Google Scholar]
  28. WenF. DongY. FengL. WangS. ZhangS. ZhangX. Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing.Anal. Chem.20118341193119610.1021/ac1031447 21261275
    [Google Scholar]
  29. LiuS. LiG.R. GaoX.P. Lanthanum nitrate as electrolyte additive to stabilize the surface morphology of lithium anode for lithium–sulfur battery.ACS Appl. Mater. Interfaces20168127783778910.1021/acsami.5b12231 26981849
    [Google Scholar]
  30. PetersonL.W. ArtisD. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis.Nat. Rev. Immunol.201414314115310.1038/nri3608 24566914
    [Google Scholar]
  31. KnoopK.A. NewberryR.D. Goblet cells: Multifaceted players in immunity at mucosal surfaces.Mucosal Immunol.20181161551155710.1038/s41385‑018‑0039‑y 29867079
    [Google Scholar]
  32. Leite RubimR. GerbelliB.B. BougisK. Water activity in lamellar stacks of lipid bilayers: Hydration forces revisited.Eur. Phys. J. E2016391310.1140/epje/i2016‑16003‑0 26794503
    [Google Scholar]
  33. D’AngeloG. CapassoS. SticcoL. RussoD. Glycosphingolipids: Synthesis and functions.FEBS J.2013280246338635310.1111/febs.12559 24165035
    [Google Scholar]
  34. GaoG.H. ParkM.J. LiY. The use of pH-sensitive positively charged polymeric micelles for protein delivery.Biomaterials201233359157916410.1016/j.biomaterials.2012.09.016 23000386
    [Google Scholar]
  35. Maldonado-ValderramaJ. WildeP. MacierzankaA. MackieA. The role of bile salts in digestion.Adv. Colloid Interface Sci.20111651364610.1016/j.cis.2010.12.002 21236400
    [Google Scholar]
  36. HolmbergK. JönssonB. KronbergB. LindmanB. Surfactants and polymers in aqueous solution.Hoboken, New JerseyWiley200210.1002/0470856424
    [Google Scholar]
  37. TaharaK. SakaiT. YamamotoH. TakeuchiH. KawashimaY. Establishing chitosan coated PLGA nanosphere platform loaded with wide variety of nucleic acid by complexation with cationic compound for gene delivery.Int. J. Pharm.20083541-221021610.1016/j.ijpharm.2007.11.002 18178349
    [Google Scholar]
  38. ShiH. KokoevaM.V. InouyeK. TzameliI. YinH. FlierJ.S. TLR4 links innate immunity and fatty acid–induced insulin resistance.J. Clin. Invest.2006116113015302510.1172/JCI28898 17053832
    [Google Scholar]
  39. ŞenelS. An overview of physical, microbiological and immune barriers of oral mucosa.Int. J. Mol. Sci.20212215782110.3390/ijms22157821 34360589
    [Google Scholar]
  40. WarrenT.K. JordanR. LoM.K. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys.Nature2016531759438138510.1038/nature17180 26934220
    [Google Scholar]
  41. LiJ. XuW. ChenJ. Highly bioadhesive polymer membrane continuously releases cytostatic and anti-Inflammatory drugs for peritoneal adhesion prevention.ACS Biomater. Sci. Eng.2018462026203610.1021/acsbiomaterials.7b00605 33445273
    [Google Scholar]
  42. MansuriS. KesharwaniP. JainK. TekadeR.K. JainN.K. Mucoadhesion: A promising approach in drug delivery system.React. Funct. Polym.201610015117210.1016/j.reactfunctpolym.2016.01.011
    [Google Scholar]
  43. MaitzM.F. Applications of synthetic polymers in clinical medicine.Biosurf. Biotribol.20151316117610.1016/j.bsbt.2015.08.002
    [Google Scholar]
  44. HagerA.S. ArendtE.K. Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breads based on rice, maize, teff and buckwheat.Food Hydrocoll.201332119520310.1016/j.foodhyd.2012.12.021
    [Google Scholar]
  45. XiaoS. YangY. ZhongM. Salt-responsive bilayer hydrogels with pseudo-double-network structure actuated by polyelectrolyte and antipolyelectrolyte effects.ACS Appl. Mater. Interfaces2017924208432085110.1021/acsami.7b04417 28570039
    [Google Scholar]
  46. AlvesT.F.R. MorsinkM. BatainF. Applications of natural, semi-synthetic, and synthetic polymers in cosmetic formulations.Cosmetics2020747510.3390/cosmetics7040075
    [Google Scholar]
  47. TianH. TangZ. ZhuangX. ChenX. JingX. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application.Prog. Polym. Sci.201237223728010.1016/j.progpolymsci.2011.06.004
    [Google Scholar]
  48. LvH. ZhangS. WangB. CuiS. YanJ. Toxicity of cationic lipids and cationic polymers in gene delivery.J. Control. Release2006114110010910.1016/j.jconrel.2006.04.014 16831482
    [Google Scholar]
  49. HiraoA. GosekiR. IshizoneT. Advances in living anionic polymerization: From functional monomers, polymerization systems, to macromolecular architectures.Macromolecules20144761883190510.1021/ma401175m
    [Google Scholar]
  50. ReidM.S. VillalobosM. CranstonE.D. The role of hydrogen bonding in non-ionic polymer adsorption to cellulose nanocrystals and silica colloids.Curr. Opin. Colloid Interface Sci.201729768210.1016/j.cocis.2017.03.005
    [Google Scholar]
  51. BaruaS. KimH. JoK. Drug delivery techniques for buccal route: Formulation strategies and recent advances in dosage form design.J. Pharm. Investig.201646759361310.1007/s40005‑016‑0281‑9
    [Google Scholar]
  52. KumarP.K. KumarR.S. Review on transferosomes and transferosomal gels.J. Pharm. Res. Int.20211142610.9734/jpri/2021/v33i43B32532
    [Google Scholar]
  53. StillingR.M. van de WouwM. ClarkeG. StantonC. DinanT.G. CryanJ.F. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis?Neurochem. Int.20169911013210.1016/j.neuint.2016.06.011 27346602
    [Google Scholar]
  54. KhalilM. TeunissenC.E. OttoM. Neurofilaments as biomarkers in neurological disorders.Nat. Rev. Neurol.2018141057758910.1038/s41582‑018‑0058‑z 30171200
    [Google Scholar]
  55. YauG.T.Y. TaiW. ArnoldJ.C. ChanH.K. KwokP.C.L. Cannabidiol for the treatment of brain disorders: Therapeutic potential and routes of administration.Pharm. Res.20234051087111410.1007/s11095‑023‑03469‑1 36635488
    [Google Scholar]
  56. StojančevićM. PavlovićN. Goločorbin-KonS. MikovM. Application of bile acids in drug formulation and delivery.Front. Life Sci.201373-411212210.1080/21553769.2013.879925
    [Google Scholar]
  57. OkekeO.C. BoatengJ.S. Composite HPMC and sodium alginate based buccal formulations for nicotine replacement therapy.Int. J. Biol. Macromol.201691314410.1016/j.ijbiomac.2016.05.079 27222284
    [Google Scholar]
  58. MohammedM. SyedaJ. WasanK. WasanE. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery.Pharmaceutics2017945310.3390/pharmaceutics9040053 29156634
    [Google Scholar]
  59. FryeL.J. ByrneM.E. WinikoffB. A crossover pharmacokinetic study of misoprostol by the oral, sublingual and buccal routes.Eur. J. Contracept. Reprod. Health Care201621426526810.3109/13625187.2016.1168799 27102981
    [Google Scholar]
  60. ChenR.P. ChavdaV.P. PatelA.B. ChenZ.S. Phytochemical delivery through transferosome (Phytosome): An advanced transdermal drug delivery for complementary medicines.Front. Pharmacol.20221385086210.3389/fphar.2022.850862 35281927
    [Google Scholar]
  61. PaulA. Drug absorption and bioavailability. Introduction to basics of pharmacology and toxicology.ChamSpringer201910.1007/978‑981‑32‑9779‑1_5
    [Google Scholar]
  62. SeemanN.C. SleimanH.F. DNA nanotechnology.Nat. Rev. Mater.2017311706810.1038/natrevmats.2017.68
    [Google Scholar]
  63. SalemH.F. KharshoumR.M. Abou-TalebH.A. NaguibD.M. Brain targeting of resveratrol through intranasal lipid vesicles labelled with gold nanoparticles: In vivo evaluation and bioaccumulation investigation using computed tomography and histopathological examination.J. Drug Target.201927101127113410.1080/1061186X.2019.1608553 31094230
    [Google Scholar]
  64. TuY. LvM. XiuP. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets.Nat. Nanotechnol.20138859460110.1038/nnano.2013.125 23832191
    [Google Scholar]
  65. KerdudoA. DingasA. FernándezX. FaureC. Encapsulation of rutin and naringenin in multilamellar vesicles for optimum antioxidant activity.Food Chem.2014159121910.1016/j.foodchem.2014.03.005 24767021
    [Google Scholar]
  66. WeinbergerA. TsaiF.C. KoenderinkG.H. Gel-assisted formation of giant unilamellar vesicles.Biophys. J.2013105115416410.1016/j.bpj.2013.05.024 23823234
    [Google Scholar]
  67. ZolfaghariR. Fakhru’l-RaziA. AbdullahL.C. ElnashaieS.S.E.H. PendashtehA. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry.Separ. Purif. Tech.201617037740710.1016/j.seppur.2016.06.026
    [Google Scholar]
  68. OngS. MingL. LeeK. YuenK. Influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes.Pharmaceutics2016832510.3390/pharmaceutics8030025 27571096
    [Google Scholar]
  69. StetefeldJ. McKennaS.A. PatelT.R. Dynamic light scattering: A practical guide and applications in biomedical sciences.Biophys. Rev.20168440942710.1007/s12551‑016‑0218‑6 28510011
    [Google Scholar]
  70. CostigliolaL. HeyesD.M. SchrøderT.B. DyreJ.C. Revisiting the Stokes-Einstein relation without a hydrodynamic diameter.J. Chem. Phys.2019150202110110.1063/1.5080662 30646717
    [Google Scholar]
  71. FisherP. AumannC. ChiaK. O’HalloranN. ChandraS. Adequacy of laser diffraction for soil particle size analysis.PLoS One2017125e017651010.1371/journal.pone.0176510 28472043
    [Google Scholar]
  72. MaherS MrsnyRJ BraydenDJ Intestinal permeation enhancers for oral peptide delivery.Adv Drug Deliv Rev2016106Pt B27731910.1016/j.addr.2016.06.005 27320643
    [Google Scholar]
  73. KaçarG. Molecular understanding of interactions, structure, and drug encapsulation efficiency of pluronic micelles from dissipative particle dynamics simulations.Colloid Polym. Sci.20192977-81037105110.1007/s00396‑019‑04535‑0
    [Google Scholar]
  74. SoutoE.B. BaldimI. OliveiraW.P. SLN and NLC for topical, dermal, and transdermal drug delivery.Expert Opin. Drug Deliv.202017335737710.1080/17425247.2020.1727883 32064958
    [Google Scholar]
  75. DuaneB. HumphrisG. RichardsD.K. O’KeefeE. GordonK.H. FreemanR. Weighing up the weighted case mix tool (WCMT): A psychometric investigation using confirmatory factor analysis.Community Dent. Health2014314400406
    [Google Scholar]
  76. BarthelA.J. LuoJ. HwangK.S. LeeJ.Y. KimS.H. Boundary lubrication effect of organic residue left on surface after evaporation of organic cleaning solvent.Wear2016350-351212610.1016/j.wear.2015.12.010
    [Google Scholar]
  77. ChongZ.R. YangS.H.B. BabuP. LingaP. LiX.S. Review of natural gas hydrates as an energy resource: Prospects and challenges.Appl. Energy20161621633165210.1016/j.apenergy.2014.12.061
    [Google Scholar]
  78. MirjaliliS. LewisA. The whale optimization algorithm.Adv. Eng. Softw.201695516710.1016/j.advengsoft.2016.01.008
    [Google Scholar]
  79. BassA.J. ThórssonV. ShmulevichI. ReynoldsS.M. MillerM. BernardB. Comprehensive molecular characterization of gastric adenocarcinoma.Nature2014513751720220910.1038/nature13480 25079317
    [Google Scholar]
  80. HuaS. Advances in nanoparticulate drug delivery approaches for sublingual and buccal administration.Front. Pharmacol.201910132810.3389/fphar.2019.01328 31827435
    [Google Scholar]
  81. MajiR. OmoloC.A. JaglalY. A transferosome-loaded bigel for enhanced transdermal delivery and antibacterial activity of vancomycin hydrochloride.Int. J. Pharm.202160712099010.1016/j.ijpharm.2021.120990 34389419
    [Google Scholar]
  82. JacobS. NairA.B. BodduS.H.S. GorainB. SreeharshaN. ShahJ. An updated overview of the emerging role of patch and film-based buccal delivery systems.Pharmaceutics2021138120610.3390/pharmaceutics13081206 34452167
    [Google Scholar]
  83. MushtaqueM. MuhammadI.N. Fareed HassanS.M. AliA. MasoodR. Development and pharmaceutical evaluation of oral fast dissolving thin film of escitalopram: A patient friendly dosage form.Pak. J. Pharm. Sci.2020331183189 32122847
    [Google Scholar]
  84. Di PrimaG. BongiovìF. PalumboF.S. PitarresiG. LicciardiM. GiammonaG. Mucoadhesive PEGylated inulin-based self-assembling nanoparticles: In vitro and ex vivo transcorneal permeation enhancement of corticosteroids.J. Drug Deliv. Sci. Technol.20194919520810.1016/j.jddst.2018.10.028
    [Google Scholar]
  85. AhmedT.A. Formulation and clinical investigation of optimized vinpocetine lyoplant-tabs: New strategy in development of buccal solid dosage form.Drug Des. Devel. Ther.20181320522010.2147/DDDT.S189105 30643387
    [Google Scholar]
  86. FanH. ZhangP. ZhouL. Naringin-loaded polymeric micelles as buccal tablets: Formulation, characterization, in vitro release, cytotoxicity and histopathology studies.Pharm. Dev. Technol.202025554755510.1080/10837450.2020.1715427 31928119
    [Google Scholar]
  87. BausR.A. HaugM.F. LeichnerC. JelkmannM. Bernkop-SchnürchA. In vitro–in vivo correlation of mucoadhesion studies on buccal mucosa.Mol. Pharm.20191662719272710.1021/acs.molpharmaceut.9b00254 31038970
    [Google Scholar]
  88. LimS.H. ShinJ.H. LeeJ.W. LeeY. SeoJ.H. Differences in the eyelid and buccal microbiome of glaucoma patients receiving long-term administration of prostaglandin analog drops.Graefes Arch. Clin. Exp. Ophthalmol.2021259103055306510.1007/s00417‑021‑05218‑9 33961112
    [Google Scholar]
  89. BehrensG.A. BrehmM. GroßR. Noninvasive determination of CMV serostatus from dried buccal swab samples: Assay development, validation, and application to 1.2 million samples.J. Infect. Dis.202122471152115910.1093/infdis/jiaa067 32052845
    [Google Scholar]
  90. QadirF. AzizM.A. SariC.P. Transcriptome reprogramming by cancer exosomes: Identification of novel molecular targets in matrix and immune modulation.Mol. Cancer20181719710.1186/s12943‑018‑0846‑5 30008265
    [Google Scholar]
  91. IannottiF.A. Di MarzoV. PetrosinoS. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders.Prog. Lipid Res.20166210712810.1016/j.plipres.2016.02.002 26965148
    [Google Scholar]
  92. HorvathS. RajK. DNA methylation-based biomarkers and the epigenetic clock theory of ageing.Nat. Rev. Genet.201819637138410.1038/s41576‑018‑0004‑3 29643443
    [Google Scholar]
  93. DobrowolskiD. Orzechowska-WylęgałaB. WowraB. Cultivated oral mucosa epithelium in ocular surface reconstruction in aniridia patients.BioMed Res. Int.201520151710.1155/2015/281870 26451366
    [Google Scholar]
  94. ReutherW.J. HaleB. MatharuJ. BlytheJ.N. BrennanP.A. Do you mind if I vape? Immediate effects of electronic cigarettes on perfusion in buccal mucosal tissue - A pilot study.Br. J. Oral Maxillofac. Surg.201654333834110.1016/j.bjoms.2015.12.001 26809237
    [Google Scholar]
  95. SalemH.F. KharshoumR.M. Abou-TalebH.A. NaguibD.M. Nanosized transferosome-based intranasal in situ gel for brain targeting of resveratrol: Formulation, optimization, in vitro evaluation, and in vivo pharmacokinetic study.AAPS PharmSciTech201920518110.1208/s12249‑019‑1353‑8 31049748
    [Google Scholar]
  96. McCreightL.J. BaileyC.J. PearsonE.R. Metformin and the gastrointestinal tract.Diabetologia201659342643510.1007/s00125‑015‑3844‑9 26780750
    [Google Scholar]
  97. EmamH.E. AhmedH.B. El-DeibH.R. El-DarsF.M.S.E. AbdelhameedR.M. Non-invasive route for desulfurization of fuel using infrared-assisted MIL-53(Al)-NH2 containing fabric.J. Colloid Interface Sci.201955619320510.1016/j.jcis.2019.08.051 31445448
    [Google Scholar]
  98. AlqahtaniM.S. KaziM. AlsenaidyM.A. AhmadM.Z. Advances in oral drug delivery.Front. Pharmacol.20211261841110.3389/fphar.2021.618411 33679401
    [Google Scholar]
  99. KassemM.A. Aboul-EinienM.H. El TaweelM.M. Dry gel containing optimized felodipine-loaded transferosomes: A promising transdermal delivery system to enhance drug bioavailability.AAPS PharmSciTech20181952155217310.1208/s12249‑018‑1020‑5 29714001
    [Google Scholar]
  100. SkotlandT. HessvikN.P. SandvigK. LlorenteA. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology.J. Lipid Res.201960191810.1194/jlr.R084343 30076207
    [Google Scholar]
  101. YuM. YuanW. LiD. SchwendemanA. SchwendemanS.P. Predicting drug release kinetics from nanocarriers inside dialysis bags.J. Control. Release2019315233010.1016/j.jconrel.2019.09.016 31629038
    [Google Scholar]
  102. SiepmannJ. FahamA. ClasS.D. Lipids and polymers in pharmaceutical technology: Lifelong companions.Int. J. Pharm.201955812814210.1016/j.ijpharm.2018.12.080 30639218
    [Google Scholar]
  103. PozzilliP. ManfriniS. CostanzaF. Biokinetics of buccal spray insulin in patients with type 1 diabetes.Metabolism200554793093410.1016/j.metabol.2005.02.008 15988703
    [Google Scholar]
  104. PalermoA. MaddaloniE. PozzilliP. Buccal spray insulin (oralgen) for type 2 diabetes: What evidence?Expert Opin. Biol. Ther.201212676777210.1517/14712598.2012.675324 22515262
    [Google Scholar]
  105. Guevara-AguirreJ. GuevaraM. SaavedraJ. MihicM. ModiP. Beneficial effects of addition of oral spray insulin (oralin) on insulin secretion and metabolic control in subjects with type 2 diabetes mellitus suboptimally controlled on oral hypoglycemic agents.Diabetes Technol. Ther.2004611810.1089/152091504322783341 15000763
    [Google Scholar]
  106. MouftahS. Abdel-MottalebM.M.A. LamprechtA. Buccal delivery of low molecular weight heparin by cationic polymethacrylate nanoparticles.Int. J. Pharm.20165151-256557410.1016/j.ijpharm.2016.10.039 27773855
    [Google Scholar]
  107. FreyeE. A new transmucosal drug delivery system for patients with breakthrough cancer pain: The fentanyl effervescent buccal tablet.J. Pain Res.20082132010.2147/JPR.S3865 21197291
    [Google Scholar]
  108. DinsmoreW.W. WyllieM.G. The long‐term efficacy and safety of a testosterone mucoadhesive buccal tablet in testosterone‐deficient men.BJU Int.2012110216216910.1111/j.1464‑410X.2011.10837.x 22288877
    [Google Scholar]
  109. SmegoA.R. BackeljauwP. Gutmark-LittleI. Buccally administered intranasal desmopressin acetate for the treatment of neurogenic diabetes insipidus in infancy.J. Clin. Endocrinol. Metab.201610152084208810.1210/jc.2016‑1157 27011115
    [Google Scholar]
  110. Bahri-NajafiR. RezaeiZ. PeykanpourM. ShababL. SolookiR. AkbariP. Formulation of nicotine mucoadhesive tablet for smoking cessation and evaluation of its pharmaceuticals properties.Adv. Biomed. Res.2013218810.4103/2277‑9175.122515 24524034
    [Google Scholar]
  111. LamW. SacksH.S. SzeP.C. ChalmersT. Meta-analysis of randomised controlled trials of nicotine chewing-gum.Lancet19873308549273010.1016/S0140‑6736(87)93061‑3 2885512
    [Google Scholar]
  112. BeerP.M. BakriS.J. SinghR.J. LiuW. PetersG.B.III MillerM. Intraocular concentration and pharmacokinetics of triamcinolone acetonide after a single intravitreal injection.Ophthalmology2003110468168610.1016/S0161‑6420(02)01969‑3 12689886
    [Google Scholar]
  113. JainC.P. JoshiG. KatariaU. PatelK. Enhanced permeation of antiemetic drug from buccoadhesive tablets by using bile salts as permeation enhancers: Formulation characterization, in vitro and ex vivo studies.Sci. Pharm.201684237939210.3797/scipharm.1505‑15 27222611
    [Google Scholar]
  114. AsaneG.S. NirmalS.A. RasalK.B. NaikA.A. MahadikM.S. RaoY.M. Polymers for mucoadhesive drug delivery system: A current status.Drug Dev. Ind. Pharm.200834111246126610.1080/03639040802026012 18720139
    [Google Scholar]
  115. JonesH.E. JohnsonR.E. JasinskiD.R. Buprenorphine versus methadone in the treatment of pregnant opioid-dependent patients: Effects on the neonatal abstinence syndrome.Drug Alcohol Depend.200579111010.1016/j.drugalcdep.2004.11.013 15943939
    [Google Scholar]
  116. DinarvandR. AlimoradM.M. AmanlouM. AkbariH. In vitro release of clomipramine HCl and buprenorphine HCl from poly adipic anhydride (PAA) and poly trimethylene carbonate (PTMC) blends.J. Biomed. Mater. Res. A200575A118519110.1002/jbm.a.30398 16044413
    [Google Scholar]
  117. LalatsaA. SchatzleinA.G. UchegbuI.F. Strategies to deliver peptide drugs to the brain.Mol. Pharm.20141141081109310.1021/mp400680d 24601686
    [Google Scholar]
  118. CuiF. HeC. YinL. Nanoparticles incorporated in bilaminated films: A smart drug delivery system for oral formulations.Biomacromolecules2007892845285010.1021/bm070339e 17665945
    [Google Scholar]
  119. GentaI. ColonnaC. PeruginiP. Evaluation of bioadhesive performance of chitosan derivatives as films for buccal application.J. Drug Deliv. Sci. Technol.200515645946310.1016/S1773‑2247(05)50088‑1
    [Google Scholar]
  120. NakaneS. KakumotoM. YukimatsuK. ChienY.W. Oramucosal delivery of LHRH: Pharmacokinetic studies of controlled and enhanced transmucosal permeation.Pharm. Dev. Technol.19961325125910.3109/10837459609022593 9552307
    [Google Scholar]
  121. LiB.L. LuoH. HuangJ.X. Using intranasal dexmedetomidine with buccal midazolam for magnetic resonance imaging sedation in children: A single-arm prospective interventional study.Front Pediatr.20221088936910.3389/fped.2022.889369 35989987
    [Google Scholar]
  122. KumarR. PariharA.S. VadiS.K. Adenoid cystic carcinoma of buccal mucosa: Role of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography in the detection and biopsy of pulmonary metastases and assessment of treatment response.Indian J. Nucl. Med.2019341717310.4103/ijnm.IJNM_80_18 30713389
    [Google Scholar]
  123. TdN. PsP. RkM. Overview on solid lipid nanoparticle for topical delivery and its inevitable applications.Int J Drug Deliv Technol202213272273010.25258/ijddt.13.2.40
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878312336240802113811
Loading
/content/journals/raddf/10.2174/0126673878312336240802113811
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test