Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Introduction

Designing the microfluidic channel for neonatal drug delivery requires proper considerations to enhance the efficiency and safety of drug substances when used in neonates. Thus, this research aims to evaluate high-performance materials and optimize the channel design by modeling and simulation using COMSOL multiphysics in order to deliver an optimum flow rate between 0. 3 and 1 mL/hr.

Methods

Some of the materials used in the study included PDMS, glass, COC, PMMA, PC, TPE, and hydrogels, and the evaluation criterion involved biocompatibility, mechanical properties, chemical resistance, and ease of fabrication. The simulation was carried out in the COMSOL multiphysics platform and demonstrated the fog fluid behavior in different channel geometries, including laminar flow and turbulence. The study then used systematic changes in design parameters with the aim of establishing the best implementation models that can improve the efficiency and reliability of the drug delivery system. The comparison was based mostly on each material and its appropriateness in microfluidic usage, primarily in neonatal drug delivery. The biocompatibility of the developed materials was verified using the literature analysis and adherence to the ISO 10993 standard, thus providing safety for the use of neonatal devices. Tensile strength was included to check the strength of each material to withstand its operation conditions. Chemical resistance was also tested in order to determine the compatibility of the materials with various drugs, and the possibility of fabrication was also taken into consideration to identify appropriate materials that could be used in the rapid manufacturing of the product.

Results

The results we obtained show that PDMS, due to its flexibility and simplicity in simulation coupled with more efficient channel designs which have been extracted from COMSOL, present a feasible solution to neonatal drug delivery.

Conclusion

The present comparative study serves as a guide on the choice of materials and design of microfluidic devices to help achieve safer and enhanced drug delivery systems suitable for the delicate reception of fragile neonates.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878292962240718055526
2024-12-01
2024-11-15
Loading full text...

Full text loading...

References

  1. FavettaL. LorenzuttiM. PetrinaD. CuttiniM. Evaluation of the performance of two different infusion pump systems in a neonatal intensive care unit.Midwifery198951212510.1016/S0266‑6138(89)80061‑0 2494419
    [Google Scholar]
  2. SawonM.A. SamadM.F. Design and optimization of a microneedle with skin insertion analysis for transdermal drug delivery applications.J. Drug Deliv. Sci. Technol.20216310247710.1016/j.jddst.2021.102477
    [Google Scholar]
  3. SnijderR.A. EgbertsT.C.G. LucasP. LemmersP.M.A. van BelF. TimmermanA.M.D.E. Dosing errors in preterm neonates due to flow rate variability in multi-infusion syringe pump setups: An in vitro spectrophotometry study.Eur. J. Pharm. Sci.201693566310.1016/j.ejps.2016.07.019 27497614
    [Google Scholar]
  4. Sundquist BeaumanS. SwansonA. Neonatal infusion therapy: Preventing complications and improving outcomes.Newborn Infant Nurs. Rev.20066419320110.1053/j.nainr.2006.09.001
    [Google Scholar]
  5. RohmanA.S. MulyantiB. PawinantoR.E. PantjawatiA.B. The optimization of microfluidic mixer based on meander structure. 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE). Yogyakarta, Indonesia,2020808410.1109/IC2IE50715.2020.9274668
    [Google Scholar]
  6. FelipeM.D.A.A. LatourJ.M. PeterliniM.A.S. PedreiraM.D.L.G. Placement of syringe infusion pumps and solution density can impact infusion performance: An experimental study.J. Neonatal Nurs.202026314915110.1016/j.jnn.2019.09.010
    [Google Scholar]
  7. SherwinC.M.T. MedlicottN.J. ReithD.M. BroadbentR.S. Intravenous drug delivery in neonates: Lessons learnt.Arch. Dis. Child.201499659059410.1136/archdischild‑2013‑304887 24482352
    [Google Scholar]
  8. De BasagoitiA. FernándezA. MendiolaS. Intravenous drug use in neonatal intensive care units.Eur. J. Hosp. Pharm. Sci. Pract.202128634134510.1136/ejhpharm‑2019‑001939 34697051
    [Google Scholar]
  9. LeeK.J. YangS.Y. RyuW. Controlled release of bupivacaine HCl through microchannels of biodegradable drug delivery device.Biomed. Microdevices201214358359310.1007/s10544‑012‑9637‑8 22374474
    [Google Scholar]
  10. HauckM. DittmannJ. Zeller-PlumhoffB. Fabrication and modelling of a reservoir-based drug delivery system for customizable release.Pharmaceutics202214477710.3390/pharmaceutics14040777 35456611
    [Google Scholar]
  11. ArchanaT. KarunyaI. KrithikaR. SubikshaV. Design and optimization of microchannel for neonatal.2023 International Conference on Computer Communication and Informatics (ICCCI)Coimbatore, India20231410.1109/ICCCI56745.2023.10128553
    [Google Scholar]
  12. ArchanaT. Analysis of microneedle using COMSOL for automated drug delivery system.2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF)Chennai, India20231510.1109/ICECONF57129.2023.10083674
    [Google Scholar]
  13. SanjayS.T. ZhouW. DouM. Recent advances of controlled drug delivery using microfluidic platforms.Adv. Drug Deliv. Rev.201812832810.1016/j.addr.2017.09.013 28919029
    [Google Scholar]
  14. TayyabaS. AfzalM.J. SarwarG. AshrafM.W. AfzulpurkarN. Simulation of flow control in straight microchannels using fuzzy logic. 2016 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube). Quetta, Pakistan, 2016,21321610.1109/ICECUBE.2016.7495226
    [Google Scholar]
  15. Lopez-SalazarR. Camacho-LeonS. Olivares-QuirozL. HernandezJ. Design and simulation of a high precision drug delivery system.Procedia Technol.20123101210.1016/j.protcy.2012.03.036
    [Google Scholar]
  16. NguyenT. ZhangG. HongW. Optimization of microchannel dimensions for precise control of low flow rates in drug delivery systems.Microfluid. Nanofluidics2019232456010.1007/s10404‑019‑2264‑5
    [Google Scholar]
  17. LeeC. KimJ. ParkS. Influence of pressure-driven flow on microfluidic channel performance for biomedical applications.Biomed. Microdevices2017194758510.1007/s10544‑017‑0224‑8 28842772
    [Google Scholar]
  18. StoneH.A. StroockA.D. AjdariA. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip.Annu. Rev. Fluid Mech.200436138141110.1146/annurev.fluid.36.050802.122124
    [Google Scholar]
  19. MoghimiS.M. HunterA.C. MurrayJ.C. Nanomedicine: Current status and future prospects.FASEB J.200519331133010.1096/fj.04‑2747rev 15746175
    [Google Scholar]
  20. KarnikR. GuF. BastoP. Microfluidic platform for controlled synthesis of polymeric nanoparticles.Nano Lett.2008892906291210.1021/nl801736q 18656990
    [Google Scholar]
  21. LeeK.S. RamR.J. KimD. MalloukT.E. Rapid fabrication of composite microfluidic devices for bioanalytical applications.Lab Chip200991618162410.1039/b820924c 19458871
    [Google Scholar]
  22. WhitesidesG.M. The origins and the future of microfluidics.Nature2006442710136837310.1038/nature05058 16871203
    [Google Scholar]
  23. ChoiC.H. JungJ.H. RheeY.W. KimD.P. ShimS.E. Immobilization of proteins on poly(dimethylsiloxane) surfaces using aminopropyltriethoxysilane as a bifunctional linker.Lab Chip2003335736310.1039/b305010g
    [Google Scholar]
  24. ThorsenT. MaerklS.J. QuakeS.R. Microfluidic large-scale integration.Science2002298559358058410.1126/science.1076996 12351675
    [Google Scholar]
  25. HardtS. HesselV. HofmannC. LoweH. LöweH. Microengineering: from microfluidics to automation.Angew. Chem. Int. Ed.20024176877210.1002/1521‑3773(20020301)41:5<768:AID‑ANIE768>3.0.CO;2‑D
    [Google Scholar]
  26. YanX. HoC.C. FallerR. Morphology transition of patterned polymer thin films during solvent vapor annealing.Langmuir2006226030603510.1021/la0602759
    [Google Scholar]
  27. PaguiriganA.L. BeebeD.J. Microfluidics meet cell biology: Bridging the gap by validation and application of microscale techniques for cell biological assays.BioEssays20072954355510.1002/bies.20580 18693260
    [Google Scholar]
  28. McCloskeyK.E. ChalmersJ.J. ZborowskiM. Magnetic cell separation: Characterization of magnetophoretic mobility.Anal. Chem.2006783228323410.1021/ac051972z 14670047
    [Google Scholar]
  29. LeeS.J. JooS.W. Micro technology in medicine: miniaturization in cell biology and medicine.Arch. Pharm. Res.2005281341135010.1007/BF02980012
    [Google Scholar]
  30. KimJ. JohnsonM. HillP. GaleB.K. Microfluidic sample preparation: Cell lysis and nucleic acid purification.Integr. Biol.200911057458610.1039/b905844c 20023774
    [Google Scholar]
  31. WhitesidesG.M. The right size in nanobiotechnology.Nat. Biotechnol.200321101161116510.1038/nbt872 14520400
    [Google Scholar]
  32. LeeJ.N. ParkC. WhitesidesG.M. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices.Anal. Chem.200375236544655410.1021/ac0346712 14640726
    [Google Scholar]
  33. ChoiN.W. CabodiM. HeldB. GleghornJ.P. BonassarL.J. StroockA.D. Microfluidic scaffolds for tissue engineering.Nat. Mater.200761190891510.1038/nmat2022 17906630
    [Google Scholar]
  34. ShinD.S. KimH. KoH.C. Synthesis of magnetic hydrogels with incorporated magnetite nanoparticles using poly(ethylene glycol) diacrylates.Macromol. Rapid Commun.2005261903190710.1002/marc.200500438
    [Google Scholar]
  35. El-AliJ. SorgerP.K. JensenK.F. Cells on chips.Nature2006442710140341110.1038/nature05063 16871208
    [Google Scholar]
  36. BershadskyA. KozlovM. GeigerB. Adhesion-mediated mechanosensitivity: A time to experiment, and a time to theorize.Curr. Opin. Cell Biol.200618547248110.1016/j.ceb.2006.08.012 16930976
    [Google Scholar]
  37. HuangY. AgrawalB. SunD. Applications of microfluidics in pharmaceuticals and biology.Pharm. Technol.2008325872
    [Google Scholar]
  38. PeppasN.A. LangerR. New challenges in biomaterials.Science199426351541715172010.1126/science.8134835 8134835
    [Google Scholar]
  39. BrownL. KoernerT. HortonJ. Progress in on-chip droplet interfacial tension measurement for organic solvent-based microfluidics.Lab Chip2008871271710.1039/b717367a
    [Google Scholar]
  40. GaolJ.F. ZhengG.F. LuX.B. ChenX.M. One-dimensional nanostructured materials: Synthesis, characterizations, and applications.Adv. Mater.2008203562356610.1002/adma.200800579
    [Google Scholar]
  41. BeckerH. GärtnerC. Polymer microfabrication technologies for microfluidic systems.Anal. Bioanal. Chem.200839018911110.1007/s00216‑007‑1692‑2 17989961
    [Google Scholar]
  42. AndersonJ.R. ChiuD.T. JackmanR.J. Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping.Anal. Chem.200072143158316410.1021/ac9912294 10939381
    [Google Scholar]
  43. LeeK.H. SuC. FangY. SungH.J. LeeJ.H. LeeS.H. Microfluidic synthesis of pure chitosan microfibers for bioartificial liver chip.Lab Chip200993218322410.1039/b909712d 20445889
    [Google Scholar]
  44. ParkS. ZhangY. LinS. WangT.H. YangS. Advances in microfluidic PCR for point-of-care infectious disease diagnostics.Biotechnol. Adv.201129683083910.1016/j.biotechadv.2011.06.017 21741465
    [Google Scholar]
  45. WangH. JiangL. Simple low-cost fabrication of omniphobic PDMS-coated mesh for oil/water separation.Adv. Mater. Interfaces20163150064810.1002/admi.201500648
    [Google Scholar]
  46. YangS. GuoF. KiralyB. Microfluidic synthesis of multifunctional Janus particles for biomedical applications.Lab Chip201212122097210210.1039/c2lc90046g 22584998
    [Google Scholar]
  47. ShenL. HagenJ.A. PapautskyI. Point-of-care colorimetric detection with a smartphone.Lab Chip201212214240424310.1039/c2lc40741h 22996728
    [Google Scholar]
  48. LeeJ. KotovN.A. Notch ligand presenting acellular 3D microenvironments for ex vivo human hematopoietic stem-cell culture made by layer-by-layer assembly.Small201172086209210.1002/smll.201100317 19334013
    [Google Scholar]
  49. LeongT.G. LesterP.A. KohT.L. CallE.K. GraciasD.H. Surface tension-driven self-folding polyhedra.Langmuir2008241214122010.1021/la703024h 17608507
    [Google Scholar]
  50. NgeP.N. RogersC.I. WoolleyA.T. Advances in microfluidic materials, functions, integration, and applications.Chem. Rev.201311342550258310.1021/cr300337x 23410114
    [Google Scholar]
  51. MaZ. WangY. HuY. Oxygen microbubbles as a facile drug delivery platform for cancer therapy.J. Mater. Chem. B Mater. Biol. Med.201645273527710.1039/c6tb00853f
    [Google Scholar]
  52. WangS. ZhangQ. ZhangX. LiC. Preparation and characterization of multi-layered microspheres with the oil-in-oil emulsion solvent evaporation technique.J. Mater. Sci.20175256757910.1007/s10853‑016‑0400‑1
    [Google Scholar]
  53. KhademhosseiniA. LangerR. BorensteinJ. VacantiJ.P. Microscale technologies for tissue engineering and biology.Proc. Natl. Acad. Sci.200610382480248710.1073/pnas.0507681102 16477028
    [Google Scholar]
  54. WuH. HuangB. ZareR.N. Microfluidic devices: New tools for potentiometric measurements.Anal. Chem.2004764963496810.1021/ac049589i
    [Google Scholar]
  55. YangC.T. YuZ.T.F. ChengC.M. Advanced 3D microfluidic platform for fast and efficient isolation and functional interrogation of circulating tumor cells.J. Mater. Chem. B Mater. Biol. Med.201756407641410.1039/c7tb01038h
    [Google Scholar]
  56. SundaramS. Barbulovic-NadI. PanX. SchuckP.J. KlapperichC.M. A fully autonomous multiplexed microfluidic system for structural dynamics analysis of protein–protein interactions in binary mixtures.J. Mater. Chem. B Mater. Biol. Med.201532079208610.1039/c4tb01819h
    [Google Scholar]
  57. BhagatA.A.S. BowH. HouH.W. TanS.J. HanJ. LimC.T. Microfluidics for cell separation.Med. Biol. Eng. Comput.20104810999101410.1007/s11517‑010‑0611‑4 20414811
    [Google Scholar]
  58. ChenJ. LiS. ChenG. Advances in functional micro-/nanostructured surfaces for surface-enhanced Raman scattering applications.J. Mater. Chem. C Mater. Opt. Electron. Devices201752834285210.1039/c6tc05119d
    [Google Scholar]
  59. LeeC.Y. ChangC.L. WangT.E. FuL.M. Microfluidic systems for rapid on-chip DNA analysis.J. Mater. Chem. C Mater. Opt. Electron. Devices2020857559410.1039/c9tc05841d
    [Google Scholar]
  60. El-KadiH.A. GagnonG. LannuttiJ.J. Investigation of the microstructure and mechanical properties of a polycaprolactone–gelatin blend for tissue engineering applications.J. Mater. Sci.2007428814882510.1007/s10853‑007‑1943‑5
    [Google Scholar]
  61. ShinK.S. HanS.S. Microfluidic synthesis of monodisperse PEG microspheres for cell-laden microfluidic hydrogels.J. Mater. Chem. B Mater. Biol. Med.2014225126010.1039/c3tb21271e
    [Google Scholar]
  62. TianL. LiY. FreyW. Tribochemistry of mesoscopic soft spheres: Direct observation of wear at the molecular level.J. Mater. Chem. C Mater. Opt. Electron. Devices20141183395339810.1002/ange.200905321
    [Google Scholar]
  63. HughesA.J. LinR.K. PeehlD.M. HerrA.E. Microfluidic integration for automated targeted proteomic assays.J. Mater. Chem. B Mater. Biol. Med.2015141610.1039/c4lc01106j
    [Google Scholar]
  64. HuangL.R. CoxE.C. AustinR.H. SturmJ.C. Continuous particle separation through deterministic lateral displacement.Science2004304567398799010.1126/science.1094567 15143275
    [Google Scholar]
  65. XuS. NieZ. SeoM. Generation of monodisperse particles by using microfluidics: Control over size, shape, and composition.Angew. Chem. Int. Ed.200544572472810.1002/anie.200462226 15612064
    [Google Scholar]
  66. BhattacharyaS. DattaA. BergJ.M. GangopadhyayS. Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength.J. Mater. Chem. C Mater. Opt. Electron. Devices20051119301930810.1021/jp010423n
    [Google Scholar]
  67. WhitesidesG.M. OstuniE. TakayamaS. JiangX. IngberD.E. Soft lithography in biology and biochemistry.Annu. Rev. Biomed. Eng.20013133537310.1146/annurev.bioeng.3.1.335 11447067
    [Google Scholar]
  68. StroockA.D. DertingerS.K.W. AjdariA. MezićI. StoneH.A. WhitesidesG.M. Chaotic mixer for microchannels.Science2002295555564765110.1126/science.1066238 11809963
    [Google Scholar]
  69. LiL. MustafiD. FuQ. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins.J. Mater. Chem. B Mater. Biol. Med.200981524153110.1039/b820056k
    [Google Scholar]
  70. BhattacharyaS. DattaA. BergJ.M. GangopadhyayS. Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength.J. Mater. Chem.200511193019308
    [Google Scholar]
  71. ChungB.G. LeeK.H. KhademhosseiniA. LeeS.H. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.Lab Chip2012121455910.1039/C1LC20859D 22105780
    [Google Scholar]
  72. McDonaldJ.C. WhitesidesG.M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices.Acc. Chem. Res.200235749149910.1021/ar010110q 12118988
    [Google Scholar]
  73. SiaS.K. WhitesidesG.M. Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies.Electrophoresis200324213563357610.1002/elps.200305584 14613181
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878292962240718055526
Loading
/content/journals/raddf/10.2174/0126673878292962240718055526
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test