Skip to content
2000
Volume 19, Issue 2
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Background

Norfloxacin (NFX) is a wide-spectrum antibacterial agent that suffers from low water solubility and first-pass metabolism. This diminishes its oral bioavailability by 60-70%.

Objective

This work aims to formulate a topical gel of NFX-loaded lipid polymer hybrid nanoparticles (NFX-LPHNPs) that combine the merits of liposomes and polymeric nanoparticles to overcome these problems.

Methods

NFX-LPHNPs formulations were developed using Precirol ATO (lipid) and Eudragit RL100 (polymer). They were characterized for particle size, uniformity of distribution, entrapment efficiency, zeta potential, and in-vitro release. Box–Behnken design was applied to study sequentially different variables' impact on material attributes. Then the optimized formula was re-evaluated, and incorporated in an HPMC-gel formulation. The gel formulation was evaluated for its physical properties, -release, and antibacterial activity.

Results

NFX-LPHNPs exhibited particle sizes ranging from 28.92 to 730.30 nm. Particles were uniformly distributed with a positively charged surface (indicated by zeta potential with values from +3.91 to +60.2 mV). Formulations showed a % cumulative drug release of 87.9-100% in 8 h. The optimized formula showed a satisfied fit of measured-to-predicted responses with 159 nm particle size, 92.61% release and 79.2% entrapment efficiency Gel formulation showed a sustained release over 24 h. Antibacterial testing against and revealed enhanced activity of NFX-LPHNPs against these pathogens compared to bare NFX loaded gel.

Conclusion

These results illustrated the high potential of lipid-polymer hybrid nanoparticles to improve NFX activity against resistant pathogens common in burn infections. Moreover, the topical application helps overcome Norfloxacin oral-associated problems.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878316672241122041157
2024-12-09
2025-07-03
Loading full text...

Full text loading...

References

  1. BourgiJ. SaidJ.M. YaakoubC. AtallahB. Al AkkaryN. SleimanZ. GhaniméG. Bacterial infection profile and predictors among patients admitted to a burn care center: A retrospective study.Burns20204681968197610.1016/j.burns.2020.05.00432522390
    [Google Scholar]
  2. KellyE.J. OliverM.A. CarneyB.C. ShuppJ.W. Infection and burn injury.European Burn Journal20223116517910.3390/ebj3010014
    [Google Scholar]
  3. ElmassryM.M. MudaliarN.S. Colmer-HamoodJ.A. San FranciscoM.J. GriswoldJ.A. DissanaikeS. HamoodA.N. New markers for sepsis caused by Pseudomonas aeruginosa during burn infection.Metabolomics20201634010.1007/s11306‑020‑01658‑232170472
    [Google Scholar]
  4. ThakurK. SharmaG. SinghB. ChhibberS. KatareO.P. Nano-engineered lipid-polymer hybrid nanoparticles of fusidic acid: An investigative study on dermatokinetics profile and MRSA-infected burn wound model.Drug Deliv. Transl. Res.20199474876310.1007/s13346‑019‑00616‑330652257
    [Google Scholar]
  5. LuJ. YangM. ZhanM. XuX. YueJ. XuT. Antibiotics for treating infected burn wounds.Cochrane Database Syst. Rev.201720177
    [Google Scholar]
  6. DebalkieA. GuadieA. KassaA. TeferaM. Selective determination of norfloxacin in pharmaceutical formulations and human urine samples using poly(8-aminonaphthaline-2-sulfonic acid)-modified glassy carbon electrodes.ACS Omega2023829257582576510.1021/acsomega.3c0080537521652
    [Google Scholar]
  7. DuaK. MalipeddiV.R. MadanJ. GuptaG. ChakravarthiS. AwasthiR. KikuchiI.S. De Jesus Andreoli PintoT. Norfloxacin and metronidazole topical formulations for effective treatment of bacterial infections and burn wounds.Interv. Med. Appl. Sci.201682687610.1556/1646.8.2016.2.428386462
    [Google Scholar]
  8. KhanM.A. KhanS. KaziM. AlshehriS.M. ShahidM. KhanS.U. HussainZ. SohailM. ShafiqueM. HamidH.A. KamranM. ElhissiA. WasimM. ThuH.E. Norfloxacin loaded lipid polymer hybrid nanoparticles for oral administration: Fabrication, characterization, in silico modelling and toxicity evaluation.Pharmaceutics20211310163210.3390/pharmaceutics1310163234683925
    [Google Scholar]
  9. GoettschW. van PeltW. NagelkerkeN. HendrixM.G. BuitingA.G. PetitP.L. SabbeL.J. van GriethuysenA.J. de NeelingA.J. Increasing resistance to fluoroquinolones in Escherichia coli from urinary tract infections in The Netherlands.J. Antimicrob. Chemother.200046222322810.1093/jac/46.2.22310933644
    [Google Scholar]
  10. LoganathanV. ManimaranS. JaswanthA. SulaimanA. ReddyM. KumarB.S. RajaseskaranA. The effects of polymers and permeation enhancers on releases of flubiprofen from gel formulations.Indian J. Pharm. Sci.2001633200204
    [Google Scholar]
  11. YehY.C. HuangT.H. YangS.C. ChenC.C. FangJ.Y. Nano-Based Drug Delivery or Targeting to Eradicate Bacteria for Infection Mitigation: A Review of Recent Advances.Front Chem.2020828610.3389/fchem.2020.0028632391321
    [Google Scholar]
  12. MbaI.E. NwezeE.I. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: Research progress, challenges, and prospects.World J. Microbiol. Biotechnol.202137610810.1007/s11274‑021‑03070‑x34046779
    [Google Scholar]
  13. MukherjeeA. WatersA.K. KalyanP. AchrolA.S. KesariS. YenugondaV.M. Lipid–polymer hybrid nanoparticles as a next-generation drug delivery platform: State of the art, emerging technologies, and perspectives.Int. J. Nanomedicine2019141937195210.2147/IJN.S19835330936695
    [Google Scholar]
  14. GajbhiyeK.R. SalveR. NarwadeM. SheikhA. KesharwaniP. GajbhiyeV. Lipid polymer hybrid nanoparticles: A custom-tailored next-generation approach for cancer therapeutics.Mol. Cancer202322116010.1186/s12943‑023‑01849‑037784179
    [Google Scholar]
  15. ElhassanE. DevnarainN. MohammedM. GovenderT. OmoloC.A. Engineering hybrid nanosystems for efficient and targeted delivery against bacterial infections.J. Control. Release202235159862210.1016/j.jconrel.2022.09.05236183972
    [Google Scholar]
  16. PatoleV.C. AwariD. ChaudhariS. Resveratrol-loaded microsponge gel for wound healing: In vitro/and in vivo/ characterization.Turk. J. Pharm. Sci.2023201233410.4274/tjps.galenos.2022.9327536864580
    [Google Scholar]
  17. DaveV. YadavR.B. KushwahaK. YadavS. SharmaS. AgrawalU. Lipid-polymer hybrid nanoparticles: Development & statistical optimization of norfloxacin for topical drug delivery system.Bioact. Mater.20172426928010.1016/j.bioactmat.2017.07.00229744436
    [Google Scholar]
  18. Jamshidnejad-TosaramandaniT. KashanianS. KarimiI. SchiöthH.B. Synthesis of an insulin-loaded mucoadhesive nanoparticle designed for intranasal administration: Focus on new diffusion media.Front. Pharmacol.202314122742310.3389/fphar.2023.122742337701036
    [Google Scholar]
  19. HoseiniB. JaafariM.R. GolabpourA. Momtazi-BorojeniA.A. EslamiS. Optimizing nanoliposomal formulations: Assessing factors affecting entrapment efficiency of curcumin-loaded liposomes using machine learning.Int. J. Pharm.202364612341410.1016/j.ijpharm.2023.12341437714314
    [Google Scholar]
  20. JyothiD. KolandM. Formulation and evaluation of an herbal anti-inflammatory gel containing Trigonella foenum greacum seed extract.Int. J. Pharm. Pharm. Sci.2016814144
    [Google Scholar]
  21. YahoumM.M. ToumiS. TahraouiH. LefnaouiS. KebirM. AmraneA. AssadiA.A. ZhangJ. MouniL. Formulation and evaluation of xanthan gum microspheres for the sustained release of metformin hydrochloride.Micromachines202314360910.3390/mi1403060936985017
    [Google Scholar]
  22. JamousY.F. AltwaijryN.A. SaleemM.T.S. AlrayesA.F. AlbishiS.M. AlmeshariM.A. Formulation and characterization of solid lipid nanoparticles loaded with troxerutin.Processes (Basel)20231110303910.3390/pr11103039
    [Google Scholar]
  23. Al-SaidanS.M. KrishnaiahY.S.R. ChandrasekharD.V. LallaJ.K. RamaB. JayaramB. BhaskarP. Formulation of an HPMC gel drug reservoir system with ethanol-water as a solvent system and limonene as a penetration enhancer for enhancing in vitro transdermal delivery of nicorandil.Skin Pharmacol. Physiol.200417631032010.1159/00008111715528962
    [Google Scholar]
  24. ElfakhriK.H. NiuM. GhoshP. RamezanliT. RaneyS.G. KamalN. AshrafM. ZidanA.S. Understanding the impact of formulation design on microstructure and drug release from porous microparticle-based tretinoin topical gels.Int. J. Pharm.202465312379410.1016/j.ijpharm.2024.12379438216074
    [Google Scholar]
  25. HirunN. KraisitP. Drug-polymers composite matrix tablets: Effect of hydroxypropyl methylcellulose (HPMC) K-series on porosity, compatibility, and release behavior of the tablet containing a BCS class I drug.Polymers (Basel)20221416340610.3390/polym1416340636015661
    [Google Scholar]
  26. BudhoriA. TiwariA. TiwariV. SharmaA. KumarM. GautamG. VirmaniT. KumarG. AlhalmiA. NomanO.M. HassonS. MothanaR.A. QbD design, formulation, optimization and evaluation of trans-tympanic reverse gelatination gel of norfloxacin: Investigating gene-gene interactions to enhance therapeutic efficacy.Gels20239865710.3390/gels908065737623112
    [Google Scholar]
  27. NascimentoG.G.F. LocatelliJ. FreitasP.C. SilvaG.L. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria.Braz. J. Microbiol.200031424725610.1590/S1517‑83822000000400003
    [Google Scholar]
  28. Gonzalez-PastorR. Carrera-PachecoS.E. Zúñiga-MirandaJ. Rodríguez-PólitC. Mayorga-RamosA. GuamánL.P. Barba-OstriaC. Current landscape of methods to evaluate antimicrobial activity of natural extracts.Molecules2023283106810.3390/molecules2803106836770734
    [Google Scholar]
  29. GajraB. DalwadiC. PatelR. Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (Lipomer) using box behnken design.Daru2015231310.1186/s40199‑014‑0087‑025604353
    [Google Scholar]
  30. CetinM. AtilaA. KadiogluY. Formulation and in vitro characterization of Eudragit® L100 and Eudragit® L100-PLGA nanoparticles containing diclofenac sodium.AAPS PharmSciTech20101131250125610.1208/s12249‑010‑9489‑620697984
    [Google Scholar]
  31. DarwishM.K.M. El-EninA.S.M.A. MohammedK.H.A. Optimized nanoparticles for enhanced oral bioavailability of a poorly soluble drug: Solid lipid nanoparticles versus nanostructured lipid carriers.Pharm. Nanotechnol.2022101698710.2174/221173851066622021011000335142275
    [Google Scholar]
  32. ValizadehH. JelvehgariM. NokhodchiA. RezapourM. Effect of formulation and processing variables on the characteristics of tolmetin microspheres prepared by double emulsion solvent diffusion method.Indian J. Pharm. Sci.2010721727810.4103/0250‑474X.6225120582193
    [Google Scholar]
  33. SalatinS. BararJ. Barzegar-JalaliM. AdibkiaK. Alami-MilaniM. JelvehgariM. Formulation and evaluation of eudragit RL-100 nanoparticles loaded in-situ forming gel for intranasal delivery of rivastigmine.Adv. Pharm. Bull.2019101202910.15171/apb.2020.00332002358
    [Google Scholar]
  34. HashemH.E. AmrA.E.G.E. AlmehiziaA.A. NaglahA.M. KariukiB.M. EassaH.A. NossierE.S. Nanoparticles of a pyrazolo-pyridazine derivative as potential EGFR and CDK-2 inhibitors: Design, structure determination, anticancer evaluation and in silico studies.Molecules20232821725210.3390/molecules2821725237959672
    [Google Scholar]
  35. DasS. SureshP.K. DesmukhR. Design of Eudragit RL 100 nanoparticles by nanoprecipitation method for ocular drug delivery.Nanomedicine20106231832310.1016/j.nano.2009.09.00219800990
    [Google Scholar]
  36. AwadeenR.H. BoughdadyM.F. ZaghloulR.A. ElsaedW.M. Abu HashimI.I. MeshaliM.M. Formulation of lipid polymer hybrid nanoparticles of the phytochemical Fisetin and its in vivo assessment against severe acute pancreatitis.Sci. Rep.20231311911010.1038/s41598‑023‑46215‑837925581
    [Google Scholar]
  37. HonaryS. ZahirF. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1).Trop. J. Pharm. Res.2013122255264
    [Google Scholar]
  38. AliH.S.M. YorkP. AliA.M.A. BlagdenN. Hydrocortisone nanosuspensions for ophthalmic delivery: A comparative study between microfluidic nanoprecipitation and wet milling.J. Control. Release2011149217518110.1016/j.jconrel.2010.10.00720946923
    [Google Scholar]
  39. RamA. RajM. P.; Kumar, N.; Raj, R. Comparative Study of Eudragit RS 100 and RL 100 Nanoparticles as Ophthalmic Vehicle for Fungal Infection.Pharm. Nanotechnol.20164431632810.2174/2211738504666160906144633
    [Google Scholar]
  40. SyedA. DeviV.K. Potential of targeted drug delivery systems in treatment of rheumatoid arthritis.J. Drug Deliv. Sci. Technol.20195310121710.1016/j.jddst.2019.101217
    [Google Scholar]
  41. SuprabaW. JuliantoniY. AnantoA.D. The effect of stirring speeds to the entrapment efficiency in a nanoparticles formulation of Java Plum’s seed ethanol extract (Syzygium cumini).Acta Chimica Asiana20214119710310.29303/aca.v4i1.50
    [Google Scholar]
  42. JavedS. RopelD. VogtD. Sodium ethoxide as an environmentally benign and cost-effective catalyst for chemical depolymerization of post-consumer PET waste.Green Chem.20232541442145210.1039/D2GC04548F
    [Google Scholar]
  43. SinghG. AhujaN. SharmaP. CapalashN. Response surface methodology for the optimized production of an alkalophilic lassase from gamma-proteobacterium JB.BioResources20094254455310.15376/biores.4.2.544‑553
    [Google Scholar]
  44. GundaR.K. ManchineniP.R. Statistical design and optimization of sustained release formulations of pravastatin.Turk. J. Pharm. Sci.202017222122710.4274/tjps.galenos.2019.7004832454783
    [Google Scholar]
  45. SebastianG. Computational tools assisted formulation optimization of nebivolol hydrochloride loaded PLGA nanoparticles by 32 factorial designs.Int J App Pharm2022144251258
    [Google Scholar]
  46. YangX. PatelS. ShengY. PalD. MitraA.K. Statistical design for formulation optimization of hydrocortisone butyrate-loaded PLGA nanoparticles.AAPS PharmSciTech201415356958710.1208/s12249‑014‑0072‑424504495
    [Google Scholar]
  47. Rahmanian-DevinP. AskariV.R. Sanei-FarZ. Baradaran RahimiV. KamaliH. JaafariM.R. GolmohammadzadehS. Preparation and characterization of solid lipid nanoparticles encapsulated noscapine and evaluation of its protective effects against imiquimod-induced psoriasis-like skin lesions.Biomed. Pharmacother.202316811582310.1016/j.biopha.2023.11582337924792
    [Google Scholar]
  48. Huguet-CasqueroA. Moreno-SastreM. López-MéndezT.B. GainzaE. PedrazJ.L. Encapsulation of oleuropein in nanostructured lipid carriers: Biocompatibility and antioxidant efficacy in lung epithelial cells.Pharmaceutics202012542910.3390/pharmaceutics1205042932384817
    [Google Scholar]
  49. SahooS. ChakrabortiC.K. BeheraP.K. MishraS.C. FTIR and Raman Spectroscopic Investigations of a Norfloxacin/Carbopol934 Polymerie Suspension.J. Young Pharm.20124313814510.4103/0975‑1483.10001723112532
    [Google Scholar]
  50. AliA. MadniA. ShahH. JamshaidT. JanN. KhanS. KhanM.M. MahmoodM.A. Solid lipid-based nanoparticulate system for sustained release and enhanced in-vitro cytotoxic effect of 5-fluorouracil on skin Melanoma and squamous cell carcinoma.PLoS One2023182e028100410.1371/journal.pone.028100436854019
    [Google Scholar]
  51. ZhangL. ChanJ.M. GuF.X. RheeJ.W. WangA.Z. Radovic-MorenoA.F. AlexisF. LangerR. FarokhzadO.C. Self-assembled lipid-polymer hybrid nanoparticles: A robust drug delivery platform.ACS Nano2008281696170210.1021/nn800275r19206374
    [Google Scholar]
  52. MiastkowskaM. Kulawik-PióroA. SzczurekM. Nanoemulsion gel formulation optimization for burn wounds: Analysis of rheological and sensory properties.Processes (Basel)2020811141610.3390/pr8111416
    [Google Scholar]
  53. SafitriF.I. NawangsariD. FebrinaD. Overview: Application of Carbopol 940 in Gel.Atlantis Press20218084
    [Google Scholar]
  54. IsmailN. Mat AminK. RazaliM. Antibacterial study of gellan gum (GG) film incorporated norfloxacin.J. Pure Appl. Microbiol.20191321095110210.22207/JPAM.13.2.48
    [Google Scholar]
  55. JaglalY. OsmanN. OmoloC.A. MocktarC. DevnarainN. GovenderT. Formulation of pH-responsive lipid-polymer hybrid nanoparticles for co-delivery and enhancement of the antibacterial activity of vancomycin and 18β-glycyrrhetinic acid.J. Drug Deliv. Sci. Technol.20216410260710.1016/j.jddst.2021.102607
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878316672241122041157
Loading
/content/journals/raddf/10.2174/0126673878316672241122041157
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test