Skip to content
2000
Volume 19, Issue 2
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Breast cancer continues to pose a significant global health challenge, with conventional therapies frequently hindered by resistance mechanisms and undesirable side effects. This review investigates the therapeutic potential of polyphenols—naturally occurring compounds recognized for their antioxidant, anti-inflammatory, and anti-cancer properties—as alternative or complementary treatments for breast cancer. We examine the molecular pathways through which polyphenols exert their effects, including their influence on oxidative stress modulation, inflammatory responses, cellular proliferation, apoptosis, and estrogen receptor signalling. Additionally, this review addresses innovative nano-based drug delivery systems such as nanoparticles, liposomes, niosomes, and phytosomes that enhance the stability, bioavailability, and targeted delivery of polyphenols. These advanced formulations aim to overcome challenges related to polyphenol degradation, low solubility, and rapid systemic clearance, thereby enhancing their therapeutic efficacy. Through a detailed analysis, we assess the contributions of various nanocarriers in optimizing the delivery of polyphenols specifically to breast cancer cells while minimizing systemic toxicity. The evidence presented highlights the potential of polyphenols in breast cancer management, further supported by nanoformulations that improve both stability and delivery efficiency.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878329992250112190329
2025-01-24
2025-06-27
Loading full text...

Full text loading...

References

  1. de BoerR.A. MeijersW.C. van der MeerP. van VeldhuisenD.J. Cancer and heart disease: Associations and relations.Eur. J. Heart Fail.201921121515152510.1002/ejhf.153931321851
    [Google Scholar]
  2. LiuX. XieX. RenY. ShaoZ. ZhangN. LiL. DingX. ZhangL. The role of necroptosis in disease and treatment.MedComm20212473075510.1002/mco2.10834977874
    [Google Scholar]
  3. Diori KaridioI. SanlierS.H. Reviewing cancer’s biology: An eclectic approach.J. Egypt. Natl. Canc. Inst.20213313210.1186/s43046‑021‑00088‑y34719756
    [Google Scholar]
  4. Morales-CruzM. DelgadoY. CastilloB. FigueroaC.M. MolinaA. TorresA. MiliánM. GriebenowK. Smart targeting to improve cancer therapeutics.Drug Des. Devel. Ther.2019133753377210.2147/DDDT.S21948931802849
    [Google Scholar]
  5. RuwaliM. ShuklaR. Interactions of environmental risk factors and genetic variations: Association with susceptibility to cancer.Environ. Microbiol.2021221123410.1007/978‑981‑15‑7493‑1_10
    [Google Scholar]
  6. HerbertC. ParoA. DiazA. PawlikT.M. Association of community economic distress and breast and colorectal cancer screening, incidence, and mortality rates among US counties.Ann. Surg. Oncol.202229283784810.1245/s10434‑021‑10849‑734585297
    [Google Scholar]
  7. LukongK.E. Understanding breast cancer – The long and winding road.BBA Clin.20177647710.1016/j.bbacli.2017.01.00128194329
    [Google Scholar]
  8. OzmenT. OzmenV. Treatment changes in breast cancer management and de-escalation of breast surgery.Eur. J. Breast Health202319318619010.4274/ejbh.galenos.2023.2023‑6‑237415650
    [Google Scholar]
  9. GradisharW.J. MoranM.S. AbrahamJ. AftR. AgneseD. AllisonK.H. AndersonB. BursteinH.J. ChewH. DangC. EliasA.D. GiordanoS.H. GoetzM.P. GoldsteinL.J. HurvitzS.A. IsakoffS.J. JankowitzR.C. JavidS.H. KrishnamurthyJ. LeitchM. LyonsJ. MortimerJ. PatelS.A. PierceL.J. RosenbergerL.H. RugoH.S. SitapatiA. SmithK.L. SmithM.L. SolimanH. Stringer-ReasorE.M. TelliM.L. WardJ.H. WisinskiK.B. YoungJ.S. BurnsJ. KumarR. Breast cancer NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.202220669172210.6004/jnccn.2022.003035714673
    [Google Scholar]
  10. ŁukasiewiczS. CzeczelewskiM. FormaA. BajJ. SitarzR. StanisławekA. Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—An updated review.Cancers20211317428710.3390/cancers1317428734503097
    [Google Scholar]
  11. LeiteP.M. CamargosL.M. CastilhoR.O. Recent progess in phytotherapy: A Brazilian perspective.Eur. J. Integr. Med.20214110127010.1016/j.eujim.2020.101270
    [Google Scholar]
  12. AvtanskiD. PoretskyL. Phyto-polyphenols as potential inhibitors of breast cancer metastasis.Mol. Med.20182412910.1186/s10020‑018‑0032‑730134816
    [Google Scholar]
  13. DurazzoA. LucariniM. SoutoE.B. CicalaC. CaiazzoE. IzzoA.A. NovellinoE. SantiniA. Polyphenols: A concise overview on the chemistry, occurrence, and human health.Phytother. Res.20193392221224310.1002/ptr.641931359516
    [Google Scholar]
  14. GoyalA. KumarS. NagpalM. SinghI. AroraS. Potential of novel drug delivery systems for herbal drugs.Indian J Pharm Educ Res2011453225235
    [Google Scholar]
  15. RussoG.L. SpagnuoloC. RussoM. TedescoI. MocciaS. CervelleraC. Mechanisms of aging and potential role of selected polyphenols in extending healthspan.Biochem. Pharmacol.202017311371910.1016/j.bcp.2019.11371931759977
    [Google Scholar]
  16. BehroozaghdamM. DehghaniM. ZabolianA. KamaliD. JavanshirS. Hasani SadiF. HashemiM. TabariT. RashidiM. MirzaeiS. ZarepourA. ZarrabiA. De GreefD. BishayeeA. Resveratrol in breast cancer treatment: From cellular effects to molecular mechanisms of action.Cell. Mol. Life Sci.2022791153910.1007/s00018‑022‑04551‑436194371
    [Google Scholar]
  17. ÇetinkayaM. BaranY. Therapeutic potential of luteolin on cancer.Vaccines202311355410.3390/vaccines1103055436992138
    [Google Scholar]
  18. FarghadaniR. NaiduR. Curcumin: Modulator of key molecular signaling pathways in hormone-independent breast cancer.Cancers20211314342710.3390/cancers1314342734298639
    [Google Scholar]
  19. Molani GolR. KheirouriS. The effects of quercetin on the apoptosis of human breast cancer cell lines MCF-7 and MDA-MB-231: A systematic review.Nutr. Cancer202274240542210.1080/01635581.2021.189763133682528
    [Google Scholar]
  20. Sharifi-RadJ. QuispeC. ImranM. RaufA. NadeemM. GondalT.A. AhmadB. AtifM. MubarakM.S. SytarO. ZhilinaO.M. GarsiyaE.R. SmeriglioA. TrombettaD. PonsD.G. MartorellM. CardosoS.M. RazisA.F.A. SunusiU. KamalR.M. RotariuL.S. ButnariuM. DoceaA.O. CalinaD. Genistein: An integrative overview of its mode of action, pharmacological properties, and health benefits.Oxid. Med. Cell. Longev.202120211326813610.1155/2021/326813634336089
    [Google Scholar]
  21. Report of the Global conference on primary health care: From Alma-Ata towards universal health coverage and the Sustainable Development Goals. 2019Available from: https://www.who.int/publications/i/item/report-of-the-global-conference-on-primary-health-care-from-alma-ata-towards-universal-health-coverage-and-the-sustainable-development-goals
  22. KhareS. SinghN.B. SinghA. HussainI. NiharikaK. YadavV. BanoC. YadavR.K. AmistN. Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints.J. Plant Biol.202063320321610.1007/s12374‑020‑09245‑7
    [Google Scholar]
  23. TuladharP. SasidharanS. SaudagarP. Role of phenols and polyphenols in plant defense response to biotic and abiotic stresses.Biocontrol Agents and Secondary MetabolitesWoodhead Publishing202141944110.1016/B978‑0‑12‑822919‑4.00017‑X
    [Google Scholar]
  24. AnandaramanA. Novel approaches to deliver bioavailable iron: Iron-fatty acid complexes, iron chlorophyllin and low polyphenol finger millet.Doctoral dissertation. ETH Zurich202210.3929/ethz‑b‑000557659
    [Google Scholar]
  25. PrabhuS. MolathA. ChoksiH. KumarS. MehraR. Classifications of polyphenols and their potential application in human health and diseases.Int. J. Physiol. Nutr. Phys. Educ.20216129330110.22271/journalofsport.2021.v6.i1e.2236
    [Google Scholar]
  26. AhmedS. GriffinT.S. KranerD. SchaffnerM.K. SharmaD. HazelM. LeitchA.R. OriansC.M. HanW. SteppJ.R. RobbatA. MatyasC. LongC. XueD. HouserR.F. CashS.B. Environmental factors variably impact tea secondary metabolites in the context of climate change.Front. Plant Sci.2019101093910.3389/fpls.2019.0093931475018
    [Google Scholar]
  27. RahmanM.M. RahamanM.S. IslamM.R. RahmanF. MithiF.M. AlqahtaniT. AlmikhlafiM.A. AlghamdiS.Q. AlruwailiA.S. HossainM.S. AhmedM. DasR. EmranT.B. UddinM.S. Role of phenolic compounds in human disease: Current knowledge and future prospects.Molecules202127123310.3390/molecules2701023335011465
    [Google Scholar]
  28. BhosaleP.B. HaS.E. VetrivelP. KimH.H. KimS.M. KimG.S. Functions of polyphenols and its anticancer properties in biomedical research: A narrative review.Transl. Cancer Res.20209127619763110.21037/tcr‑20‑235935117361
    [Google Scholar]
  29. ManigliaB.C. RebelattoE.A. AndradeK.S. ZielinskiA. de AndradeC.J. Polyphenols.Bioact. Compd. Health Dis.2021139
    [Google Scholar]
  30. SachdevS. AnsariS.A. AnsariM.I. FujitaM. HasanuzzamanM. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms.Antioxidants202110227710.3390/antiox1002027733670123
    [Google Scholar]
  31. JuanC.A. Pérez de la LastraJ.M. PlouF.J. Pérez-LebeñaE. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies.Int. J. Mol. Sci.2021229464210.3390/ijms2209464233924958
    [Google Scholar]
  32. HuangZ. ChenY. ZhangY. Mitochondrial reactive oxygen species cause major oxidative mitochondrial DNA damages and repair pathways.J. Biosci.20204518410.1007/s12038‑020‑00055‑032661211
    [Google Scholar]
  33. García-CaparrósP. De FilippisL. GulA. HasanuzzamanM. OzturkM. AltayV. LaoM.T. Oxidative stress and antioxidant metabolism under adverse environmental conditions: A review.Bot. Rev.202187442146610.1007/s12229‑020‑09231‑1
    [Google Scholar]
  34. JenaA.B. SamalR.R. BholN.K. DuttaroyA.K. Cellular Red-Ox system in health and disease: The latest update.Biomed. Pharmacother.202316211460610.1016/j.biopha.2023.11460636989716
    [Google Scholar]
  35. TianY. LiX. XieH. WangX. XieY. ChenC. ChenD. Protective mechanism of the antioxidant baicalein toward hydroxyl radical-treated bone marrow-derived mesenchymal stem cells.Molecules201823122310.3390/molecules2301022329361712
    [Google Scholar]
  36. LiuJ. YuanY. ChengY. FuD. ChenZ. WangY. ZhangL. YaoC. ShiL. LiM. ZhouC. ZouM. WangG. WangL. WangZ. Copper-based metal–organic framework overcomes cancer chemoresistance through systemically disrupting dynamically balanced cellular redox homeostasis.J. Am. Chem. Soc.2022144114799480910.1021/jacs.1c1185635192770
    [Google Scholar]
  37. FarhanM. ShamimU. HadiS. Green Tea polyphenols: A putative mechanism for cytotoxic action against cancer cells.Nutraceuticals and Natural Product Derivatives: Disease Prevention & Drug Discovery.Chapter 12HobokenWiley2019305332
    [Google Scholar]
  38. LiL. YuR. CaiT. ChenZ. LanM. ZouT. WangB. WangQ. ZhaoY. CaiY. Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment.Int. Immunopharmacol.20208810693910.1016/j.intimp.2020.10693933182039
    [Google Scholar]
  39. TestaU. CastelliG. PelosiE. Breast cancer: A molecularly heterogenous disease needing subtype-specific treatments.Med. Sci.2020811810.3390/medsci801001832210163
    [Google Scholar]
  40. Aguilar-CazaresD. Chavez-DominguezR. Marroquin-MuciñoM. Perez-MedinaM. Benito-LopezJ.J. CamarenaA. Rumbo-NavaU. Lopez-GonzalezJ.S. The systemic-level repercussions of cancer-associated inflammation mediators produced in the tumor microenvironment.Front. Endocrinol.20221392957210.3389/fendo.2022.92957236072935
    [Google Scholar]
  41. da CunhaL.R. Muniz-JunqueiraM.I. dos Santos BorgesT.K. Impact of polyphenols in phagocyte functions.J. Inflamm. Res.20191220521710.2147/JIR.S19374931686890
    [Google Scholar]
  42. MirR.H. MirP.A. UppalJ. ChawlaA. PatelM. BardakciF. AdnanM. Mohi-ud-dinR. Evolution of natural product scaffolds as potential proteasome inhibitors in developing cancer therapeutics.Metabolites202313450910.3390/metabo1304050937110167
    [Google Scholar]
  43. MohankumarK. FrancisA.P. PajaniradjeS. RajagopalanR. Synthetic curcumin analog: Inhibiting the invasion, angiogenesis, and metastasis in human laryngeal carcinoma cells via NF-kB pathway.Mol. Biol. Rep.20214886065607410.1007/s11033‑021‑06610‑834355287
    [Google Scholar]
  44. FatmaF. KumarA. The cell cycle, cyclins, checkpoints and cancer.Asian J. Res. Pharm. Sci.202111217518310.52711/2231‑5659.2021‑11‑2‑14
    [Google Scholar]
  45. Nilmani D’costaM. BotheA. DasS. Udhaya KumarS. GnanasambandanR. George Priya DossC. CDK regulators—Cell cycle progression or apoptosis—Scenarios in normal cells and cancerous cells.Adv. Protein Chem. Struct. Biol.202313512517710.1016/bs.apcsb.2022.11.00837061330
    [Google Scholar]
  46. ŁukasikP. ZałuskiM. GutowskaI. Cyclin-dependent kinases (CDK) and their role in diseases development–Review.Int. J. Mol. Sci.2021226293510.3390/ijms2206293533805800
    [Google Scholar]
  47. DubeyS.K. Natural products and nano-formulations in cancer chemoprevention.Pharm. Sci.202310.1201/b23311
    [Google Scholar]
  48. WaliaR. MadaanR. ChaudharyK. MehtaB. BalaR. Molecular pathways of apoptotic cell death.Clinical Perspectives and Targeted Therapies in Apoptosis.Academic Press20217910910.1016/B978‑0‑12‑815762‑6.00003‑2
    [Google Scholar]
  49. KashyapD. GargV.K. GoelN. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis.Adv. Protein Chem. Struct. Biol.20211257312010.1016/bs.apcsb.2021.01.00333931145
    [Google Scholar]
  50. HuX.M. ZhangQ. ZhouR.X. WuY.L. LiZ.X. ZhangD.Y. YangY.C. YangR.H. HuY.J. XiongK. Programmed cell death in stem cell-based therapy: Mechanisms and clinical applications.World J. Stem Cells202113538641510.4252/wjsc.v13.i5.38634136072
    [Google Scholar]
  51. TeekaramanD. ElayapillaiS.P. ViswanathanM.P. JagadeesanA. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line.Chem. Biol. Interact.20193009110010.1016/j.cbi.2019.01.00830639267
    [Google Scholar]
  52. KıygaE. ŞengelenA. AdıgüzelZ. Önay UçarE. Investigation of the role of quercetin as a heat shock protein inhibitor on apoptosis in human breast cancer cells.Mol. Biol. Rep.20204774957496710.1007/s11033‑020‑05641‑x32638319
    [Google Scholar]
  53. FanX. XiaoX. MaoX. ChenD. YuB. WangJ. YanH. Tea bioactive components prevent carcinogenesis via anti-pathogen, anti-inflammation, and cell survival pathways.IUBMB Life202173232834010.1002/iub.244533368980
    [Google Scholar]
  54. SzukiewiczD. Insight into the potential mechanisms of endocrine disruption by dietary phytoestrogens in the context of the etiopathogenesis of endometriosis.Int. J. Mol. Sci.202324151219510.3390/ijms24151219537569571
    [Google Scholar]
  55. MalR. MagnerA. DavidJ. DattaJ. VallabhaneniM. KassemM. ManouchehriJ. WillinghamN. StoverD. VandeusenJ. SardesaiS. WilliamsN. WesolowskiR. LustbergM. GanjuR.K. RamaswamyB. CherianM.A. Estrogen receptor beta (ERβ): A ligand activated tumor suppressor.Front. Oncol.20201058738610.3389/fonc.2020.58738633194742
    [Google Scholar]
  56. Starek-ŚwiechowiczB. BudziszewskaB. StarekA. Endogenous estrogens—breast cancer and chemoprevention.Pharmacol. Rep.20217361497151210.1007/s43440‑021‑00317‑034462889
    [Google Scholar]
  57. PetrineJ.C.P. Del Bianco-BorgesB. The influence of phytoestrogens on different physiological and pathological processes: An overview.Phytother. Res.202135118019710.1002/ptr.681632780464
    [Google Scholar]
  58. Abdal DayemA. ChoiH. YangG.M. KimK. SahaS. ChoS.G. The anti-cancer effect of polyphenols against breast cancer and cancer stem cells: Molecular mechanisms.Nutrients20168958110.3390/nu809058127657126
    [Google Scholar]
  59. Losada-EcheberríaM. Herranz-LópezM. MicolV. Barrajón-CatalánE. Polyphenols as promising drugs against main breast cancer signatures.Antioxidants2017648810.3390/antiox604008829112149
    [Google Scholar]
  60. Ajazuddin SarafS. Applications of novel drug delivery system for herbal formulations.Fitoterapia201081768068910.1016/j.fitote.2010.05.00120471457
    [Google Scholar]
  61. LasicD.D. Liposomes: From Physics to Applications.Amsterdam, London, New York, TokyoElsevier1993
    [Google Scholar]
  62. AltamimiM.A. HussainA. AlRajhiM. AlshehriS. ImamS.S. QamarW. Luteolin-loaded elastic liposomes for transdermal delivery to control breast cancer: In vitro and ex vivo evaluations.Pharmaceutical202114114310.3390/ph14111143
    [Google Scholar]
  63. SharmaS. GuptaP. KawishS.M. AhmadS. IqbalZ. VohoraD. KohliK. Novel chitosan-coated liposomes coloaded with exemestane and genistein for an effective breast cancer therapy.ACS Omega2024989735975210.1021/acsomega.3c0994838434864
    [Google Scholar]
  64. YeX. ChenX. HeR. MengW. ChenW. WangF. MengX. Enhanced anti-breast cancer efficacy of co-delivery liposomes of docetaxel and curcumin.Front. Pharmacol.20221396961110.3389/fphar.2022.96961136324685
    [Google Scholar]
  65. RamedaniA. SabzevariO. SimchiA. Processing of liposome-encapsulated natural herbs derived from Silybum marianum plants for the treatment of breast cancer cells.Sci. Iran.20222963619362710.24200/sci.2022.61070.7130
    [Google Scholar]
  66. WongM.Y. ChiuG.N.C. Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen-receptor-negative breast cancer treatment.Anticancer Drugs201021440141010.1097/CAD.0b013e328336e94020110806
    [Google Scholar]
  67. de PaceR.C.C. LiuX. SunM. NieS. ZhangJ. CaiQ. GaoW. PanX. FanZ. WangS. Anticancer activities of ( − )-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells.J. Liposome Res.201323318719610.3109/08982104.2013.78802323600473
    [Google Scholar]
  68. ZhaoY.N. CaoY.N. SunJ. LiangZ. WuQ. CuiS.H. ZhiD.F. GuoS.T. ZhenY.H. ZhangS.B. Anti-breast cancer activity of resveratrol encapsulated in liposomes.J. Mater. Chem. B Mater. Biol. Med.202081273710.1039/C9TB02051A31746932
    [Google Scholar]
  69. Al-SamydaiA. Al QaralehM. Al AzzamK.M. MayyasA. NsairatH. Abu HajlehM.N. Al-HalasehL.K. Al-KarabliehN. AkourA. AlshaikF. AlshaerW. Formulating co-loaded nanoliposomes with gallic acid and quercetin for enhanced cancer therapy.Heliyon202396e1726710.1016/j.heliyon.2023.e1726737408902
    [Google Scholar]
  70. GheybiF. AlavizadehS.H. RezayatS.M. ZendehdelE. JaafariM.R. Chemotherapeutic activity of Silymarin combined with doxorubicin liposomes in 4T1 breast cancer cells.Nanomed. Res. J2019412934
    [Google Scholar]
  71. JingP. LuoH. TanJ. LiaoC. ZhangS. Natural polyphenol-loaded cross-linked lipoic acid vesicles treat triple-negative breast cancer by cancer cell killing and metastasis inhibition.Mater. Des.202323611246110.1016/j.matdes.2023.112461
    [Google Scholar]
  72. SrinivasS. KumarY.A. HemanthA. AnithaM. Preparation and evaluation of niosomes containing aceclofenac.Dig. J. Nanomater. Biostruct.201051249254
    [Google Scholar]
  73. ObeidM.A. KhadraI. MullenA.B. TateR.J. FerroV.A. The effects of hydration media on the characteristics of non-ionic surfactant vesicles (NISV) prepared by microfluidics.Int. J. Pharm.20175161-2526010.1016/j.ijpharm.2016.11.01527836752
    [Google Scholar]
  74. MoghassemiS. HadjizadehA. Nano-niosomes as nanoscale drug delivery systems: An illustrated review.J. Control. Release2014185223610.1016/j.jconrel.2014.04.01524747765
    [Google Scholar]
  75. AdityaN.P. AdityaS. YangH. KimH.W. ParkS.O. KoS. Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion.Food Chem.201517371310.1016/j.foodchem.2014.09.13125465989
    [Google Scholar]
  76. AkbarzadehI. Tavakkoli YarakiM. AhmadiS. ChianiM. NourouzianD. Folic acid-functionalized niosomal nanoparticles for selective dual-drug delivery into breast cancer cells: An in-vitro investigation.Adv. Powder Technol.20203194064407110.1016/j.apt.2020.08.011
    [Google Scholar]
  77. BaraniM. MirzaeiM. Torkzadeh-MahaniM. Adeli-sardouM. Evaluation of carum-loaded niosomes on breast cancer cells: Physicochemical properties, in vitro cytotoxicity, flow cytometric, DNA fragmentation and cell migration assay.Sci. Rep.201991713910.1038/s41598‑019‑43755‑w31073144
    [Google Scholar]
  78. BaraniM. MirzaeiM. Torkzadeh-MahaniM. NematollahiM.H. Lawsone-loaded niosome and its antitumor activity in MCF-7 breast Cancer cell line: A nano-herbal treatment for Cancer.Daru2018261111710.1007/s40199‑018‑0207‑330159762
    [Google Scholar]
  79. ObeidM.A. GanyS.A.S. GrayA.I. YoungL. IgoliJ.O. FerroV.A. Niosome-encapsulated balanocarpol: Compound isolation, characterisation, and cytotoxicity evaluation against human breast and ovarian cancer cell lines.Nanotechnology2020311919510110.1088/1361‑6528/ab6d9c31958777
    [Google Scholar]
  80. FahmyS.A. SedkyN.K. RamzyA. AbdelhadyM.M.M. AlabrahimO.A.A. ShammaS.N. AzzazyH.M.E-S. Green extraction of essential oils from Pistacia lentiscus resins: Encapsulation into Niosomes showed improved preferential cytotoxic and apoptotic effects against breast and ovarian cancer cells.J. Drug Deliv. Sci. Technol.20238710482010.1016/j.jddst.2023.104820
    [Google Scholar]
  81. AkbarzadehI. ShayanM. BourbourM. MoghtaderiM. NoorbazarganH. Eshrati YeganehF. SaffarS. TahririM. Preparation, optimization and in-vitro evaluation of curcumin-loaded niosome@calcium alginate nanocarrier as a new approach for breast cancer treatment.Biology202110317310.3390/biology1003017333652630
    [Google Scholar]
  82. BombardelliE. CurriS.B. Complexes between phospholipids and vegetal derivatives of biological interest.Fitoterapia19896019
    [Google Scholar]
  83. HouZ. LiY. HuangY. ZhouC. LinJ. WangY. CuiF. ZhouS. JiaM. YeS. ZhangQ. Phytosomes loaded with mitomycin C-soybean phosphatidylcholine complex developed for drug delivery.Mol. Pharm.20131019010110.1021/mp300489p23194396
    [Google Scholar]
  84. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.2010721296855
    [Google Scholar]
  85. VinodK.R. SandhyaS. ChandrashekarJ. A review on genesis and characterization of phytosomes.Int. J. Pharm.2010436975
    [Google Scholar]
  86. KomeilI.A. AbdallahO.Y. El-RefaieW.M. Surface modified genistein phytosome for breast cancer treatment: In-vitro appraisal, pharmacokinetics, and in-vivo antitumor efficacy.Eur. J. Pharm. Sci.202217910629710.1016/j.ejps.2022.10629736156294
    [Google Scholar]
  87. WanjiruJ. GathirwaJ. SauliE. SwaiH.S. Formulation, optimization, and evaluation of Moringa oleifera leaf polyphenol-loaded phytosome delivery system against breast cancer cell lines.Molecules20222714443010.3390/molecules2714443035889305
    [Google Scholar]
  88. AlhakamyN.A. FahmyU.A. EldinS.M.B. AhmedO.A.A. AldawsariH.M. OkbazghiS.Z. AlfalehM.A. AbdulaalW.H. AlamoudiA.J. MadyF.M. Scorpion venom- functionalized quercetin phytosomes for breast cancer management: In vitro response surface optimization and anticancer activity against MCF-7 cells.Polymers20211419310.3390/polym1401009335012116
    [Google Scholar]
  89. SabzichiM. HamishehkarH. RamezaniF. SharifiS. TabasinezhadM. PirouzpanahM. GhanbariP. SamadiN. Luteolin-loaded phytosomes sensitize human breast carcinoma MDA-MB 231 cells to doxorubicin by suppressing Nrf2 mediated signalling.Asian Pac. J. Cancer Prev.201415135311531610.7314/APJCP.2014.15.13.531125040994
    [Google Scholar]
  90. TalaatS.M. ElnaggarY.S.R. GowayedM.A. El-GanainyS.O. AllamM. AbdallahO.Y. Novel PEGylated cholephytosomes for targeting fisetin to breast cancer: In vitro appraisal and in vivo antitumoral studies.Drug Deliv. Transl. Res.202414243345410.1007/s13346‑023‑01409‑537644299
    [Google Scholar]
  91. MoeiniS. KarimiE. OskoueianE. Antiproliferation effects of nanophytosome-loaded phenolic compounds from fruit of Juniperus polycarpos against breast cancer in mice model: Synthesis, characterization and therapeutic effects.Cancer Nanotechnol.20221312010.1186/s12645‑022‑00126‑x
    [Google Scholar]
  92. LangerR. Biomaterials in drug delivery and tissue engineering: One laboratory’s experience.Acc. Chem. Res.20003329410110.1021/ar980099310673317
    [Google Scholar]
  93. VilaA. SánchezA. TobíoM. CalvoP. AlonsoM.J. Design of biodegradable particles for protein delivery.J. Control. Release2002781-3152410.1016/S0168‑3659(01)00486‑211772445
    [Google Scholar]
  94. BriggerI. DubernetC. CouvreurP. Nanoparticles in cancer therapy and diagnosis.Adv. Drug Deliv. Rev.200254563165110.1016/S0169‑409X(02)00044‑312204596
    [Google Scholar]
  95. HassanpourM. JafariH. SharifiS. RezaieJ. LighvanZ.M. MahdaviniaG.R. GohariG. AkbariA. Salicylic acid-loaded chitosan nanoparticles (SA/CTS NPs) for breast cancer targeting: Synthesis, characterization and controlled release kinetics.J. Mol. Struct.2021124513104010.1016/j.molstruc.2021.131040
    [Google Scholar]
  96. ChowdhuryP. NageshP.K.B. HatamiE. WaghS. DanN. TripathiM.K. KhanS. HafeezB.B. MeibohmB. ChauhanS.C. JaggiM. YallapuM.M. Tannic acid-inspired paclitaxel nanoparticles for enhanced anticancer effects in breast cancer cells.J. Colloid Interface Sci.201953513314810.1016/j.jcis.2018.09.07230292104
    [Google Scholar]
  97. AhmedR. TariqM. AhmadI.S. FoulyH. Fakhar-i-Abbas HasanA. KushadM. Poly(lactic- co -glycolic acid) Nanoparticles Loaded with Callistemon citrinus phenolics exhibited anticancer properties against three breast cancer cell lines.J. Food Qual.2019201911210.1155/2019/2638481
    [Google Scholar]
  98. WangY. WangQ. FengW. YuanQ. QiX. ChenS. YaoP. DaiQ. XiaP. ZhangD. SunF. Folic acid-modified ROS-responsive nanoparticles encapsulating luteolin for targeted breast cancer treatment.Drug Deliv.20212811695170810.1080/10717544.2021.196335134402706
    [Google Scholar]
  99. KumariM. SharmaN. ManchandaR. GuptaN. SyedA. BahkaliA.H. NimeshS. PGMD/curcumin nanoparticles for the treatment of breast cancer.Sci. Rep.2021111382410.1038/s41598‑021‑81701‑x33589661
    [Google Scholar]
  100. WangW. ZhangL. ChenT. GuoW. BaoX. WangD. RenB. WangH. LiY. WangY. ChenS. TangB. YangQ. ChenC. Anticancer effects of resveratrol-loaded solid lipid nanoparticles on human breast cancer cells.Molecules20172211181410.3390/molecules2211181429068422
    [Google Scholar]
  101. QuW. JiP. HanX. WangX. LiY. LiuJ. Highly biocompatible apigenin-loaded silk fibroin nanospheres: Preparation, characterization, and anti-breast-cancer activity.Polymers20221512310.3390/polym1501002336616371
    [Google Scholar]
  102. SadhukhanP. KunduM. ChatterjeeS. GhoshN. MannaP. DasJ. SilP.C. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy.Mater. Sci. Eng. C201910012914010.1016/j.msec.2019.02.09630948047
    [Google Scholar]
  103. TurkogluB. MansurogluB. Catechin loaded poly(lactic-co-glycolic acid) nanoparticles: Characterization, antioxidant and cytotoxic activity against MCF-7 breast cancer cells.J. Nanosci. Nanotechnol.20202095313532110.1166/jnn.2020.1789032331097
    [Google Scholar]
  104. XuP. YinQ. ShenJ. ChenL. YuH. ZhangZ. LiY. Synergistic inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles containing TPGS.Int. J. Pharm.20134541213010.1016/j.ijpharm.2013.06.05323830941
    [Google Scholar]
  105. Perez-RuizA.G. GanemA. Olivares-CorichiI.M. García-SánchezJ.R. Lecithin–chitosan–TPGS nanoparticles as nanocarriers of (−)-epicatechin enhanced its anticancer activity in breast cancer cells.RSC Advances2018861347733478210.1039/C8RA06327C35547028
    [Google Scholar]
  106. Shih-HsinTu. Use of tea polyphenols for treating and/or preventing nicotine or nicotine derived compounds or estrogen induced breast cancer.Patent US20120208872,2011
  107. Shih-HsinTu. Tea polyphenols products for ceasing smoking and treating and/or preventing nicotine or nicotine derived compounds or estrogen induced breast cancer.Patent US20120208873,2011
  108. Shih-HsinTu. Pharmaceutical composition comprising THA as active ingredient for treating breast cancer. Patent US11793772B2,2016
  109. Wook KangKeon. Drug composition for treating breast cancer and method for manufacturing the same.Patent US20220047559,2020
  110. LiuDean-Mo . Herbal composition for breast cancer prevention.Patent US20230190841A12022
  111. EstrelaJosé. Use of polyphenols in the treatment of cancer.Patent US20110136751A1,2010
  112. KumosaniTaha Abdullah Method of orally administering a date fruit extract to treat breast cancer.Patent US10226501B22017
  113. HuangLeaf Nano-puerarin regulates tumor microenvironment and facilitates chemo- and immunotherapy in murine triple negative breast cancer model.Patent US20220193103A12020
  114. James MorréD. Compositions and methods based on synergies between capsicum extracts and tea catechins for prevention and treatment of cancer.Patent US7192612B22004
  115. JanetA. Cancer cell growth inhibition by black bean (Phaseolus vulgaris L) extracts.Patent US7763292B22005
  116. RezaMahmoud. Polyphenolic compounds encapsualated in long circulating liposomes and use thereof.Patent US20170172921A12016
  117. FernandesQ. TherachiyilL. KhanA.Q. BedhiafiT. KorashyH.M. BhatA.A. UddinS. Shrinking the battlefield in cancer therapy: Nanotechnology against cancer stem cells.Eur. J. Pharm. Sci.2023191710658610.1016/j.ejps.2023.10658637729956
    [Google Scholar]
  118. NaeemA. HuP. YangM. ZhangJ. LiuY. ZhuW. ZhengQ. Natural products as anticancer agents: Current status and future perspectives.Molecules20222723836710.3390/molecules2723836736500466
    [Google Scholar]
  119. GanesanK. DuB. ChenJ. Effects and mechanisms of dietary bioactive compounds on breast cancer prevention.Pharmacol. Res.202217810597410.1016/j.phrs.2021.10597434818569
    [Google Scholar]
  120. WahleK.W. BrownI. RotondoD. HeysS.D. GiardiM.T. ReaG. BerraB. Bio-farms for nutraceuticals.Adv. Exp. Med. Biol.2010698365110.1007/978‑1‑4419‑7347‑4
    [Google Scholar]
  121. GodosJ. CaraciF. MicekA. CastellanoS. D’AmicoE. PaladinoN. FerriR. GalvanoF. GrossoG. Dietary phenolic acids and their major food sources are associated with cognitive status in older italian adults.Antioxidants202110570010.3390/antiox1005070033946636
    [Google Scholar]
  122. Garcia-OliveiraP. OteroP. PereiraA.G. ChamorroF. CarpenaM. EchaveJ. Fraga-CorralM. Simal-GandaraJ. PrietoM.A. Status and challenges of plant-anticancer compounds in cancer treatment.Pharmaceuticals202114215710.3390/ph1402015733673021
    [Google Scholar]
  123. ZhangM. ChenX. RadacsiN. New tricks of old drugs: Repurposing non-chemo drugs and dietary phytochemicals as adjuvants in anti-tumor therapies.J. Control. Release20213299612010.1016/j.jconrel.2020.11.04733259852
    [Google Scholar]
  124. OrugantiL. MerigaB. Plant polyphenolic compounds potentiates therapeutic efficiency of anticancer chemotherapeutic drugs: A review.Endocr. Metab. Immune Disord. Drug Targets202121224625210.2174/187153032066620080711564732767950
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878329992250112190329
Loading
/content/journals/raddf/10.2174/0126673878329992250112190329
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test