Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Protein and peptide-based drugs have greater therapeutic efficacy and potential application and lower toxicity compared to chemical entities in long-term use within optimum concentration as they are easily biodegradable due to biological origin. While oral administration is preferable, most of these substances are currently administered intravenously or subcutaneously. This is primarily due to the breakdown and poor absorption in the GI tract. Hence, ongoing research is focused on investigating absorption enhancers, enzyme inhibitors, carrier systems, and stability enhancers as potential strategies to facilitate the oral administration of proteins and peptides. Investigations have been directed towards advancing novel technologies to address gastrointestinal (GI) barriers associated with protein and peptide medications. The current review intensifies formulation and stability approaches for oral protein & peptide drug delivery systems with all significant parameters intended for patient safety. Notably, certain innovative technologies have been patented and are currently undergoing clinical trials or have already been introduced into the market. All the approaches stated for the administration of protein and peptide drugs are critically discussed, having their current status, future directions, and recent patents published in the last decades.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878299775240719061653
2024-12-01
2025-01-20
Loading full text...

Full text loading...

References

  1. WangL. WangN. ZhangW. Therapeutic peptides: Current applications and future directions.Signal Transduct. Target. Ther.2022714810.1038/s41392‑022‑00904‑4 35165272
    [Google Scholar]
  2. USFDA Administration. Human insulin receives FDA approval.FDA Drug Bull.19821231819 6762312
    [Google Scholar]
  3. MahmoodA. Bernkop-SchnürchA. SEDDS: A game changing approach for the oral administration of hydrophilic macromolecular drugs.Adv. Drug Deliv. Rev.20191429110110.1016/j.addr.2018.07.001 29981355
    [Google Scholar]
  4. HaddadzadeganS. DorkooshF. Bernkop-SchnürchA. Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers.Adv. Drug Deliv. Rev.202218211409710.1016/j.addr.2021.114097 34999121
    [Google Scholar]
  5. RossinoG. MarcheseE. GalliG. Peptides as therapeutic agents: Challenges and opportunities in the green transition era.Molecules20232820716510.3390/molecules28207165 37894644
    [Google Scholar]
  6. GriesserJ. HetényiG. MoserM. DemarneF. JanninV. Bernkop-SchnürchA. Hydrophobic ion pairing: Key to highly payloaded self-emulsifying peptide drug delivery systems.Int. J. Pharm.20175201-226727410.1016/j.ijpharm.2017.02.019 28188875
    [Google Scholar]
  7. FonteP. AraújoF. ReisS. SarmentoB. Oral insulin delivery: How far are we?J. Diabetes Sci. Technol.20137252053110.1177/193229681300700228 23567010
    [Google Scholar]
  8. MeaneyC.M. O’DriscollC.M. A comparison of the permeation enhancement potential of simple bile salt and mixed bile salt: Fatty acid micellar systems using the CaCo-2 cell culture model.Int. J. Pharm.20002071-2213010.1016/S0378‑5173(00)00526‑3 11036226
    [Google Scholar]
  9. LaneM.E. O’DriscollC.M. CorriganO.I. Quantitative estimation of the effects of bile salt surfactant systems on insulin stability and permeability in the rat intestine using a mass balance model.J. Pharm. Pharmacol.201057216917510.1211/0022357055434 15720779
    [Google Scholar]
  10. MaherS. LeonardT.W. JacobsenJ. BraydenD.J. Safety and efficacy of sodium caprate in promoting oral drug absorption: From in vitro to the clinic.Adv. Drug Deliv. Rev.200961151427144910.1016/j.addr.2009.09.006 19800376
    [Google Scholar]
  11. BorchardtR.T. Optimizing oral absorption of peptides using prodrug strategies.J. Control. Release1999621-223123810.1016/S0168‑3659(99)00042‑5 10518655
    [Google Scholar]
  12. ShenW.C. Oral peptide and protein delivery: Unfulfilled promises?Drug Discov. Today200381460760810.1016/S1359‑6446(03)02692‑8 12867138
    [Google Scholar]
  13. WangJ. ChowD. HeiatiH. ShenW.C. Reversible lipidization for the oral delivery of salmon calcitonin.J. Control. Release200388336938010.1016/S0168‑3659(03)00008‑7 12644363
    [Google Scholar]
  14. VadlapudiA.D. VadlapatlaR.K. KwatraD. Targeted lipid based drug conjugates: A novel strategy for drug delivery.Int. J. Pharm.20124341-231532410.1016/j.ijpharm.2012.05.033 22692074
    [Google Scholar]
  15. ZhangX. WuW. Ligand-mediated active targeting for enhanced oral absorption.Drug Discov. Today201419789890410.1016/j.drudis.2014.03.001 24631680
    [Google Scholar]
  16. RenukuntlaJ. VadlapudiA.D. PatelA. BodduS.H.S. MitraA.K. Approaches for enhancing oral bioavailability of peptides and proteins.Int. J. Pharm.20134471-2759310.1016/j.ijpharm.2013.02.030 23428883
    [Google Scholar]
  17. PaulettiG. SiahaanT.J. GangwarS. PaulettiG.M. PaulettiG.M. Improvement of oral peptide bioavailability: Peptidomimetics and prodrug strategies.Adv. Drug Deliv. Rev.1997272-323525610.1016/S0169‑409X(97)00045‑8 10837560
    [Google Scholar]
  18. BrunoB.J. MillerG.D. LimC.S. Basics and recent advances in peptide and protein drug delivery.Ther. Deliv.20134111443146710.4155/tde.13.104 24228993
    [Google Scholar]
  19. EkramiH.M. KennedyA.R. ShenW.C. Water‐soluble fatty acid derivatives as acylating agents for reversible lipidization of polypeptides.FEBS Lett.1995371328328610.1016/0014‑5793(95)00910‑2 7556611
    [Google Scholar]
  20. MartinsJ.P. LiuD. FontanaF. Microfluidic nanoassembly of bioengineered chitosan-modified fcrn-targeted porous silicon nanoparticles @ hypromellose acetate succinate for oral delivery of antidiabetic peptides.ACS Appl. Mater. Interfaces20181051443544436710.1021/acsami.8b20821 30525379
    [Google Scholar]
  21. WuL. LiuM. ShanW. Bioinspired butyrate-functionalized nanovehicles for targeted oral delivery of biomacromolecular drugs.J. Control. Release201726226227328310.1016/j.jconrel.2017.07.045 28774842
    [Google Scholar]
  22. AzevedoC. NilsenJ. GrevysA. NunesR. AndersenJ.T. SarmentoB. Engineered albumin-functionalized nanoparticles for improved FcRn binding enhance oral delivery of insulin.J. Control. Release202032716117310.1016/j.jconrel.2020.08.005 32771477
    [Google Scholar]
  23. ManaguliR.S. RautS.Y. ReddyM.S. MutalikS. Targeting the intestinal lymphatic system: A versatile path for enhanced oral bioavailability of drugs.Expert Opin. Drug Deliv.201815878780410.1080/17425247.2018.1503249 30025212
    [Google Scholar]
  24. ReddyS.T. van der VliesA.J. SimeoniE. Exploiting lymphatic transport and complement activation in nanoparticle vaccines.Nat. Biotechnol.200725101159116410.1038/nbt1332 17873867
    [Google Scholar]
  25. KeX. HowardG.P. TangH. Physical and chemical profiles of nanoparticles for lymphatic targeting.Adv. Drug Deliv. Rev.2019151-152729310.1016/j.addr.2019.09.005 31626825
    [Google Scholar]
  26. PrausnitzM.R. Engineering microneedle patches for vaccination and drug delivery to skin.Annu. Rev. Chem. Biomol. Eng.20178117720010.1146/annurev‑chembioeng‑060816‑101514 28375775
    [Google Scholar]
  27. AbramsonA. Caffarel-SalvadorE. SoaresV. A luminal unfolding microneedle injector for oral delivery of macromolecules.Nat. Med.201925101512151810.1038/s41591‑019‑0598‑9 31591601
    [Google Scholar]
  28. LeeJ.W. PrausnitzM.R. Drug delivery using microneedle patches: Not just for skin.Expert Opin. Drug Deliv.201815654154310.1080/17425247.2018.1471059 29708770
    [Google Scholar]
  29. SartawiZ. BlackshieldsC. FaisalW. Dissolving microneedles: Applications and growing therapeutic potential.J. Control. Release202234818620510.1016/j.jconrel.2022.05.045 35662577
    [Google Scholar]
  30. TraversoG. SchoellhammerC.M. SchroederA. Microneedles for drug delivery via the gastrointestinal tract.J. Pharm. Sci.2015104236236710.1002/jps.24182 25250829
    [Google Scholar]
  31. XuB. ZhangW. ChenY. XuY. WangB. ZongL. Eudragit® L100-coated mannosylated chitosan nanoparticles for oral protein vaccine delivery.Int. J. Biol. Macromol.201811353454210.1016/j.ijbiomac.2018.02.016 29408613
    [Google Scholar]
  32. LeeY.H. PerryB.A. LabrunoS. Impact of regional intestinal pH modulation on absorption of peptide drugs: Oral absorption studies of salmon calcitonin in beagle dogs.Pharm. Res.19991681233123910.1023/A:1014849630520 10468025
    [Google Scholar]
  33. BinkleyN. BologneseM. Sidorowicz-BialynickaA. A phase 3 trial of the efficacy and safety of oral recombinant calcitonin: The oral calcitonin in postmenopausal osteoporosis (ORACAL) trial.J. Bone Miner. Res.20122781821182910.1002/jbmr.1602 22437792
    [Google Scholar]
  34. JungK.H. ChoiY.C. ChunJ.Y. MinS.G. HongG.P. Effects of concentration and reaction time of trypsin, pepsin, and chymotrypsin on the hydrolysis efficiency of Porcine Placenta.Han-gug Chugsan Sigpum Hag-hoeji201434215115710.5851/kosfa.2014.34.2.151 26760932
    [Google Scholar]
  35. LiuC. KouY. ZhangX. ChengH. ChenX. MaoS. Strategies and industrial perspectives to improve oral absorption of biological macromolecules.Expert Opin. Drug Deliv.201815322323310.1080/17425247.2017.1395853 29111841
    [Google Scholar]
  36. WellingS.H. HubálekF. JacobsenJ. BraydenD.J. RahbekU.L. BuckleyS.T. The role of citric acid in oral peptide and protein formulations: Relationship between calcium chelation and proteolysis inhibition.Eur. J. Pharm. Biopharm.201486354455110.1016/j.ejpb.2013.12.017 24384069
    [Google Scholar]
  37. AgarwalV. ReddyI.K. KhanM.A. Oral delivery of proteins: Effect of chicken and duck ovomucoid on the stability of insulin in the presence ofα-chymotrypsin and trypsin.Pharm. Pharmacol. Commun.20006522322710.1211/146080800128735935
    [Google Scholar]
  38. YeC. ChiH. A review of recent progress in drug and protein encapsulation: Approaches, applications and challenges.Mater. Sci. Eng. C20188323324610.1016/j.msec.2017.10.003 29208283
    [Google Scholar]
  39. OnuigboE. IseghohimhenJ. ChahK. GyangM. AttamaA. Chitosan/alginate microparticles for the oral delivery of fowl typhoid vaccine: Innate and acquired immunity.Vaccine201836334973497810.1016/j.vaccine.2018.05.087 30017142
    [Google Scholar]
  40. BanerjeeA. QiJ. GogoiR. WongJ. MitragotriS. Role of nanoparticle size, shape and surface chemistry in oral drug delivery.J. Control. Release201623817618510.1016/j.jconrel.2016.07.051 27480450
    [Google Scholar]
  41. NikamV.K. KotadeK. GawareV. DolasR. DhamakK. SomwanshiS. Eudragit a versatile polymer: A review.Pharmacologyonline20111152164
    [Google Scholar]
  42. SonajeK. ChenY.J. ChenH.L. Enteric-coated capsules filled with freeze-dried chitosan/poly(γ-glutamic acid) nanoparticles for oral insulin delivery.Biomaterials201031123384339410.1016/j.biomaterials.2010.01.042 20149435
    [Google Scholar]
  43. KomatiS. SwainS. RaoM.E.B. JenaB.R. DasiV. Mucoadhesive multiparticulate drug delivery systems: An extensive review of patents.Adv. Pharm. Bull.20199452153810.15171/apb.2019.062 31857957
    [Google Scholar]
  44. BernkopschnürchA. Thiomers: A new generation of mucoadhesive polymers.Adv. Drug Deliv. Rev.200557111569158210.1016/j.addr.2005.07.002 16176846
    [Google Scholar]
  45. EldridgeJ.H. HammondC.J. MeulbroekJ.A. StaasJ.K. GilleyR.M. TiceT.R. Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the peyer’s patches.J. Control. Release1990111-320521410.1016/0168‑3659(90)90133‑E
    [Google Scholar]
  46. ChenF. ZhangZ.R. YuanF. QinX. WangM. HuangY. In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery.Int. J. Pharm.20083491-222623310.1016/j.ijpharm.2007.07.035 17825506
    [Google Scholar]
  47. Bernkop-SchnürchA. HornofM. ZoidlT. Thiolated polymers—thiomers: Synthesis and in vitro evaluation of chitosan–2-iminothiolane conjugates.Int. J. Pharm.2003260222923710.1016/S0378‑5173(03)00271‑0 12842342
    [Google Scholar]
  48. YinL. DingJ. HeC. CuiL. TangC. YinC. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery.Biomaterials200930295691570010.1016/j.biomaterials.2009.06.055 19615735
    [Google Scholar]
  49. LehrC.M. Lectin-mediated drug delivery.J. Control. Release2000651-2192910.1016/S0168‑3659(99)00228‑X 10699266
    [Google Scholar]
  50. LeongK.H. ChungL.Y. NoordinM.I. OnukiY. MorishitaM. TakayamaK. Lectin-functionalized carboxymethylated kappa-carrageenan microparticles for oral insulin delivery.Carbohydr. Polym.201186255556510.1016/j.carbpol.2011.04.070
    [Google Scholar]
  51. Oral delivery of proteins and peptides. US20160008290A12016Available from: https://patentimages.storage.googleapis.com/2f/7b/f2/4d02a025cb0370/US20160008290A1.pdf
    [Google Scholar]
  52. Anti-radiation oral peptide drug composition for resisting radiation damage.CN108404113A2018Available from: https://www.lens.org/lens/patent/139-652-114-604-780/family?l=en
    [Google Scholar]
  53. Liposomes containing cell penetrating peptides and tetraester lipids for oral delivery of macromolecules.RU2743431C22021Available from: https://www.lens.org/lens/patent/037-351-522-463-350/frontpage?l=en
    [Google Scholar]
  54. Oral delivery of nanoparticles for kidney disease.WO2021/231383A22021Available from: https://patentscope. wipo.int/search/es/detail.jsf;jsessionid=CBE69EFD07CB69EB8D39CCA4598
    [Google Scholar]
  55. Microorganism for delivering drug for treatment of gastrointestinal disease, which expresses and secretes P8 protein, and pharmaceutical composition for preventing or treating gastrointestinal disease, which includes the same.WO2019/ 139229A12019Available from: https://www.lens.org/lens/patent/061-459-136-324-488/frontpage?l=en
    [Google Scholar]
  56. Gastro retentive formulations containing protein or peptide. WO2023166224A12023Available from: https://www.lens.org/images/patent/WO/2023166224/A1/WO_2023_166224_A1.pdf
    [Google Scholar]
  57. Dry powder inhaler comprising a serotonin receptor agonist and a diketopiperazine for treating migraines.EP3536368A12019Available from: https://www.lens.org/images/patent/EP/3536368/A1/EP_3536368_A1.pdf
    [Google Scholar]
  58. Polypeptide containing disulfide bonds and capable of inhibiting activity of serine protease, derived hybrid peptide thereof, and use thereof.WO2022/111713A92022Available from: https://www.lens.org/lens/patent/041-037-092-539-915/fulltext?l=en
    [Google Scholar]
  59. Fusion protein for improving oral administration stability of polypeptide drug, and application thereof.WO2022/099963A12022Available from: https://www.lens.org/lens/patent/079-836-505-498-681/frontpage
    [Google Scholar]
  60. Improved oral pharmaceutical formulations of therapeutic peptides and proteins. WO2023/166179A12023Available from: https://www.lens.org/images/patent/WO/2023166179/A1/WO_2023_166179_A1.pdf
    [Google Scholar]
  61. P8 microorganisms which express and secrete p8 protein for delivering drug for treating gastrointestinal diseases and pharmaceutical composition for preventing or treating gastrointestinal diseases comprising the same.KR101915951B12018Available from: https://www.lens.org/lens/patent/164-669-625-757-647/frontpage?l=en
    [Google Scholar]
  62. Pharmaceutical formulations for the oral delivery of peptide or protein drugs. EP3006045B32017Available from: https://www. lens.org/lens/patent/084-403-422-421-248/frontpage?l=en
    [Google Scholar]
  63. Buffered microencapsulated compositions and methods. EP2895323B12013Available from: https://www.lens.org/lens/patent/198-547-170-964-508/frontpage?l=en
    [Google Scholar]
  64. Targeted peptide-drug conjugates.US2022/0265839A12022Available from: https://www.lens.org/lens/patent/026-461-073-469-674/frontpage?l=en
    [Google Scholar]
  65. Delivery of active agents. US2022/0362147A12022 Available from: https://www.lens.org/lens/patent/141-675-930-205-634/frontpage?l=en
    [Google Scholar]
  66. Transferrin binding antibodies and use thereof.WO2023/ 097605A12023Available from: https://www.lens.org/images/patent/WO/2023097605/A1/WO_2023_097605_A1.pdf
    [Google Scholar]
  67. Fracture targeted bone regeneration through parathyroid hormone receptor stimulation. US2020/0316174A12020Available from: https://www.lens.org/lens/patent/160-810-331-002-737/frontpage? l=en
    [Google Scholar]
  68. Composition for delivery of protein therapeutics through oral, sublingual and buccal route.US20210121542A12021Available from: https://www.lens.org/images/patent/US/20210121542/A1/US_2021_0121542_A1.pdf
    [Google Scholar]
  69. Oral-taken delivery system for entrapping protein polypeptide drug exosome.CN111569082A2018Available from: https://www.lens.org/lens/patent/083-042-748-977-804/frontpage?l=en
    [Google Scholar]
  70. Polypeptide protein medicine oral absorption enhancer as well as preparation method and application thereof.CN116444392A2022Available from: https://www.lens.org/lens/patent/166-470-017-579-984/frontpage
    [Google Scholar]
  71. Oral enzyme compositions for intestinal delivery. EP2694098B12018Available from: https://www.lens.org/images/patent/EP/2694098/B1/EP_2694098_B1.pdf
    [Google Scholar]
  72. Oral drug delivery device with expanding band.WO2022/060820A12022Available from: https://www.lens.org/images/patent/WO/2022060820/A1/WO_2022_060820_A1.pdf
    [Google Scholar]
  73. Pharmaceutical compositions and methods for fabrication of solid masses comprising polypeptides and/or proteins.AU2023/200317A12023Available from: https://www.lens.org/lens/patent/018-960-363-152-68X/frontpage?l=en
    [Google Scholar]
  74. Pharmaceutical compositions and methods for fabrication of solid masses comprising tnf-inhibiting antibodies.US2019/0015482A12019Available from: https://www.lens.org/images/patent/US/20190015482/A1/US_2019_0015482_A1.pdf
    [Google Scholar]
  75. Pharmaceutical compositions and methods for fabrication of solid masses comprising glucose regulating proteins.US2019/ 0275116 A12019Available from: https://www.lens.org/images/patent/US/20190275116/A1/US_2019_0275116_A1.pdf
    [Google Scholar]
  76. Pharmaceutical compositions and methods for fabrication of solid masses comprising anti-interleukin antibodies.US10039810B22018Available from: https://www.lens.org/images/patent/US/10039810/B2/US_10039810_B2.pdf
    [Google Scholar]
  77. Shaped mass composition comprising exenatide.US11026998 B22021Available from: https://www.lens.org/images/patent/US/11026998/B2/US_11026998_B2.pdf
    [Google Scholar]
  78. Pharmaceutical compositions for oral treatment of diabetes.WO2014/118774Al2014Available from: https://www.lens.org/images/patent/WO/2014118774/A1/WO_2014_118774_A1.pdf
    [Google Scholar]
  79. Oral drug delivery device with expanding arms.WO2022/ 060817A22022Available from: https://www.lens.org/images/patent/WO/2022060817/A2/WO_2022_060817_A2.pdf
    [Google Scholar]
  80. Pharmaceutical preparation for delivery of peptides and proteins.WO2018/005518Al2018Available from: https://www.lens.org/images/patent/WO/2018005518/A1/WO_2018_005518_A1.pdf
    [Google Scholar]
  81. Pharmaceutical formulations for the oral delivery of peptide or protein drugs.NZ7305992017Available from: https://patentscope.wipo.int/search/en/detail.jsf?docId=NZ316813154&_cid=P12-LNVVCD-19555-1
    [Google Scholar]
  82. A process for preparing hydro-nanogel in powder formulation for oral protein delivery applications.IN2020410227452020Available from: https://patentscope.wipo.int/search/en/detail.jsf? docId=IN346037133&_cid=P12-LNVVCD-19555-4
    [Google Scholar]
  83. Polypeptide or protein nanoparticles based on hydrogen-bonded complexation, and preparation method and application thereof. CN1092240812019Available from: https://patentscope.wipo.int/search/en/detail.jsf?docId=CN236828421&_cid=P12-LNVVCD-19555-5
    [Google Scholar]
  84. Microorganism for delivering drug for treatment of gastrointestinal disease, which expresses and secretes cystatin, and pharmaceutical composition for preventing or treating gastrointestinal disease, which includes the same.US201903303122019Available from: https://patentscope.wipo.int/search/en/detail.jsf?docId=US275481445&_cid=P12-LNVVCD-19555-6
    [Google Scholar]
  85. Oral administration system for promoting protein drug to permeate across mucus and preparation method thereof.CN111450258A2019Available from: https://patents.google.com/patent/CN 111450258A/en?oq=CN+111450258+A
    [Google Scholar]
  86. Polypeptide protein medicine oral absorption promoter and preparation method and application thereof. CN116444392A2022Available from: https://patents.google.com/patent/CN 116444392A/en?oq=CN+116444392+A
    [Google Scholar]
  87. Iron-protein succinate oral liquid and preparation method thereof. CN108498454A2018Available from: https://www.lens.org/lens/patent/165-545-081-207-517/frontpage?l=en
    [Google Scholar]
  88. Compositions, methods, and systems for orally administrable affinity-based protein.US2021/0188922A12021Available from: https://www.lens.org/images/patent/US/20210188922/A1/US_ 2021_0188922_A1.pdf
    [Google Scholar]
  89. pH-responsive organic-inorganic hybrid nanocomposite for oral delivery of protein drugs and method for preparing the same.KR20200052819A2020Available from: https://patents. google.com/patent/KR20200052819A/en?oq=KR+20200052819+A
    [Google Scholar]
  90. Metal organic framework nano particle for oral protein administration and preparation method thereof. CN114344484A2022Available from: https://patents.google.com/patent/CN 114344484A/en?oq=+CN+114344484+A
    [Google Scholar]
  91. ROS-responsive monoclonal antibody drug oral nanoparticle and preparation method thereof.CN113577299A2021Available from: https://patents.google.com/patent/CN113577299A/en?oq=CN+113577299+A
    [Google Scholar]
  92. MuheemA. ShakeelF. JahangirM.A. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives.Saudi Pharm. J.201624441342810.1016/j.jsps.2014.06.004 27330372
    [Google Scholar]
  93. ZhuQ. ChenZ. PaulP.K. LuY. WuW. QiJ. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives.Acta Pharm. Sin. B20211182416244810.1016/j.apsb.2021.04.001 34522593
    [Google Scholar]
  94. NazS. SaeedS. IrfanM. Approaches and recent advances in protein and peptide drug delivery system.Pak. J. Med. Health Sci.202014225726310.47176/PJMHS.2020.257
    [Google Scholar]
  95. VermaD. GulatiN. KaulS. MukherjeeS. NagaichU. Protein based nanostructures for drug delivery.J. Pharm.2018201811810.1155/2018/9285854 29862118
    [Google Scholar]
  96. NikamV.K. SuryawanshiS. KhapareJ. Protein and peptide drug delivery system: A brief review.Asian J. Pharm. Pharmacol.202283667310.31024/ajpp.2022.8.3.1
    [Google Scholar]
  97. DhallaA.K. Al-ShamsieZ. BerakiS. A robotic pill for oral delivery of biotherapeutics: safety, tolerability, and performance in healthy subjects.Drug Deliv. Transl. Res.202212129430510.1007/s13346‑021‑00938‑1 33604838
    [Google Scholar]
  98. KwonK.C. NityanandamR. NewJ.S. DaniellH. Oral delivery of bioencapsulated exendin‐4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta‐ TC 6 cells.Plant Biotechnol. J.2013111778610.1111/pbi.12008 23078126
    [Google Scholar]
  99. IriantiM.I. Non-invasive strategies for protein drug delivery: Oral, transdermal, and pulmonary.J. Appl. Pharm. Sci.20201010166179
    [Google Scholar]
  100. CaoS. XuS. WangH. Nanoparticles: Oral Delivery for protein and peptide drugs.AAPS PharmSciTech201920519010.1208/s12249‑019‑1325‑z 31111296
    [Google Scholar]
  101. YadavA.R. MohiteS.K. Recent advances in protein and peptide drug delivery.Res. J. Pharm. Dos. Forms Technol.202012320521210.5958/0975‑4377.2020.00035.X
    [Google Scholar]
  102. SrinivasL. ManikantaV. JaswithaM. Protein and peptide drug delivery: A brief review.Res J Pharma Technol20191231369138210.5958/0974‑360X.2019.00230.0
    [Google Scholar]
  103. VermaS. GoandU.K. HusainA. KatekarR.A. GargR. GayenJ.R. Challenges of peptide and protein drug delivery by oral route: Current strategies to improve the bioavailability.Drug Dev. Res.202182792794410.1002/ddr.21832 33988872
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878299775240719061653
Loading
/content/journals/raddf/10.2174/0126673878299775240719061653
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test