Skip to content
2000
Volume 20, Issue 2
  • ISSN: 2772-4344
  • E-ISSN: 2772-4352

Abstract

Background

The structural maintenance of chromosomes (SMC) proteins plays a noteworthy role in chromosome dynamics. Several recent studies reported that the condensin core subunits of structural maintenance of chromosomes 2 (SMC2) play important roles in the atypical mitosis of the Plasmodium life cycle and may perform different functions during different proliferative stages. For eukaryotes, the structural maintenance of chromosomes (SMC) proteins are divided into six subunits and form three heterodimers of structural maintenance of chromosomes (SMC1/3) cohesion complex, structural maintenance of chromosomes (SMC2/4) condensin complex, and structural maintenance of chromosomes (SMC5/6) complex for chromosome cohesion, condensation, and DNA damage repair, respectively.

Objective

The objective of this study was to investigate the structural maintenance of chromosomes 2 (SMC2) protein of as a putative drug target of malariacausing .

Methods

In this study, we investigated the structural maintenance of chromosomes 2 (SMC2) protein of as a putative drug target of malaria-causing by using approaches like Homology modeling, evaluation of the modeled structure, molecular docking study to investigate the interaction of receptor-ligand, and molecular dynamic simulation study with MM calculation.

Results

We reported the structural maintenance of chromosomes 2 (SMC2) protein of as a potent drug target that can pave the way for novel drug discovery to mitigate malaria.

Conclusion

-based studies play a significant role in understanding any protein for potential drug development.

Loading

Article metrics loading...

/content/journals/raaidd/10.2174/0127724344313755241021055002
2024-10-31
2025-04-10
Loading full text...

Full text loading...

References

  1. LosadaA. HiranoM. HiranoT. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion.Genes Dev.199812131986199710.1101/gad.12.13.1986 9649503
    [Google Scholar]
  2. ThadaniR. KamenzJ. HeegerS. MuñozS. UhlmannF. Cell-cycle regulation of dynamic chromosome association of the condensin complex.Cell Rep.20182382308231710.1016/j.celrep.2018.04.082 29791843
    [Google Scholar]
  3. DávalosV. Súarez-LópezL. CastañoJ. Human SMC2 protein, a core subunit of human condensin complex, is a novel transcriptional target of the WNT signaling pathway and a new therapeutic target.J. Biol. Chem.201228752434724348110.1074/jbc.M112.428466 23095742
    [Google Scholar]
  4. BallA.R.Jr YokomoriK. The structural maintenance of chromosomes (SMC) family of proteins in mammals.Chromosome Res.200192859610.1023/A:1009287518015 11321372
    [Google Scholar]
  5. PetersJ.M. TedeschiA. SchmitzJ. The cohesin complex and its roles in chromosome biology.Genes Dev.200822223089311410.1101/gad.1724308 19056890
    [Google Scholar]
  6. PandeyR. AbelS. BoucherM. Plasmodium condensin core subunits SMC2/SMC4 mediate atypical mitosis and are essential for parasite proliferation and transmission.Cell Rep.202030618831897.e610.1016/j.celrep.2020.01.033
    [Google Scholar]
  7. SkibbensR.V. Condensins and cohesins – One of these things is not like the other!J. Cell Sci.20191323jcs22049110.1242/jcs.220491 30733374
    [Google Scholar]
  8. YiF. WangZ. LiuJ. Structural maintenance of chromosomes protein 1: Role in genome stability and tumorigenesis.Int. J. Biol. Sci.20171381092109910.7150/ijbs.21206 28924389
    [Google Scholar]
  9. StrunnikovA.V. JessbergerR. Structural maintenance of chromosomes (SMC) proteins.Eur. J. Biochem.1999263161310.1046/j.1432‑1327.1999.00509.x 10429180
    [Google Scholar]
  10. ArnoldK. BordoliL. KoppJ. SchwedeT. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling.Bioinformatics200622219520110.1093/bioinformatics/bti770 16301204
    [Google Scholar]
  11. BenkertP. TosattoS.C.E. SchomburgD. QMEAN: A comprehensive scoring function for model quality assessment.Proteins200871126127710.1002/prot.21715 17932912
    [Google Scholar]
  12. LaskowskiR.A. MacArthurM.W. MossD.S. ThorntonJ.M. PROCHECK: A program to check the stereochemical quality of protein structures.J. Appl. Cryst.199326228329110.1107/S0021889892009944
    [Google Scholar]
  13. Marchler-BauerA. DerbyshireM.K. GonzalesN.R. CDD: NCBI’s conserved domain database.Nucleic Acids Res.201543D1D222D22610.1093/nar/gku1221 25414356
    [Google Scholar]
  14. YuC.S. LinC.J. HwangJ.K. Predicting subcellular localization of proteins for gram‐negative bacteria by support vector machines based on n‐peptide compositions.Protein Sci.20041351402140610.1110/ps.03479604 15096640
    [Google Scholar]
  15. SharmaA. RanaA. MangtaniL. KalraA. NirajR.R.K. In silico repurposing of anticancer drug (5-fluorouracil) as an antibacterial agent against Klebsiella pneumoniae.Lett. Drug Des. Discov.202118121178118610.2174/1570180818666210920104935
    [Google Scholar]
  16. PettersenE.F. GoddardT.D. HuangC.C. UCSF Chimera-A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.20084 15264254
    [Google Scholar]
  17. NirajR.R.K. SainiV. KumarA. QSAR analyses of organophosphates for insecticidal activity and its in-silico validation using molecular docking study.Environ. Toxicol. Pharmacol.201540388689410.1016/j.etap.2015.09.021 26492451
    [Google Scholar]
  18. GrosdidierA. ZoeteV. MichielinO. SwissDock, a protein-small molecule docking web service based on EADock DSS.Nucleic Acids Res.201139W270-710.1093/nar/gkr366
    [Google Scholar]
  19. GrosdidierA. ZoeteV. MichielinO. EADock: Docking of small molecules into protein active sites with a multiobjective evolutionary optimization.Proteins20076741010102510.1002/prot.21367 17380512
    [Google Scholar]
  20. Schneidman-DuhovnyD. InbarY. NussinovR. WolfsonH.J. PatchDock and SymmDock: Servers for rigid and symmetric docking.Nucleic Acids Res.200533W363-710.1093/nar/gki481
    [Google Scholar]
  21. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  22. PiplaniS. SainiV. NirajR.R.K. PushpA. KumarA. Homology modelling and molecular docking studies of human placental cadherin protein for its role in teratogenic effects of anti-epileptic drugs.Comput. Biol. Chem.2016601810.1016/j.compbiolchem.2015.11.003 26625086
    [Google Scholar]
  23. GuptaE. GuptaS.R.R. NirajR.R.K. Identification of drug and vaccine target in Mycobacterium leprae: A reverse vaccinology approach.Int. J. Pept. Res. Ther.20202631313132610.1007/s10989‑019‑09936‑x
    [Google Scholar]
  24. PiplaniS. SinghP.K. WinklerD.A. PetrovskyN. Author correction: In silico comparison of SARS-CoV-2 spike protein-ACE2 binding affinities across species and implications for virus origin.Sci. Rep.20211111861010.1038/s41598‑021‑98366‑1 34521997
    [Google Scholar]
  25. SzklarczykD. FranceschiniA. WyderS. STRING v10: Protein–protein interaction networks, integrated over the tree of life.Nucleic Acids Res.201543D1D447D45210.1093/nar/gku1003 25352553
    [Google Scholar]
  26. WallaceA.C. LaskowskiR.A. ThorntonJ.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions.Protein Eng. Des. Sel.19958212713410.1093/protein/8.2.127 7630882
    [Google Scholar]
  27. LipinskiC.A. Lead- and drug-like compounds: the rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  28. TianW. ChenC. LeiX. ZhaoJ. LiangJ. CASTp 3.0: Computed atlas of surface topography of proteins.Nucleic Acids Res.201846W1W363-710.1093/nar/gky473 29860391
    [Google Scholar]
  29. SharmaA. SharmaA. RanaA. NirajR.R.K. In-silico repurposing of anticancer drug (5-FU) as an antimicrobial agent against methicillin-resistant Staphylococcus aureus (MRSA).Int. J. Pept. Res. Ther.20202642137214510.1007/s10989‑019‑10010‑9
    [Google Scholar]
  30. KumariR. KumarR. LynnA. g_mmpbsa: A GROMACS tool for high-throughput MM-PBSA calculations.J. Chem. Inf. Model.20145471951196210.1021/ci500020m 24850022
    [Google Scholar]
  31. GuptaS.R.R. GuptaE. OhriA. Comparative proteome analysis of Mycobacterium tuberculosis strains - H37Ra, H37Rv, CCDC5180, and CAS/NITR204: A step forward to identify novel drug target.Lett. Drug Des. Discov.202017111422143110.2174/1570180817999200531165148
    [Google Scholar]
  32. WangM. TangT. HuangZ. Design and synthesis of novel hydroxamic acid derivatives based on quisinostat as promising antimalarial agents with improved safety.Acta Materia Medica20221221222310.15212/AMM‑2022‑0007
    [Google Scholar]
  33. KumarD. KumarH. DeepA. KumarR. An updated study of traditional medicines to the era of 1,3,4 oxadiazole derivatives for malaria treatment.Trad Med Res202381510.53388/TMR20220614001
    [Google Scholar]
/content/journals/raaidd/10.2174/0127724344313755241021055002
Loading
/content/journals/raaidd/10.2174/0127724344313755241021055002
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test