Skip to content
2000
Volume 20, Issue 2
  • ISSN: 2772-4344
  • E-ISSN: 2772-4352

Abstract

Background

Infestation in greenhouse cucumber with the two-spotted spider mite ( Koch) commonly causes severe damage to crop quality and quantity and increases crop production costs.

Objective

This study was conducted to investigate the efficacy of high-abamectin-producing isolates of against -infested cucumber and to assess their impact on biochemical stress markers in these vegetables.

Methods

In this study, 72 non-antagonistic were isolated from rhizospheric soil samples collected from eight different locations in Egypt and screened for their ability to produce the secondary metabolite, abamectin.

Results

The screening process identified two potent abamectin-producing isolates, EW8 and T2, which produced 42.7 and 29.6 µg/L abamectin, respectively, as confirmed by LC-MS/MS analysis. According to DNA sequence analysis of the 16S rRNA gene, these two isolates belong to the species . The acaricidal activity of either culture suspensions of strains WE8 and T2, or their extracts containing abamectin, against the mobile stages and egg hatchability of was evaluated in the laboratory and the greenhouse. Data on the mortality among the examined female mites and the reduction in their number of eggs point out a potential acaricidal activity of the examined strains of and their extracts containing abamectin against s. Furthermore, the extracts containing abamectin from these two strains induced oxidative stress in the infested cucumber plants by s, as indicated by increased levels of malondialdehyde (MDA). However, the levels of MDA in -infested cucumber plants varied depending on the strain and the specific abamectin crude extract used.

Conclusion

strains T2 or WE8, or their crude extract could be applied in greenhouse cucumber plantations to combat red mite infestation.

Loading

Article metrics loading...

/content/journals/raaidd/10.2174/0127724344320368241021072156
2024-10-29
2025-06-24
Loading full text...

Full text loading...

References

  1. AttiaS. GrissaK.L. LognayG. BitumeE. HanceT. MailleuxA.C. A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides.J. Pest Sci.20138636138610.1007/s10340‑013‑0503‑0
    [Google Scholar]
  2. MigeonA. DorkeldF. Spider Mites Web: A Comprehensive Database for the Tetranychidae. 2011.2024Available From: https://www1.montpellier.inra.fr/CBGP/spmweb
    [Google Scholar]
  3. DermauwW. WybouwN. RombautsS. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae.Proc. Natl. Acad. Sci. USA20131102E113E12210.1073/pnas.1213214110 23248300
    [Google Scholar]
  4. HanY. ZhangY.C. YeW.N. WangS.M. WangX. GaoC.F. Increasing resistance of Tetranychus urticae to common acaricides in China and risk assessment to spiromesifen.Crop Prot.202417610651910.1016/j.cropro.2023.106519
    [Google Scholar]
  5. DusoC. Van LeeuwenT. PozzebonA. Improving the compatibility of pesticides and predatory mites: Recent findings on physiological and ecological selectivity.Curr. Opin. Insect Sci.202039636810.1016/j.cois.2020.03.005 32330876
    [Google Scholar]
  6. GrbićM. Van LeeuwenT. ClarkR.M. The genome of Tetranychus urticae reveals herbivorous pest adaptations.Nature2011479737448749210.1038/nature10640 22113690
    [Google Scholar]
  7. VassiliouV.A. KitsisP. Acaricide resistance in Tetranychus urticae (Acari: Tetranychidae) populations from Cyprus.J. Econ. Entomol.201310641848185410.1603/EC12369 24020302
    [Google Scholar]
  8. BarbarZ. SkinnerM. ParkerB.L. KreiterS. Species of Phytoseiidae (Acari: Mesostigmata) predators of thrips and whiteflies: A review.Acarologia202464374576710.24349/alf8‑2ujo
    [Google Scholar]
  9. McMurtryJ.A. MoraesG.J.D. SourassouN.F. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies.Syst. Appl. Acarol.201318429732010.11158/saa.18.4.1
    [Google Scholar]
  10. SabbahiR. HockV. AzzaouiK. SaoiabiS. HammoutiB. A global perspective of entomopathogens as microbial biocontrol agents of insect pests.J. Agric. Food Res.20221010037610.1016/j.jafr.2022.100376
    [Google Scholar]
  11. ChenH. WangX. LiC. XuX. WangG. Characterization of individual spores of two biological insecticides, Bacillus thuringiensis and Lysinibacillus sphaericus, in response to glutaraldehyde using single-cell optical approaches.Arch. Microbiol.2024206522710.1007/s00203‑024‑03941‑5 38642141
    [Google Scholar]
  12. Al-SohimA.S. FoulyA.F. Biological effects of two bacterial isolates and mutants of Pseudomonas fluorescens on date palm red spider mite, Oligonychus afrasiaticus (Acari: Tertanychidae).Egypt. J. Biol. Pest Control2015252513518
    [Google Scholar]
  13. BhattiA.A. HaqS. BhatR.A. Actinomycetes benefaction role in soil and plant health.Microb. Pathog.201711145846710.1016/j.micpath.2017.09.036
    [Google Scholar]
  14. KhanS. SrivastavaS. KarnwalA. MalikT. Streptomyces as a promising biological control agents for plant pathogens.Front. Microbiol.202314128554310.3389/fmicb.2023.1285543 38033592
    [Google Scholar]
  15. WangM. LiH. LiJ. ZhangW. ZhangJ. streptomyces strains and their metabolites for biocontrol of phytopathogens in agriculture.J. Agric. Food Chem.20247242077208810.1021/acs.jafc.3c08265 38230633
    [Google Scholar]
  16. SiddiqueS. SyedQ. AdnanA. QureshiF.A. Isolation, characterization and selection of avermectin-producing Streptomyces avermitilis strains from soil samples.Jundishapur J. Microbiol.201476e1036610.5812/jjm.10366
    [Google Scholar]
  17. Cerna-ChávezE Rodríguez-RodríguezJF García-CondeKB Ochoa-FuentesYM. potential of Streptomyces avermitilis: A review on avermectin production and its biocidal effect.Metabolites202414737410.3390/metabo14070374 39057697
    [Google Scholar]
  18. RaischT. RaunserS. The modes of action of ion-channel-targeting neurotoxic insecticides: Lessons from structural biology.Nat. Struct. Mol. Biol.202330101411142710.1038/s41594‑023‑01113‑5 37845413
    [Google Scholar]
  19. BaiS.H. OgbourneS. Eco-toxicological effects of the avermectin family with a focus on abamectin and ivermectin.Chemosphere201615420421410.1016/j.chemosphere.2016.03.113 27058912
    [Google Scholar]
  20. QiaoK. LiuX. WangH. XiaX. JiX. WangK. Effect of abamectin on root‐knot nematodes and tomato yield.Pest Manag. Sci.201268685385710.1002/ps.2338
    [Google Scholar]
  21. d’ErricoG.I.A.D.A. MarraR. VinaleF. LandiS. RoversiP.F. WooS.L. Nematicidal efficacy of new abamectin-based products used alone and in combination with indolebutyric acid against the root-knot nematode Meloidogyne incognita. Redia.Redia (Firenze)20171009510110.19263/REDIA‑100.17.12
    [Google Scholar]
  22. De SouzaR.B. GuimarãesJ.R. Effects of avermectins on the environment based on its toxicity to plants and soil invertebrates—a review.Water. Air. Soil Pollut.202223325910.1007/s11270‑022‑05744‑0
    [Google Scholar]
  23. MacarT.K. Investigation of cytotoxicity and genotoxicity of abamectin pesticide in Allium cepa L.Environ. Sci. Pollut. Res. Int.20212822391239910.1007/s11356‑020‑10708‑0 32888152
    [Google Scholar]
  24. VokřálI. MichaelaŠ. RadkaP. Ivermectin environmental impact: Excretion profile in sheep and phytotoxic effect in Sinapis alba.Ecotoxicol. Environ. Saf.201916994494910.1016/j.ecoenv.2018.11.097 30597795
    [Google Scholar]
  25. KustovskiyY. KarpovP. BlumeY. YemetsA. Ivermectin affects Arabidopsis thaliana microtubules through predicted binding site of β-tubulin.Plant Physiol. Biochem.202420610829610.1016/j.plaphy.2023.108296 38141401
    [Google Scholar]
  26. YaseenR. YossifT. Functional microbial diversity in relation to soil characteristics and land uses of Wadi Um Ashtan Basin, North-western Coast, Egypt.Egypt. J. Soil Sci.2019593285297
    [Google Scholar]
  27. ArifuzzamanM. KhatunM.R. RahmanH. Isolation and screening of Actinomycetes from Sundarbans soil for antibacterial activity.Afr. J. Biotechnol.201092946154619
    [Google Scholar]
  28. Aboukila EmadF. Norton JayB. Estimation of saturated soil paste salinity from soil-water extracts.Soil Sci.2017182319710.1097/SS.0000000000000197
    [Google Scholar]
  29. KumarN. SinghR.K. SkM. AkS. UcP. Isolation and screening of soil Actinomycetes as source of antibiotics active against bacteria.Int. J. Microbiol. Res.201022121610.9735/0975‑5276.2.2.12‑16
    [Google Scholar]
  30. KusterE. WilliamsS.T. Selection of media for isolation of Streptomycetes.Nature196420292892910.1038/202928a0
    [Google Scholar]
  31. RomeroJ. LirasP. MartínJF. Dissociation of cephamycin and clavulanic acid biosynthesis in Streptomyces clavuligerus.Appl. Microbiol. Biotechnol.198420531832510.1007/BF00270593
    [Google Scholar]
  32. WellingtonE.M.H. CrossT. Taxonomy of antibiotic producing Actinomycetes and new approaches towards their selective isolation. Progress in industrial Microbiology.AmsterdamElsevier198336
    [Google Scholar]
  33. SiddiqueS. SyedQ. AdnanA. NadeemM. IrfanM. QureshiF.A. Production of Avermectin B1b From Streptomyces avermitilis 41445 by Batch Submerged Fermentation.Jundishapur J. Microbiol.201368e719810.5812/jjm.7198
    [Google Scholar]
  34. SiddiqueS. QFAshraf. Kinetics of Avermectin B1b Production by Streptomyces avermitilis 41445 UV 45 (m) 3 in Shake Flask Culture.Iranian. J. Biotechnol.20201838895
    [Google Scholar]
  35. AlgethamiJ.S. AlhamamiM.A.M. RamadanM.F. AbdallahO.I. Residues of the acaricides abamectin, hexythiazox, and spiromesifen in eggplant (Solanum melongena L.) fruits grown under field conditions in najran, saudi arabia.Agriculture202213111610.3390/agriculture13010116
    [Google Scholar]
  36. ShirlingE.B. GottliebD. Methods for characterization of Streptomyces species.Int. J. Syst. Bacteriol.196616331334010.1099/00207713‑16‑3‑313
    [Google Scholar]
  37. LechevalierH.A. A practical guide to generic identification of actinomycetes.In: Bergey's manual of systematic bacteriology. Cham: Springer1989423447
    [Google Scholar]
  38. RintalaH. NevalainenA. RöِnkäE. SuutariM. PCR primers targeting the 16S rRNA gene for the specific detection of streptomycetes.Mol. Cell. Probes200115633734710.1006/mcpr.2001.0379 11851377
    [Google Scholar]
  39. HallT.A. BioEdit; a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT.Nucleic Acids Symp. Ser.1999419598
    [Google Scholar]
  40. FelsensteinJ. PHYLIP (phylogeny inference package), version 36 Distributed by the author.Seattle, USADepartment of Genome Sciences, University of Washington2005
    [Google Scholar]
  41. SaitouN. NeiM. The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol. Biol. Evol.19874440642510.1093/oxfordjournals.molbev.a040454 3447015
    [Google Scholar]
  42. Esteves FilhoA.B. OliveiraJ.V. TorresJ.B. MatosC.H.C. Toxicidade de espiromesifeno e acaricidas naturais para Tetranychus urticae koch e compatibilidade com Phytoseiulus macropilis (Banks).Semin. Cienc. Agrar.20133462675268610.5433/1679‑0359.2013v34n6p2675
    [Google Scholar]
  43. KumariS. ChauhanU. KumariA. NaddaG. Comparative toxicities of novel and conventional acaricides against different stages of 5 Koch (Acarina: Tetranychidae).J. Saudi Soc. Agric. Sci.20151810.1016/j.jssas.2015.06.003
    [Google Scholar]
  44. HendersonC.F. TiltonE.W. Test with acaricides against the brown wheat mite.J. Econ. Entomol.195548215716110.1093/jee/48.2.157
    [Google Scholar]
  45. AraújoM. PradaJ. Mariz-PonteN. Antioxidant Adjustments of Olive Trees (Olea Europaea) under Field Stress Conditions.Plants (Basel)202110468410.3390/plants10040684
    [Google Scholar]
  46. HeathR.L. PackerL. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation.Arch. Biochem. And Biophys.1968125118919810.1016/0003‑9861(68)90654‑1
    [Google Scholar]
  47. JungleeS. UrbanL. SallanonH. Lopez-LauriF. Optimized assay for hydrogen peroxide determination in plant tissue using potassium iodide.Am. J. Anal. Chem.201451173073610.4236/ajac.2014.511081
    [Google Scholar]
  48. ZhuJ. TremblayN. LiangY. Comparing SPAD and at LEAF values for chlorophyll assessment in crop species.Canadian J. Soil Sci.201292464564810.4141/cjss2011‑100
    [Google Scholar]
  49. BaliyanS. MukherjeeR. PriyadarshiniA. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa.Molecules2022274132610.3390/molecules27041326 35209118
    [Google Scholar]
  50. ThakurS. SoodA.K. Foliar application of natural products reduces population of two-spotted spider mite, Tetranychus urticae Koch on parthenocarpic cucumber (Cucumis sativus L.) under protected environment.Crop Prot.202216010603610.1016/j.cropro.2022.106036
    [Google Scholar]
  51. UygunT. OzguvenM.M. YanarD. A new approach to monitor and assess the damage caused by two-spotted spider mite.Exp. Appl. Acarol.202082333534610.1007/s10493‑020‑00561‑8 33085036
    [Google Scholar]
  52. HarirM. BendifH. BellahceneM. FortasZ. PogniR. Streptomyces secondary metabolites.Basic Biology and Applications of Actinobacteria201869912210.5772/intechopen.79890
    [Google Scholar]
  53. DongL. ZhangJ. Research progress of avermectin: A minireview based on the structural derivatization of avermectin.Advanced Agrochem20221210011210.1016/j.aac.2022.11.001
    [Google Scholar]
  54. BhardwajK. AbrahamJ. KaurS. Natural Product as avermectins and milbemycins for agriculture perspectives. Natural Bioactive Products in Sustainable Agriculture.ChamSpringer202010.1007/978‑981‑15‑3024‑1_12
    [Google Scholar]
  55. RamasamyR. NanjundanJ. PonnusamyM. Screening, isolation and evaluation of secondary metabolite producing streptomyces against spider mite, tetranychus urticae on Okra.Int. J. Curr. Microbiol. Appl. Sci.20176113058306510.20546/ijcmas.2017.611.358
    [Google Scholar]
  56. JakubowskaM. DoboszR. ZawadaD. KowalskaJ. A review of crop protection methods against the two spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) with special reference to alternative methods.Agriculture202212789810.3390/agriculture12070898
    [Google Scholar]
  57. FerreiraC.B.S. AndradeF.H.N. RodriguesA.R.S. SiqueiraH.A.A. GondimM.G.C.Jr Resistance in field populations of Tetranychus urticae to acaricides and characterization of the inheritance of abamectin resistance.Crop Prot.201567778310.1016/j.cropro.2014.09.022
    [Google Scholar]
  58. XueW. SnoeckS. NjiruC. InakE. DermauwW. Van LeeuwenT. Geographical distribution and molecular insights into abamectin and milbemectin cross‐resistance in European field populations of Tetranychus urticae.Pest Manag. Sci.20207682569258110.1002/ps.5831 32237053
    [Google Scholar]
  59. Van LeeuwenT. TirryL. YamamotoA. NauenR. DermauwW. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research.Pestic. Biochem. Physiol.2015121122110.1016/j.pestbp.2014.12.009 26047107
    [Google Scholar]
  60. NawarM. Abo-ElnasrA. KobisiA.N. HefnawyG. Evaluation of acaricidal activity of Purpureocillium lilacinum isolated from Egyptian soil against Tetranychus urticae.Egyptian J Desert Res201868215717210.21608/ejdr.2019.8033.1021
    [Google Scholar]
  61. AbdelRazekG.M. YaseenR. Effect of some rhizosphere bacteria on root-knot nematodes.Egypt. J. Biol. Pest Control202030114010.1186/s41938‑020‑00340‑y
    [Google Scholar]
  62. WangX.J. ZhangJ. WangJ.D. Four new doramectin congeners with acaricidal and insecticidal activity from Streptomyces avermitilis NEAU1069.Chem. Biodivers.20118112117212510.1002/cbdv.201000295 22083924
    [Google Scholar]
  63. FengY. YuZ. ZhangS. Isolation and characterization of new 16-membered macrolides from the aveA3 gene replacement mutant strain Streptomyces avermitilis TM24 with acaricidal and nematicidal activities.J. Agric. Food Chem.201967174782479210.1021/acs.jafc.9b00079 30973721
    [Google Scholar]
  64. WangX.J. WangM. WangJ.D. JiangL. WangJ.J. XiangW.S. Isolation and identification of novel macrocyclic lactones from Streptomyces avermitilis NEAU1069 with acaricidal and nematocidal activity.J. Agric. Food Chem.20105852710271410.1021/jf902496d 20000422
    [Google Scholar]
  65. ZenkovaA.A. GrizanovaE.V. AndreevaI.V. Effect of fungus Lecanicillium lecanii and bacteria bacillus thuringiensis, Streptomyces avermitilis on two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae) and predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae).J. Plant Prot. Res.20202020415419
    [Google Scholar]
  66. ShailaO. RaoS.R.K. BabuT. Chemical compatibility of avermectins and chitin synthesis inhibitors with common fungicides against Spodoptera litura.European J Zool Res20132021324
    [Google Scholar]
  67. ShakyaR. Markers of oxidative stress in plants. Ecophysiology of tropical plants. bergey’s manual of systematic bacteriology. boca raton.Florida, United StatesCRC Press2024298310
    [Google Scholar]
  68. MoralesM. Munné-BoschS. Malondialdehyde: Facts and Artifacts.Plant Physiol.201918031246125010.1104/pp.19.00405 31253746
    [Google Scholar]
  69. AyalaA. MuñozM.F. ArgüellesS. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal.Oxid. Med. Cell. Longev.2014201413110.1155/2014/360438 24999379
    [Google Scholar]
  70. PamplonaR. Membrane phospholipids, lipoxidative damage and molecular integrity: A causal role in aging and longevity.Biochim. Biophys. Acta Bioenerg.20081777101249126210.1016/j.bbabio.2008.07.003 18721793
    [Google Scholar]
  71. YakarS TunaA L Effects of some common insecticides on lipid peroxidation and antioxidative system in tomato (S. lycopersicon L.).2013
    [Google Scholar]
  72. RathorA.S. BhattP. VatsyaS. SinghJ.L. KumarR. DubeyS.K. Effect of fenbendazole and ivermectin on antioxidant status of goats suffering from gastrointestinal nematodes.Pharma Innov J2023SP-1283135
    [Google Scholar]
  73. MaZ. ZhuW. KangJ. MaX. JiangG. A comprehensive study on the ecotoxicity of ivermectin to earthworms (Eisenia fetida).Ecotoxicol. Environ. Saf.202326811570910.1016/j.ecoenv.2023.115709 37979365
    [Google Scholar]
  74. JenaA.B. SamalR.R. BholN.K. DuttaroyA.K. Cellular Red-Ox system in health and disease: The latest update.Biomed. Pharmacother.202316211460610.1016/j.biopha.2023.114606 36989716
    [Google Scholar]
  75. GechevT. PetrovV. Reactive oxygen species and abiotic stress in plants.Int. J. Mol. Sci.20202120743310.3390/ijms21207433 33050128
    [Google Scholar]
  76. García-CaparrósP. De FilippisL. GulA Oxidative stress and antioxidant metabolism under adverse environmental conditions: A review.Bot Rev202187442146610.1007/s12229‑020‑09231‑1
    [Google Scholar]
/content/journals/raaidd/10.2174/0127724344320368241021072156
Loading
/content/journals/raaidd/10.2174/0127724344320368241021072156
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test