Skip to content
2000
Volume 20, Issue 2
  • ISSN: 2772-4344
  • E-ISSN: 2772-4352

Abstract

Background

Viral infections pose a great burden for humankind and many viruses have no effective treatments. Hepatitis A Virus (HAV) and Coxsackie-B4 (Cox-B4) are common viruses having many drawbacks. Using plant extracts as antiviral agents is a globally applied approach due to its efficacy and minimal adverse effects.

Objective

This study aimed to test the antiviral action of the green coffee extract against HAV and Cox-B4 viruses, assess the possible mechanisms regulating this role, and apply molecular docking to evaluate the connection between bioactive compounds in the green coffee extract and viral proteins and receptors.

Methods

The antiviral effect of four plant extracts, including green tea, green coffee, pomegranate peel, and orange peel on HAV and Cox-B4 viruses has been screened in this study. The most promising results have been obtained using an inverted microscope and electron microscopy. Gas Chromatography-Mass Spectrometry (GC-MS) has been used to detect various compounds in the green coffee extract. Gene expression of MxA has been examined in different groups of treatments. Oxidative enzymes, including Glutathione (GSH), Superoxide Dismutase (SOD), and Malondialdehyde (MDA) were tested in infected Vero cells (African green monkey kidney cells) and upon using green coffee. studies were performed using molecular docking software.

Results

Green coffee has been found to have an antiviral impact on HAV and Cox-B4 with IC= 8.8±0.6 and 14.5±0.8 µg/ml, respectively, visualizing and confirming the results using both Transmission Electron Microscope (TEM) and inverted microscope. The green coffee extract has been found to regulate oxidative enzymes, including SOD, GSH, and MDA, to normal concentrations as well as MxA gene expression to regular levels. Linoleic acid and arachidic acid have been found to be the most common molecules in green coffee extract, interacting with the tested viruses.

Conclusion

Green coffee methanolic extract has been found to have an efficient antiviral impact on HAV and Cox-B4 viruses, as validated by investigations.

Loading

Article metrics loading...

/content/journals/raaidd/10.2174/0127724344313315240809093115
2024-09-02
2025-06-29
Loading full text...

Full text loading...

References

  1. De SmetP.A.G.M. Herbal remedies.N. Engl. J. Med.2002347252046205610.1056/NEJMra020398 12490687
    [Google Scholar]
  2. ShinwariZ.K. Medicinal plants research in Pakistan.J. Med. Plants Res.20104161176
    [Google Scholar]
  3. CraggG.M. NewmanD.J. Biodiversity: A continuing source of novel drug leads.Pure Appl. Chem.200577172410.1351/pac200577010007
    [Google Scholar]
  4. KapoorR. SharmaB. KanwarS.S. Antiviral phytochemicals: An overview.Biochem. Physiol.20176210.4172/2168‑9652.1000220
    [Google Scholar]
  5. Huerta-ReyesM. Gaitán-CepedaLA Sánchez-VargasLO. Punica granatum as anticandidal and anti-HIV agent: An HIV oral cavity potential drug.Plants20221119262210.3390/plants11192622 36235486
    [Google Scholar]
  6. GoktasZ. ZuY. AbbasiM. Recent advances in nanoencapsulation of phytochemicals to combat obesity and its comorbidities.J. Agric. Food Chem.202068318119813110.1021/acs.jafc.0c00131 32633507
    [Google Scholar]
  7. BakrimS. AboulaghrasS. El MenyiyN. Phytochemical compounds and nanoparticles as phytochemical delivery systems for Alzheimer’s disease management.Molecules20222724904310.3390/molecules27249043 36558176
    [Google Scholar]
  8. HallR.D. TrevisanF. de VosR.C.H. Coffee berry and green bean chemistry – Opportunities for improving cup quality and crop circularity.Food Res. Int.202215111082510.1016/j.foodres.2021.110825 34980376
    [Google Scholar]
  9. Amigo-BenaventM WangS MateosR SarriáB BravoL Antiproliferative and cytotoxic effects of green coffee and yerba mate extracts, their main hydroxycinnamic acids, methylxanthine and metabolites in different human cell lines.Food Chem Toxicol2017106Pt A1253810.1016/j.fct.2017.05.019
    [Google Scholar]
  10. Jiménez-ZamoraA. PastorizaS. Rufián-HenaresJA. Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties.Lebensm. Wiss. Technol.2015611121810.1016/j.lwt.2014.11.031
    [Google Scholar]
  11. Hernández-ArriagaAM Dave OomahB Campos-VegaR. Microbiota source impact in vitro metabolite colonic production and anti-proliferative effect of spent coffee grounds on human colon cancer cells (HT-29).Food Res. Int.20179719119810.1016/j.foodres.2017.04.004 28578041
    [Google Scholar]
  12. BalzanoM. LoizzoM.R. TundisR. Spent espresso coffee grounds as a source of anti-proliferative and antioxidant compounds.Innov. Food Sci. Emerg. Technol.20205910225410.1016/j.ifset.2019.102254
    [Google Scholar]
  13. AlbertsC.J. BoydA. BruistenS.M. Hepatitis A incidence, seroprevalence, and vaccination decision among MSM in Amsterdam, the Netherlands.Vaccine201937212849285610.1016/j.vaccine.2019.03.048 30992222
    [Google Scholar]
  14. JohnsonK.D. LuX. ZhangD. Adherence to hepatitis A and hepatitis B multi-dose vaccination schedules among adults in the United Kingdom: A retrospective cohort study.BMC Public Health201919140410.1186/s12889‑019‑6693‑5 30987613
    [Google Scholar]
  15. BrennanJ. MooreK. SizemoreL. Notes from the field: Acute hepatitis a virus infection among previously vaccinated persons with HIV infection — Tennessee, 2018.MMWR Morb. Mortal. Wkly. Rep.2019681432832910.15585/mmwr.mm6814a3 30973852
    [Google Scholar]
  16. AdamsM.J. LefkowitzE.J. KingA.M.Q. Ratification vote on taxonomic proposals to the international committee on taxonomy of viruses.Arch. Virol.2016161102921294910.1007/s00705‑016‑2977‑6 27424026
    [Google Scholar]
  17. Sioofy-KhojineA.B. LehtonenJ. NurminenN. Coxsackievirus B1 infections are associated with the initiation of insulin-driven autoimmunity that progresses to type 1 diabetes.Diabetologia20186151193120210.1007/s00125‑018‑4561‑y 29404673
    [Google Scholar]
  18. HyöِtyH. LeonF. KnipM. Developing a vaccine for type 1 diabetes by targeting coxsackievirus B.Expert Rev. Vaccines201817121071108310.1080/14760584.2018.1548281 30449209
    [Google Scholar]
  19. K. Mohamed A. MohamedE. MohamedA. Evaluation of anticancer activities of ulva lactuca ethanolic extract on colorectal cancer cells.Egypt. J. Chem.2023661353153910.21608/ejchem.2023.206838.7891
    [Google Scholar]
  20. YounisA.M. YosriM. StewartJ.K. In vitro evaluation of pleiotropic properties of wild mushroom Laetiporus sulphureus.Ann. Agric. Sci.2019641798710.1016/j.aoas.2019.05.001
    [Google Scholar]
  21. SehimA.E. AminB.H. YosriM. GC-MS analysis, antibacterial, and anticancer activities of Hibiscus sabdariffa L. Methanolic extract: In vitro and in silico studies.Microorganisms2023116160110.3390/microorganisms11061601
    [Google Scholar]
  22. HuJ.M. HsiungG.D. Evaluation of new antiviral agents: I. In vitro perspectives.Antiviral Res.1989115-621723210.1016/0166‑3542(89)90032‑6 2679375
    [Google Scholar]
  23. Al-SalahiR. AlswaidanI. GhabbourH. EzzeldinE. ElaasserM. MarzoukM. Docking and antiherpetic activity of 2-aminobenzo[de]-isoquinoline-1,3-diones.Molecules20152035099511110.3390/molecules20035099 25808153
    [Google Scholar]
  24. El-GarawaniI.M. El-SabbaghS.M. AbbasN.H. A newly isolated strain of Halomonas sp. (HA1) exerts anticancer potential via induction of apoptosis and G2/M arrest in hepatocellular carcinoma (HepG2) cell line.Sci. Rep.20201011407610.1038/s41598‑020‑70945‑8 32826930
    [Google Scholar]
  25. AminB.H. AyyatN.M. Mohamed El-SharkawyR. HafezA.M. Investigation of antifungal action of fractions C17H31NO15 isolated from Artemisia herba-alba extract versus isolated Aspergillus niger from Zee maize.Recent Adv. Antiinfect. Drug Discov.202419215917210.2174/2772434418666230627141639 37366361
    [Google Scholar]
  26. AminB.H. HanaaY. In vitro anticancer activity of fungal secondary metabolites of Stemphylium Lycopersici. N.Egypt. J. Microbiol.2018508096
    [Google Scholar]
  27. AminB.H. AmerA. AzzamM. Antimicrobial and anticancer activities of Periplaneta americana tissue lysate: An in vitro study.J. King Saud Univ. Sci.202234510209510.1016/j.jksus.2022.102095
    [Google Scholar]
  28. AminB.H. Abou-DobaraM.I. DiabM.A. Synthesis, characterization, and biological investigation of new mixed‐ligand complexes.Appl. Organomet. Chem.2020348e568910.1002/aoc.5689
    [Google Scholar]
  29. DeyabM. El-SheekhM. HasanR. ElsadanyA. Abu AhmedS. Phytochemical components of two cyanobacterial local strains.J Damietta Fac Sci2021111677510.21608/sjdfs.2021.195593
    [Google Scholar]
  30. SimonA. FähJ. HallerO. StaeheliP. Interferon-regulated Mx genes are not responsive to interleukin-1, tumor necrosis factor, and other cytokines.J. Virol.199165296897110.1128/jvi.65.2.968‑971.1991 1702845
    [Google Scholar]
  31. PontenA. SickC. WeeberM. HallerO. KochsG. Dominant-negative mutants of human MxA protein: Domains in the carboxy-terminal moiety are important for oligomerization and antiviral activity.J. Virol.19977142591259910.1128/jvi.71.4.2591‑2599.1997 9060610
    [Google Scholar]
  32. Ben-AmorI. GargouriB. AttiaH. In vitro anti-epstein barr virus activity of Olea europaea L. Leaf extracts.Plants20211011244510.3390/plants10112445 34834807
    [Google Scholar]
  33. PennisiR. Ben AmorI. GargouriB. Analysis of antioxidant and antiviral effects of olive (Olea europaea L.) Leaf extracts and pure compound using cancer cell model.Biomolecules202313223810.3390/biom13020238 36830607
    [Google Scholar]
  34. AshrafA. AshrafM.M. RafiqeA. In vivo antiviral potential of Glycyrrhiza glabra extract against Newcastle disease virus.Pak. J. Pharm. Sci.2017302Suppl.567572 28650322
    [Google Scholar]
  35. ParsaniaM. RezaeeM.B. MonavariS.H. Antiviral screening of four plant extracts against acyclovir resistant herpes simplex virus type-1.Pak. J. Pharm. Sci.2017304Suppl.14071411 29043989
    [Google Scholar]
  36. Ben-ShabatS. YarmolinskyL. PoratD. DahanA. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies.Drug Deliv. Transl. Res.202010235436710.1007/s13346‑019‑00691‑6 31788762
    [Google Scholar]
  37. DasA Hirai-YukiA González-LópezO TIM1 (HAVCR1) is not essential for cellular entry of either quasi-enveloped or naked hepatitis a virions.MBio201785e00969e1710.1128/mBio.00969‑17 28874468
    [Google Scholar]
  38. Musarra-PizzoM. PennisiR. Ben-AmorI. MandalariG. SciortinoM.T. Antiviral activity exerted by natural products against human viruses.Viruses202113582810.3390/v13050828 34064347
    [Google Scholar]
  39. SinisiV. StevaertA. BertiF. Chlorogenic compounds from coffee beans exert activity against respiratory viruses.Planta Med.201683761562310.1055/s‑0042‑119449 27806409
    [Google Scholar]
  40. AshourE.A. El-HackM.E.A. ShafiM.E. Impacts of green coffee powder supplementation on growth performance, carcass characteristics, blood indices, meat quality and gut microbial load in broilers.Agriculture2020101045710.3390/agriculture10100457
    [Google Scholar]
  41. LelešiusR. KarpovaitėA. MickienėR. In vitro antiviral activity of fifteen plant extracts against avian infectious bronchitis virus.BMC Vet. Res.201915117810.1186/s12917‑019‑1925‑6
    [Google Scholar]
  42. Abou El-EnainI. AbedN. Abu SennaA. AbdelkhalekE. SafwatN. YosriM. In vitro testing of biomedical applications of biosynthesized titanium nanoparticles using Saccharopolyspora spinosa.Egypt. J. Chem.202367510912510.21608/ejchem.2023.207149.7898
    [Google Scholar]
  43. HassanH.S. Abol-FotouhD. SalamaE. ElkadyM.F. Assessment of antimicrobial, cytotoxicity, and antiviral impact of a green zinc oxide/activated carbon nanocomposite.Sci. Rep.2022121877410.1038/s41598‑022‑12648‑w 35610244
    [Google Scholar]
  44. AbedN.N. Abou El-EnainI.M.M. El-Husseiny HelalE. YosriM. Novel biosynthesis of tellurium nanoparticles and investigation of their activity against common pathogenic bacteria.J. Taibah Univ. Med. Sci.202318240041210.1016/j.jtumed.2022.10.006 37102074
    [Google Scholar]
  45. NaikR.R. ShakyaA.K. OriquatG.A. Fatty acid analysis, chemical constituents, biological activity and pesticide residues screening in Jordanian Propolis.Molecules20212616507610.3390/molecules26165076 34443664
    [Google Scholar]
  46. AlqurashiA.S. Al MasoudiL.M. HamdiH. Abu ZaidA. Chemical composition and antioxidant, antiviral, antifungal, antibacterial and anticancer potentials of Opuntia ficus-indica seed oil.Molecules20222717545310.3390/molecules27175453 36080220
    [Google Scholar]
  47. FrostS.C. WalkerP. OriansC.M. RobbatA.Jr The chemistry of green and roasted coffee by selectable 1D/2D gas chromatography mass spectrometry with spectral deconvolution.Molecules20222716532810.3390/molecules27165328 36014566
    [Google Scholar]
  48. ThammaratP. KulsingC. WongraveeK. LeepipatpiboonN. NhujakT. Identification of volatile compounds and selection of discriminant markers for elephant dung coffee using static headspace gas chromatography—mass spectrometry and chemometrics.Molecules2018238191010.3390/molecules23081910 30065213
    [Google Scholar]
  49. AisalaH. KärkkäinenE. JokinenI. Seppänen-LaaksoT. RischerH. Proof of concept for cell culture-based coffee.J. Agric. Food Chem.20237147184781848810.1021/acs.jafc.3c04503 37972222
    [Google Scholar]
  50. ShakerO. AhmedA. DossW. Abdel-HamidM. MxA expression as marker for assessing the therapeutic response in HCV genotype 4 Egyptian patients.J. Viral Hepat.2010171179479910.1111/j.1365‑2893.2009.01241.x 20002306
    [Google Scholar]
  51. FrediansyahA. SofyantoroF. AlhumaidS. Microbial natural products with antiviral activities, including anti-SARS-CoV-2: A review.Molecules20222713430510.3390/molecules27134305 35807550
    [Google Scholar]
  52. TianW.J. WangX.J. Broad-spectrum antivirals derived from natural products.Viruses2023155110010.3390/v15051100 37243186
    [Google Scholar]
  53. (a EliasT. LeeL.H. RossiM. CarusoF. AdamsS.D. In vitro analysis of the antioxidant and antiviral activity of embelin against herpes simplex virus-1.Microorganisms20219243410.3390/microorganisms9020434 33669814
    [Google Scholar]
  54. (b BakarK Nilofar MohamedA s Evaluating phytochemical profiles, cytotoxicity, antiviral activity, antioxidant potential, and enzyme inhibition of Vepris boiviniana extracts.Molecules20232822753110.3390/molecules28227531 38005252
    [Google Scholar]
  55. DaiH. HeM. HuG. Discovery of ACE inhibitory peptides derived from green coffee using in silico and in vitro methods.Foods20231218348010.3390/foods12183480 37761189
    [Google Scholar]
/content/journals/raaidd/10.2174/0127724344313315240809093115
Loading
/content/journals/raaidd/10.2174/0127724344313315240809093115
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Antiviral; Cox-B4; docking; green coffee; hepatitis A virus; TEM
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test