Skip to content
2000
Volume 25, Issue 12
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Background: Interactions between proteins play a key role in nearly all cellular process, and therefore, its dysregulation may lead to many different types of cellular dysfunctions. Hence, pathologic Protein-Protein Interactions (PPIs) constitute highly attractive drug targets and hold great potential for developing novel therapeutic agents for the treatment of incurable human diseases. Unfortunately, the identification of PPI inhibitors is an extremely challenging task, since traditionally used small molecules ligands are mostly unable to cover and anchor on the extensive and flat surfaces that define those binary protein complexes. In contrast, large biomolecules such as proteins or peptides are ideal fits for this so-called “undruggable” sites. However, their poor pharmacokinetic properties have also limited their applications as therapeutics. In this context, peptidomimetic molecules have emerged as an alternative and viable solution to this problem, since they conserve the architectural and structural features of peptides and also exhibit substantially improved pharmacokinetic profiles. Conclusion: In the last decades, a wide array of chemical approaches granting access to conformationally constrained peptides with substantially improved pharmacokinetic profiles have been described, with a special focus on those affording stapled peptides and allowing large-scale macrocyclizations. These peptidomimetic molecules have been successfully applied to target a plethora of biological hosts, which highlights their promising future as novel therapeutics for the treatment of incurable human diseases.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0929866525666181101100842
2018-12-01
2025-07-04
Loading full text...

Full text loading...

/content/journals/ppl/10.2174/0929866525666181101100842
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test