Skip to content
2000
Volume 23, Issue 8
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Due to the growing problem of antibiotic-resistant microorganisms, the development of novel antimicrobial agents is a very important challenge. Dimerization of cationic antimicrobial peptides (cAMPs) is a potential strategy for enhancing antimicrobial activity. Here, we studied the effects of magainin 2 (MG2) dimerization on its structure and biological activity. Lysine and glutamic acid were used to synthesize the C- and N-terminal dimers of MG2, respectively, in order to evaluate the impact of linker position used to obtain the dimers. Both MG2 and its dimeric versions showed a random coil structure in aqueous solution. However, in the presence of a structure-inducing solvent or a membrane mimetic, all peptides acquired helical structure. N-terminal dimerization did not affect the biological activity of the peptide. On the other hand, the C-terminal dimer, (MG2)2K, showed antimicrobial activity 8–16 times higher than that of MG2, and the time required to kill Escherichia coli was lower. The enhanced antimicrobial activity was related to membrane permeabilization. (MG2)2K was also more active against multidrug-resistant bacteria of clinical origin. Overall, the results presented here demonstrate that C-terminal lysine-linked dimerization improve the activity of MG2, and (MG2)2K can be considered as a potential antimicrobial agent.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0929866523666160511150907
2016-08-01
2024-11-26
Loading full text...

Full text loading...

/content/journals/ppl/10.2174/0929866523666160511150907
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test