Skip to content
2000
Volume 22, Issue 3
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Earlier peptidomic analysis of the skin secretion of Xenopus amieti led to the identification of orthologs of magainins and other peptides. This study investigated the degradation, in vitro insulin-releasing and acute metabolic effects of magainin-AM1 (GIKEFAHSLGKFG KAFVGGILNQ) and magainin–AM2 (GVSKILHSAGKFGKAFLGEIMKS). Plasma degradation was investigated using reversed-phase HPLC and MALDI-TOF mass spectroscopy. Insulin-releasing effects were determined using BRIN-BD11 clonal beta cells and mouse islets. Effects of magainin peptides on cytosolic enzyme lactate dehydrogenase release, membrane potential and intracellular Ca2+ concentration were assessed using BRIN-BD11 cells while their in vivo effects on glucose tolerance and insulin release were assessed in obese, insulin-resistant Swiss National Institute of Health (NIH) mice. Both peptides were resistant to degradation by plasma enzymes in vitro for up to 8 h. Though magainin-AM1 elicited non-toxic, concentration-dependent stimulation of insulin-release from clonal BRINBD11 cells at concentrations ≥ 100nM, magainin-AM2 produced a higher stimulation of insulin-release from BRIN-BD11 cells and isolated mouse islets. Membrane depolarization and intracellular [Ca2+]i in BRIN-BD11 cells were significantly (P<0.05) induced by both peptides and chelation of extracellular Ca2+, addition of diazoxide or verapamil significantly (P<0.01) reduced the insulinotropic actions of the peptides. Administration of magainin-AM2 (75 nmol/kg body weight) to high-fat fed mice significantly enhanced insulin-release (P<0.01) and improved glucose tolerance (P<0.05). These data indicate magainin-AM2 peptides have potential for development into agents for treatment of type 2 diabetes.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0929866521666141229105757
2015-03-01
2025-05-11
Loading full text...

Full text loading...

/content/journals/ppl/10.2174/0929866521666141229105757
Loading

  • Article Type:
    Research Article
Keyword(s): Glucose tolerance; high fat-fed mice; host-defence peptides; insulin-release; magainin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test