Skip to content
2000
Volume 17, Issue 12
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Protein solubility plays a major role for understanding the crystal growth and crystallization process of protein. How to predict the propensity of a protein to be soluble or to form inclusion body is a long but not fairly resolved problem. After choosing almost 10,000 protein sequences from NCBI database and eliminating the sequences with 90% homologous similarity by CD-HIT, 5692 sequences remained. By using Chou's pseudo amino acid composition features, we predict the soluble protein with the three methods: support vector machine (SVM), back propagation neural network (BP Neural Network) and hybrid method based on SVM and BP Neural Network, respectively. Each method is evaluated by the re-substitution test and 10-fold cross-validation test. In the re-substitution test, the BP Neural Network performs with the best results, in which the accuracy achieves 92.88% and Matthews Correlation Coefficient (MCC) achieves 0.8513. Meanwhile, the other two methods are better than BP Neural Network in 10-fold cross-validation test. The hybrid method based on SVM and BP Neural Network is the best. The average accuracy is 86.78% and average MCC is 0.7233. Although all of the three methods achieve considerable evaluations, the hybrid method is deemed to be the best, according to the performance comparison.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0929866511009011466
2010-12-01
2025-06-12
Loading full text...

Full text loading...

/content/journals/ppl/10.2174/0929866511009011466
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test