Skip to content
2000
image of Molecular Interactions of the Antimicrobial Peptide Tritrpticin with Mixed Nanoaggregates: A Fluorescence Spectroscopy Study

Abstract

Introduction

Tritrpticin (TRP3) is a peptide belonging to the cathelicidin family and has a broad spectrum of antimicrobial activity. However, this class of biomolecules can be easily degraded in the body, making it necessary to use an efficient transport system. The ability to form stable nanostructures from the interaction of glycyrrhizin saponin with the pluronic polymer F127 was demonstrated, forming mixed biopolymeric micelles, highly promising as drug carriers.

Objective

The present work sought to understand the physicochemical interaction of the antimicrobial peptide TRP3 with the mixed polymeric micelle made from pluronic F127 and the saponin glycyrrhizin.

Methods

The interaction of tritrpticin with mixed nanostructured micelles was evaluated through fluorescence spectroscopy and fluorescence quenching with acrylamide. The experiments were performed at room temperature (25 ± 1°C), adopting an excitation wavelength set to 280 nm and emission between 300 and 500 nm, with a slit of 5 nm.

Results

The interaction of the cationic peptide tritrpticin with the mixed biopolymeric micelles was observed through the blue shift of the fluorescence emission to shorter wavelengths, proving the change of tryptophan to a more hydrophobic environment. Through the fluorescence suppression technique, it was possible to indicate the location of the peptide in the mixed micelles, proving tritrpticin to be partially inserted inside them.

Conclusion

It was concluded that tritrpticin interacted with mixed nanostructured micelles, forming a promising system for biotechnological applications.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665359223241226091327
2025-01-28
2025-04-10
Loading full text...

Full text loading...

References

  1. Paiva C.L. Zani L.B. Duarte I.D. Jonis-Silva M.D.A. Uso indiscriminado de antibióticos e superbactérias KPC: Tema CTS controverso no ensino de Biologia. Debates em Educação Científica e Tecnológica 2013 3 1 32 40 10.36524/dect.v3i01.46
    [Google Scholar]
  2. WHO Global Strategy for Containment of Antimicrobial Resistance World Health Organization 2001
    [Google Scholar]
  3. Mishra B. Reiling S. Zarena D. Wang G. Host defense antimicrobial peptides as antibiotics: Design and application strategies. Curr. Opin. Chem. Biol. 2017 38 87 96 10.1016/j.cbpa.2017.03.014 28399505
    [Google Scholar]
  4. Tassanakajon A. Rimphanitchayakit V. Visetnan S. Amparyup P. Somboonwiwat K. Charoensapsri W. Tang S. Shrimp humoral responses against pathogens: Antimicrobial peptides and melanization. Dev. Comp. Immunol. 2018 80 26 81 93 10.1016/j.dci.2017.05.009 28501515
    [Google Scholar]
  5. Mahlapuu M. Håkansson J. Ringstad L. Björn C. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol. 2016 6 194 10.3389/fcimb.2016.00194 28083516
    [Google Scholar]
  6. Lawyer C. Pai S. Watabe M. Borgia P. Mashimo T. Eagleton L. Watabe K. Antimicrobial activity of a 13 amino acid tryptophan‐rich peptide derived from a putative porcine precursor protein of a novel family of antibacterial peptides. FEBS Lett. 1996 390 1 95 98 10.1016/0014‑5793(96)00637‑0 8706838
    [Google Scholar]
  7. Epand R.M. Vogel H.J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta Biomembr. 1999 1462 1-2 11 28 10.1016/S0005‑2736(99)00198‑4 10590300
    [Google Scholar]
  8. Zanetti M. Gennaro R. Romeo D. Cathelicidins: A novel protein family with a common proregion and a variable C‐terminal antimicrobial domain. FEBS Lett. 1995 374 1 1 5 10.1016/0014‑5793(95)01050‑O 7589491
    [Google Scholar]
  9. Chan D.I. Prenner E.J. Vogel H.J. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim. Biophys. Acta Biomembr. 2006 1758 9 1184 1202 10.1016/j.bbamem.2006.04.006 16756942
    [Google Scholar]
  10. Yang S.T. Kim J.I. Shin S.Y. Effect of dimerization of a β-turn antimicrobial peptide, PST13-RK, on antimicrobial activity and mammalian cell toxicity. Biotechnol. Lett. 2009 31 2 233 237 10.1007/s10529‑008‑9848‑5 18815734
    [Google Scholar]
  11. Infante V.V. Miranda-Olvera A.D. De Leon-Rodriguez L.M. Anaya-Velazquez F. Rodriguez M.C. Avila E.E. Effect of the antimicrobial peptide tritrpticin on the in vitro viability and growth of Trichomonas vaginalis. Curr. Microbiol. 2011 62 1 301 306 10.1007/s00284‑010‑9709‑z 20640424
    [Google Scholar]
  12. Yang S.T. Yub Shin S. Kim Y.C. Kim Y. Hahm K.S. Kim J.I. Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide. Biochem. Biophys. Res. Commun. 2002 296 5 1044 1050 10.1016/S0006‑291X(02)02048‑X 12207877
    [Google Scholar]
  13. Inui Kishi R.N. Stach-Machado D. Singulani J.L. dos Santos C.T. Fusco-Almeida A.M. Cilli E.M. Freitas-Astúa J. Picchi S.C. Machado M.A. Evaluation of cytotoxicity features of antimicrobial peptides with potential to control bacterial diseases of citrus. PLoS One 2018 13 9 e0203451 10.1371/journal.pone.0203451 30192822
    [Google Scholar]
  14. Arias M. Haney E.F. Hilchie A.L. Corcoran J.A. Hyndman M.E. Hancock R.E.W. Vogel H.J. Selective anticancer activity of synthetic peptides derived from the host defence peptide tritrpticin. Biochim. Biophys. Acta Biomembr. 2020 1862 8 183228 10.1016/j.bbamem.2020.183228 32126228
    [Google Scholar]
  15. Ma Z. Wei D. Yan P. Zhu X. Shan A. Bi Z. Characterization of cell selectivity, physiological stability and endotoxin neutralization capabilities of α-helix-based peptide amphiphiles. Biomaterials 2015 52 517 530 10.1016/j.biomaterials.2015.02.063 25818457
    [Google Scholar]
  16. Tiewcharoen S. Phurttikul W. Rabablert J. Auewarakul P. Roytrakul S. Chetanachan P. Atithep T. Junnu V. Effect of synthetic antimicrobial peptides on Naegleria fowleri trophozoites. Southeast Asian J. Trop. Med. Public Health 2014 45 3 537 546 24974637
    [Google Scholar]
  17. Cirioni O. Giacometti A. Silvestri C. Della Vittoria A. Licci A. Riva A. Scalise G. In vitro activities of tritrpticin alone and in combination with other antimicrobial agents against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2006 50 11 3923 3925 10.1128/AAC.00652‑06 16940073
    [Google Scholar]
  18. Ghiselli R. Cirioni O. Giacometti A. Mocchegiani F. Orlando F. Silvestri C. Licci A. Della Vittoria A. Scalise G. Saba V. The cathelicidin-derived tritrpticin enhances the efficacy of ertapenem in experimental rat models of septic shock. Shock 2006 26 2 195 200 10.1097/01.shk.0000225407.24479.3f 16878029
    [Google Scholar]
  19. Nagpal S. Kaur K.J. Jain D. Salunke D.M. Plasticity in structure and interactions is critical for the action of indolicidin, an antibacterial peptide of innate immune origin. Protein Sci. 2002 11 9 2158 2167 10.1110/ps.0211602 12192071
    [Google Scholar]
  20. Schibli D.J. Hwang P.M. Vogel H.J. Structure of the antimicrobial peptide tritrpticin bound to micelles: A distinct membrane-bound peptide fold. Biochemistry 1999 38 51 16749 16755 10.1021/bi990701c 10606506
    [Google Scholar]
  21. Andrushchenko V.V. Vogel H.J. Prenner E.J. Solvent-dependent structure of two tryptophan-rich antimicrobial peptides and their analogs studied by FTIR and CD spectroscopy. Biochim. Biophys. Acta Biomembr. 2006 1758 10 1596 1608 10.1016/j.bbamem.2006.07.013 16956577
    [Google Scholar]
  22. Salay L.C. Procopio J. Oliveira E. Nakaie C.R. Schreier S. Ion channel‐like activity of the antimicrobial peptide tritrpticin in planar lipid bilayers. FEBS Lett. 2004 565 1-3 171 175 10.1016/j.febslet.2004.03.093 15135074
    [Google Scholar]
  23. Schibli D.J. Nguyen L.T. Kernaghan S.D. Rekdal Ø. Vogel H.J. Structure-function analysis of tritrpticin analogs: Potential relationships between antimicrobial activities, model membrane interactions, and their micelle-bound NMR structures. Biophys. J. 2006 91 12 4413 4426 10.1529/biophysj.106.085837 16997878
    [Google Scholar]
  24. Yang S.T. Shin S.Y. Hahm K.S. Kim J.I. Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. Int. J. Antimicrob. Agents 2006 27 4 325 330 10.1016/j.ijantimicag.2005.11.014 16563706
    [Google Scholar]
  25. Salay L.C. Ferreira M. Oliveira O.N. Jr Nakaie C.R. Schreier S. Headgroup specificity for the interaction of the antimicrobial peptide tritrpticin with phospholipid Langmuir monolayers. Colloids Surf. B Biointerfaces 2012 100 95 102 10.1016/j.colsurfb.2012.05.002 22772075
    [Google Scholar]
  26. Bozelli J.C. Jr Sasahara E.T. Pinto M.R.S. Nakaie C.R. Schreier S. Effect of head group and curvature on binding of the antimicrobial peptide tritrpticin to lipid membranes. Chem. Phys. Lipids 2012 165 4 365 373 10.1016/j.chemphyslip.2011.12.005 22209923
    [Google Scholar]
  27. Yang S.T. Shin S.Y. Hahm K.S. Kim J.I. Different modes in antibiotic action of tritrpticin analogs, cathelicidin-derived Trp-rich and Pro/Arg-rich peptides. Biochim. Biophys. Acta Biomembr. 2006 1758 10 1580 1586 10.1016/j.bbamem.2006.06.007 16859636
    [Google Scholar]
  28. Schibli D.J. Epand R.F. Vogel H.J. Epand R.M. Tryptophan-rich antimicrobial peptides: Comparative properties and membrane interactions. Biochem. Cell Biol. 2002 80 5 667 677 10.1139/o02‑147 12440706
    [Google Scholar]
  29. Andrushchenko V.V. Aarabi M.H. Nguyen L.T. Prenner E.J. Vogel H.J. Thermodynamics of the interactions of tryptophan-rich cathelicidin antimicrobial peptides with model and natural membranes. Biochim. Biophys. Acta Biomembr. 2008 1778 4 1004 1014 10.1016/j.bbamem.2007.12.022 18222168
    [Google Scholar]
  30. Andrushchenko V.V. Vogel H.J. Prenner E.J. Interactions of tryptophan-rich cathelicidin antimicrobial peptides with model membranes studied by differential scanning calorimetry. Biochim. Biophys. Acta Biomembr. 2007 1768 10 2447 2458 10.1016/j.bbamem.2007.05.015 17597579
    [Google Scholar]
  31. Sharma R. Lomash S. Salunke D.M. Putative bioactive motif of tritrpticin revealed by an antibody with biological receptor-like properties. PLoS One 2013 8 9 e75582 10.1371/journal.pone.0075582 24086578
    [Google Scholar]
  32. Salay L.C. Petri D.F.S. Nakaie C.R. Schreier S. Adsorption of the antimicrobial peptide tritrpticin onto solid and liquid surfaces: Ion-specific effects. Biophys. Chem. 2015 207 128 134 10.1016/j.bpc.2015.10.004 26529674
    [Google Scholar]
  33. Biswaro L.S. da Costa Sousa M.G. Rezende T.M.B. Dias S.C. Franco O.L. Antimicrobial peptides and nanotechnology, recent advances and challenges. Front. Microbiol. 2018 9 855 10.3389/fmicb.2018.00855 29867793
    [Google Scholar]
  34. Teixeira M.C. Carbone C. Sousa M.C. Espina M. Garcia M.L. Sanchez-Lopez E. Souto E.B. Nanomedicines for the Delivery of Antimicrobial Peptides (AMPs). Nanomaterials (Basel) 2020 10 3 560 10.3390/nano10030560 32244858
    [Google Scholar]
  35. Batrakova E.V. Kabanov A.V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release 2008 130 2 98 106 10.1016/j.jconrel.2008.04.013 18534704
    [Google Scholar]
  36. Kakizawa Y. Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Adv. Drug Deliv. Rev. 2002 54 2 203 222 10.1016/S0169‑409X(02)00017‑0 11897146
    [Google Scholar]
  37. Owens D. III Peppas N. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006 307 1 93 102 10.1016/j.ijpharm.2005.10.010 16303268
    [Google Scholar]
  38. Xiong X.Y. Tam K.C. Gan L.H. Polymeric nanostructures for drug delivery applications based on Pluronic copolymer systems. J. Nanosci. Nanotechnol. 2006 6 9 2638 2650 10.1166/jnn.2006.449 17048472
    [Google Scholar]
  39. Alexandridis P. Athanassiou V. Fukuda S. Hatton T.A. Surface activity of Poly(ethylene oxide)-block-Poly(propylene oxide)-block-Poly(ethylene oxide) copolymers. Langmuir 1994 10 8 2604 2612 10.1021/la00020a019
    [Google Scholar]
  40. Moebus K. Siepmann J. Bodmeier R. Alginate–poloxamer microparticles for controlled drug delivery to mucosal tissue. Eur. J. Pharm. Biopharm. 2009 72 1 42 53 10.1016/j.ejpb.2008.12.004 19126428
    [Google Scholar]
  41. Akash M.S.H. Rehman K. Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical perspectives. J. Control. Release 2015 209 120 138 10.1016/j.jconrel.2015.04.032 25921088
    [Google Scholar]
  42. Pragatheeswaran A.M. Chen S.B. Effect of chain length of PEO on the gelation and micellization of the pluronic F127 copolymer aqueous system. Langmuir 2013 29 31 9694 9701 10.1021/la401639g 23855644
    [Google Scholar]
  43. Padilla M. Clark G.T. Merrill R.L. Topical medications for orofacial neuropathic pain: A review. J. Am. Dent. Assoc. 2000 131 2 184 195 10.14219/jada.archive.2000.0146 10680386
    [Google Scholar]
  44. Jain N.K. Shah B.K. Taneja L.N. Nasal absorption of metoprolol tartrate. Indian J. Pharm. Sci. 1991 53 16 19
    [Google Scholar]
  45. Ryu J.M. Chung S.J. Lee M.H. Kim C.K. Chang-Koo Shim Increased bioavailability of propranolol in rats by retaining thermally gelling liquid suppositories in the rectum. J. Control. Release 1999 59 2 163 172 10.1016/S0168‑3659(98)00189‑8 10332051
    [Google Scholar]
  46. Lin H.R. Sung K.C. Carbopol/pluronic phase change solutions for ophthalmic drug delivery. J. Control. Release 2000 69 3 379 388 10.1016/S0168‑3659(00)00329‑1 11102678
    [Google Scholar]
  47. Koller C. Buri P. Propriétés et intérêt pharmaceutique des gels thermoréversibles à base de poloxamers et poloxamines. S.T.P. Pharma Sci 1987 3 115 124
    [Google Scholar]
  48. Ganguly R. Kumar S. Kunwar A. Nath S. Sarma H.D. Tripathi A. Verma G. Chaudhari D.P. Aswal V.K. Melo J.S. Structural and therapeutic properties of curcumin solubilized pluronic F127 micellar solutions and hydrogels. J. Mol. Liq. 2020 314 113591 10.1016/j.molliq.2020.113591
    [Google Scholar]
  49. Wanka G. Hoffmann H. Ulbricht W. Phase diagrams and aggregation behavior of poly(oxyethy1ene)-poly(oxypropylene)-poly-(oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 1994 27 15 4145 4159 10.1021/ma00093a016
    [Google Scholar]
  50. Salay L.C. Prazeres E.A. Marín Huachaca N.S. Lemos M. Piccoli J.P. Sanches P.R.S. Cilli E.M. Santos R.S. Feitosa E. Molecular interactions between Pluronic F127 and the peptide tritrpticin in aqueous solution. Colloid Polym. Sci. 2018 296 4 809 817 10.1007/s00396‑018‑4304‑0
    [Google Scholar]
  51. Ribeiro B.D. Coelho M.A.Z. Marrucho I.M. Extraction of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro) with cholinium-based ionic liquids and deep eutectic solvents. Eur. Food Res. Technol. 2013 237 6 965 975 10.1007/s00217‑013‑2068‑9
    [Google Scholar]
  52. Zhou W. Wang X. Chen C. Zhu L. Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin. Colloids Surf. A Physicochem. Eng. Asp. 2013 425 122 128 10.1016/j.colsurfa.2013.02.055
    [Google Scholar]
  53. Güçlü-Üstündağ Ö. Mazza G. Saponins: Properties, applications and processing. Crit. Rev. Food Sci. Nutr. 2007 47 3 231 258 10.1080/10408390600698197 17453922
    [Google Scholar]
  54. Lorent J.H. Quetin-Leclercq J. Mingeot-Leclercq M.P. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells. Org. Biomol. Chem. 2014 12 44 8803 8822 10.1039/C4OB01652A 25295776
    [Google Scholar]
  55. Francis G. Kerem Z. Makkar H.P.S. Becker K. The biological action of saponins in animal systems: A review. Br. J. Nutr. 2002 88 6 587 605 10.1079/BJN2002725 12493081
    [Google Scholar]
  56. Harwansh R.K. Patra K.C. Pareta S.K. Singh J. Rahman M.A. Nanoemulsions as vehicles for transdermal delivery of glycyrrhizin. Braz. J. Pharm. Sci. 2011 47 4 769 778 10.1590/S1984‑82502011000400014
    [Google Scholar]
  57. Sharma V. Agrawal R.C. Glycyrrhiza glabra - a plant for the future. Mint. J. Pharm. Med. Sci. 2013 2 15 20
    [Google Scholar]
  58. Morgan A.G. Mcadam W.A. Glycyrrhiza glabra. Monograph. Altern. Med. Rev. 2005 10 3 230 237 16164378
    [Google Scholar]
  59. Nafisi S. Bonsaii M. Manouchehri F. Abdi K. Interaction of glycyrrhizin and glycyrrhetinic acid with DNA. DNA Cell Biol. 2012 31 1 114 121 10.1089/dna.2011.1287 22074129
    [Google Scholar]
  60. Roshan A. Verma N.K. Kumar C.S. Chandra V. Singh D.P. Panday M.K. Phytochemical constituent, pharmacological activities and medicinal uses through the millenia of glycyrrhiza glabra linn: A Review. Int. Res. J. Pharm. 2012 3 45 55
    [Google Scholar]
  61. Hasan M.K. Ara I. Mondal M.S.A. Kabir Y. Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra. Heliyon 2021 7 6 e07240 10.1016/j.heliyon.2021.e07240 34189299
    [Google Scholar]
  62. Nafisi S. Manouchehri F. Bonsaii M. Study on the interaction of glycyrrhizin and glycyrrhetinic acid with RNA. J. Photochem. Photobiol. B 2012 111 27 34 10.1016/j.jphotobiol.2012.03.006 22513095
    [Google Scholar]
  63. Saxena S. Glycyrrhiza glabra: Medicine over the millenium. Nat. Prod. Radiance 2005 4 5
    [Google Scholar]
  64. Hemraj R.K. Singh G. Gupta A. Pharmacological activities on glycyrrhiza glabra –a review. Asian J. Pharm. Clin. Res. 2013 6 5 7
    [Google Scholar]
  65. Polyakov N.E. Leshina T.V. Glycyrrhizic acid as a novel drug delivery vector: Synergy of drug transport and efficacy. Open Conf. Proc. J. 2011 2 1 64 72 10.2174/2210289201102010064
    [Google Scholar]
  66. Sciascia L. Casella S. Cavallaro G. Lazzara G. Milioto S. Princivalle F. Parisi F. Olive mill wastewaters decontamination based on organo-nano-clay composites. Ceram. Int. 2019 45 2 2751 2759 10.1016/j.ceramint.2018.08.155
    [Google Scholar]
  67. de Oliveira R.S.S. Marín Huachaca N.S. Lemos M. Santos N.F. Feitosa E. Salay L.C. Molecular interactions between Pluronic F127 and saponin in aqueous solution. Colloid Polym. Sci. 2020 298 2 113 122 10.1007/s00396‑019‑04552‑z
    [Google Scholar]
  68. Merrifield R.B. Solid-phase peptide synthesis. 3. an improved synthesis of bradykinin. Biochemistry 1964 3 9 1385 1390 10.1021/bi00897a032 14229685
    [Google Scholar]
  69. Arias M. Jensen K.V. Nguyen L.T. Storey D.G. Vogel H.J. Hydroxy-tryptophan containing derivatives of tritrpticin: Modification of antimicrobial activity and membrane interactions. Biochim. Biophys. Acta Biomembr. 2015 1848 1 277 288 10.1016/j.bbamem.2014.08.024 25178967
    [Google Scholar]
  70. Nguyen L.T. de Boer L. Zaat S.A.J. Vogel H.J. Investigating the cationic side chains of the antimicrobial peptide tritrpticin: Hydrogen bonding properties govern its membrane-disruptive activities. Biochim. Biophys. Acta Biomembr. 2011 1808 9 2297 2303 10.1016/j.bbamem.2011.05.015 21641334
    [Google Scholar]
  71. Arias M. Nguyen L. Kuczynski A. Lejon T. Vogel H. Position-dependent influence of the three trp residues on the membrane activity of the antimicrobial peptide, tritrpticin. Antibiotics (Basel) 2014 3 4 595 616 10.3390/antibiotics3040595 27025758
    [Google Scholar]
  72. Lakowicz J.R. Principles of Fluorescence Spectroscopy. 3rd ed Springer 2006 10.1007/978‑0‑387‑46312‑4
    [Google Scholar]
  73. Santos T.L. Moraes A. Nakaie C.R. Almeida F.C.L. Schreier S. Valente A.P. Structural and dynamic insights of the interaction between tritrpticin and micelles: An NMR study. Biophys. J. 2016 111 12 2676 2688 10.1016/j.bpj.2016.10.034 28002744
    [Google Scholar]
  74. Bozelli J.C. Luiz C.S. Miranda M.A. Procópio J. Riciluca K.C.T. Junior P.I.C. Nakaie C.R. Schreier S. A comparison of activity, toxicity, and conformation of tritrpticin and two TOAC-labeled analogues. Effects on the mechanism of action. Biochim. Biophys. Acta 1862 2020 10.1016/j.bbamem.2019.183110 31672543
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665359223241226091327
Loading
/content/journals/ppl/10.2174/0109298665359223241226091327
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Tritrpticin ; Pluronic F-127 ; mixed micelles ; saponin ; self-organization ; fluorescence
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test