Skip to content
2000
Volume 31, Issue 10
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Several key functions of plants, such as photosynthesis, nutrient transport, disease resistance, and abiotic tolerance, are manifested by several classes of proteins. Prediction of 3-dimensional (3-D) structures of proteins and their working mechanisms can have a profound impact on plant proteomics research and could help improve key agricultural traits in crop plants. This review aims to present the current status of plant protein structure determination and discuss the way forward. Most experimentally proven protein structures are available only for the model plant . Most of the key crop plants have only a few hundred or fewer experimentally proven 3-D structures. Fewer than 1% of the protein sequences in the majority of plants have had their 3D structures experimentally determined, and is the sole plant with the highest percentage of 1.4% of protein sequences with experimentally determined structures. AI-based protein structure prediction tool AlphaFold has predicted models of several thousand proteins for many crop plants. In AlphaFold predicted protein models, soybean has the highest percentage (65%) of its UniProt protein sequences with predicted models, and a few other crop plants have also a considerable percentage of its UniProt sequences with AlphaFold predicted models. AlphaFold might help predict models and bridge the gap in plant structure determination studies. Protein structure information might lead to engineering key residues to improve the agronomical performance of crop plants.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665335283241003092139
2024-10-23
2025-01-18
Loading full text...

Full text loading...

References

  1. VaradiM. VelankarS. The impact of AlphaFold protein structure database on the fields of life sciences.Proteomics20232317e220012810.1002/pmic.202200128
    [Google Scholar]
  2. KuhlmanB. BradleyP. Advances in protein structure prediction and design.Nat. Rev. Mol. Cell Biol.2019201168169710.1038/s41580‑019‑0163‑x 31417196
    [Google Scholar]
  3. AgnihotryS. PathakR.K. SinghD.B. TiwariA. HussainI. Protein structure prediction.Bioinformatics.Academic Press202217718810.1016/B978‑0‑323‑89775‑4.00023‑7
    [Google Scholar]
  4. SchroederJ.I. DelhaizeE. FrommerW.B. GuerinotM. HarrisonM.J. Herrera-EstrellaL. HorieT. KochianL.V. MunnsR. NishizawaN.K. Using membrane transporters to improve crops for sustainable food production.Nature2013497744760610.1038/nature11909
    [Google Scholar]
  5. VelankarS. BurleyS.K. KurisuG. HochJ.C. MarkleyJ.L. The protein data bank archive BT.Structural Proteomics: High-Throughput Methods. OwensR.J. New York, NYSpringer US202132110.1007/978‑1‑0716‑1406‑8_1
    [Google Scholar]
  6. BurleyS.K. BermanH.M. BhikadiyaC. BiC. ChenL. CostanzoL.D. ChristieC. DuarteJ.M. DuttaS. FengZ. GhoshS. GoodsellD.S. GreenR.K. GuranovicV. GuzenkoD. HudsonB.P. LiangY. LoweR. PeisachE. PeriskovaI. RandleC. RoseA. SekharanM. ShaoC. TaoY-P. ValasatavaY. VoigtM. WestbrookJ. YoungJ. ZardeckiC. ZhuravlevaM. KurisuG. NakamuraH. KengakuY. ChoH. SatoJ. KimJ.Y. IkegawaY. NakagawaA. YamashitaR. KudouT. BekkerG-J. SuzukiH. IwataT. YokochiM. KobayashiN. FujiwaraT. VelankarS. KleywegtG.J. AnyangoS. ArmstrongD.R. BerrisfordJ.M. ConroyM.J. DanaJ.M. DeshpandeM. GaneP. GáborováR. GuptaD. GutmanasA. KočaJ. MakL. MirS. MukhopadhyayA. NadzirinN. NairS. PatwardhanA. Paysan-LafosseT. PravdaL. SalihO. SehnalD. VaradiM. VařekováR. MarkleyJ.L. HochJ.C. RomeroP.R. BaskaranK. MaziukD. UlrichE.L. WedellJ.R. YaoH. LivnyM. IoannidisY.E. Protein data bank: The single global archive for 3D macromolecular structure data.Nucleic Acids Res.201947D1D520D52810.1093/nar/gky949 30357364
    [Google Scholar]
  7. BatemanA. MartinM.J. OrchardS. MagraneM. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. Bye-A-JeeH. CukuraA. DennyP. DoganT. EbenezerT.G. FanJ. GarmiriP. da Costa GonzalesL.J. Hatton-EllisE. HusseinA. IgnatchenkoA. InsanaG. IshtiaqR. JoshiV. JyothiD. KandasaamyS. LockA. LucianiA. LugaricM. LuoJ. LussiY. MacDougallA. MadeiraF. MahmoudyM. MishraA. MoulangK. NightingaleA. PundirS. QiG. RajS. RaposoP. RiceD.L. SaidiR. SantosR. SperettaE. StephensonJ. TotooP. TurnerE. TyagiN. VasudevP. WarnerK. WatkinsX. ZaruR. ZellnerH. BridgeA.J. AimoL. Argoud-PuyG. AuchinclossA.H. AxelsenK.B. BansalP. BaratinD. Batista NetoT.M. BlatterM-C. BollemanJ.T. BoutetE. BreuzaL. GilB.C. Casals-CasasC. EchioukhK.C. CoudertE. CucheB. de CastroE. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GaudetP. GehantS. GerritsenV. GosA. GruazN. HuloC. Hyka-NouspikelN. JungoF. KerhornouA. Le MercierP. LieberherrD. MassonP. MorgatA. MuthukrishnanV. PaesanoS. PedruzziI. PilboutS. PourcelL. PouxS. PozzatoM. PruessM. RedaschiN. RivoireC. SigristC.J.A. SonessonK. SundaramS. WuC.H. ArighiC.N. ArminskiL. ChenC. ChenY. HuangH. LaihoK. McGarveyP. NataleD.A. RossK. VinayakaC.R. WangQ. WangY. ZhangJ. UniProt: The universal protein knowledgebase in 2023.Nucleic Acids Res.202351D1D523D53110.1093/nar/gkac1052 36408920
    [Google Scholar]
  8. BaekM. DiMaioF. AnishchenkoI. DauparasJ. OvchinnikovS. LeeG.R. WangJ. CongQ. KinchL.N. SchaefferR.D. Accurate prediction of protein structures and interactions using a three-track neural network.Science2021373655787187610.1126/science.abj8754
    [Google Scholar]
  9. JumperJ. EvansR. PritzelA. GreenT. FigurnovM. RonnebergerO. TunyasuvunakoolK. BatesR. ŽídekA. PotapenkoA. BridglandA. MeyerC. KohlS.A.A. BallardA.J. CowieA. Romera-ParedesB. NikolovS. JainR. AdlerJ. BackT. PetersenS. ReimanD. ClancyE. ZielinskiM. SteineggerM. PacholskaM. BerghammerT. BodensteinS. SilverD. VinyalsO. SeniorA.W. KavukcuogluK. KohliP. HassabisD. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  10. Porta-PardoE. Ruiz-SerraV. ValentiniS. ValenciaA. The structural coverage of the human proteome before and after AlphaFold.PLOS Comput. Biol.2022181e100981810.1371/journal.pcbi.1009818 35073311
    [Google Scholar]
  11. RasheedF. MarkgrenJ. HedenqvistM. JohanssonE. Modeling to understand plant protein structure-function relationships—implications for seed storage proteins.Molecules202025487310.3390/molecules25040873
    [Google Scholar]
  12. CeasarS.A. MaharajanT. HillaryV.E. Ajeesh KrishnaT.P. Insights to improve the plant nutrient transport by CRISPR/Cas system.Biotechnol. Adv.20225910796310.1016/j.biotechadv.2022.107963 35452778
    [Google Scholar]
  13. AntonyC.S. MaharajanT. García-CaparrósP. Functional residues in plant nutrient transporters: An opportunity for gene editing to improve agronomic traits.Crit. Rev. Plant Sci.202342532434310.1080/07352689.2023.2243108
    [Google Scholar]
  14. RódenasR. RagelP. Nieves-CordonesM. Martínez-MartínezA. AmoJ. LaraA. MartínezV. QuinteroF.J. PardoJ.M. RubioF. Insights into the mechanisms of transport and regulation of the arabidopsis high-affinity K+ transporter HAK51.Plant Physiol.202118541860187410.1093/plphys/kiab028 33595056
    [Google Scholar]
  15. SunJ. BankstonJ.R. PayandehJ. HindsT.R. ZagottaW.N. ZhengN. Crystal structure of the plant dual-affinity nitrate transporter NRT1.1.Nature20145077490737710.1038/nature13074 24572362
    [Google Scholar]
  16. NewsteadS. ParkerJ. Crystal structure of the plant nitrate transporter NRT1.1.Acta Cryst.2014507A70C148710.1038/nature13074
    [Google Scholar]
  17. WangL. ChenK. ZhouM. Structure and function of an Arabidopsis thaliana sulfate transporter.Nat. Commun.2021121445510.1038/s41467‑021‑24778‑2 34294705
    [Google Scholar]
  18. WienkoopS. BaginskyS. WeckwerthW. Arabidopsis thaliana as a model organism for plant proteome research.J. Proteomics201073112239224810.1016/j.jprot.2010.07.012 20692386
    [Google Scholar]
  19. YahyaR.T. Describe of Arabidopsis thaliana plant as a model plant in biotechnology.NTU J Pure Sci202213101710.56286/ntujps.v1i3.251
    [Google Scholar]
  20. MeinkeD.W. CherryJ.M. DeanC. RounsleyS.D. KoornneefM. Arabidopsis thaliana: A model plant for genome analysis.Science1998282538966268210.1126/science.282.5389.662
    [Google Scholar]
  21. MatsumuraH. MizohataE. IshidaH. KogamiA. UenoT. MakinoA. InoueT. YokotaA. MaeT. KaiY. Crystal structure of rice Rubisco and implications for activation induced by positive effectors NADPH and 6-phosphogluconate.J. Mol. Biol.20124221758610.1016/j.jmb.2012.05.014 22609438
    [Google Scholar]
  22. TaoY. CheungL.S. LiS. EomJ.S. ChenL.Q. XuY. PerryK. FrommerW.B. FengL. Structure of a eukaryotic SWEET transporter in a homotrimeric complex.Nature2015527757725926310.1038/nature15391 26479032
    [Google Scholar]
  23. SaitohY. Mitani-UenoN. SaitoK. MatsukiK. HuangS. YangL. YamajiN. IshikitaH. ShenJ.R. MaJ.F. SugaM. Structural basis for high selectivity of a rice silicon channel Lsi1.Nat. Commun.2021121623610.1038/s41467‑021‑26535‑x 34716344
    [Google Scholar]
  24. ChoiS. PrabhakarP.K. ChowdhuryR. PendergastT.H.IV UrbanowiczB.R. MaranasC. DevosK.M. A single amino acid change led to structural and functional differentiation of PvHd1 to control flowering in switchgrass.J. Exp. Bot.202374185532554610.1093/jxb/erad255 37402629
    [Google Scholar]
  25. EddyS.R. Profile hidden Markov models.Bioinformatics199814975576310.1093/bioinformatics/14.9.755 9918945
    [Google Scholar]
  26. RemmertM. BiegertA. HauserA. SödingJ. HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment.Nat. Methods20129217317510.1038/nmeth.1818 22198341
    [Google Scholar]
  27. SadreyevR. GrishinN. COMPASS: A tool for comparison of multiple protein alignments with assessment of statistical significance.J. Mol. Biol.2003326131733610.1016/S0022‑2836(02)01371‑2 12547212
    [Google Scholar]
  28. SödingJ. Protein homology detection by HMM-HMM comparison.Bioinformatics200521795196010.1093/bioinformatics/bti125 15531603
    [Google Scholar]
  29. OvchinnikovS. ParkH. VargheseN. HuangP.S. PavlopoulosG.A. KimD.E. KamisettyH. KyrpidesN.C. BakerD. Protein structure determination using metagenome sequence data.Science2017355632229439810.1126/science.aah4043
    [Google Scholar]
  30. LiJ. AdhikariB. ChengJ. An improved integration of template-based and template-free protein structure modeling methods and its assessment in CASP11.Protein Pept. Lett.201522758659310.2174/0929866522666150520145717 25990081
    [Google Scholar]
  31. AlQuraishiM. Protein-structure prediction gets real.Nature2020577779262762810.1038/d41586‑019‑03951‑0 31988401
    [Google Scholar]
  32. BertolineL.M.F. LimaA.N. KriegerJ.E. TeixeiraS.K. Before and after AlphaFold2: An overview of protein structure prediction.Front. Bioinform.20233112037010.3389/fbinf.2023.1120370
    [Google Scholar]
  33. SeniorA.W. EvansR. JumperJ. KirkpatrickJ. SifreL. GreenT. QinC. ŽídekA. NelsonA.W.R. BridglandA. PenedonesH. PetersenS. SimonyanK. CrossanS. KohliP. JonesD.T. SilverD. KavukcuogluK. HassabisD. Improved protein structure prediction using potentials from deep learning.Nature2020577779270671010.1038/s41586‑019‑1923‑7 31942072
    [Google Scholar]
  34. TunyasuvunakoolK. AdlerJ. WuZ. GreenT. ZielinskiM. ŽídekA. BridglandA. CowieA. MeyerC. LaydonA. VelankarS. KleywegtG.J. BatemanA. EvansR. PritzelA. FigurnovM. RonnebergerO. BatesR. KohlS.A.A. PotapenkoA. BallardA.J. Romera-ParedesB. NikolovS. JainR. ClancyE. ReimanD. PetersenS. SeniorA.W. KavukcuogluK. BirneyE. KohliP. JumperJ. HassabisD. Highly accurate protein structure prediction for the human proteome.Nature2021596787359059610.1038/s41586‑021‑03828‑1 34293799
    [Google Scholar]
  35. DavidA. IslamS. TankhilevichE. SternbergM.J.E. The AlphaFold database of protein structures: A biologist’s guide.J. Mol. Biol.2022434216733610.1016/j.jmb.2021.167336 34757056
    [Google Scholar]
  36. DavidsonR.B. ColettiM. GaoM. PiatkowskiB. SreedasyamA. QuadirF. WestonD.J. SchmutzJ. ChengJ. SkolnickJ. ParksJ.M. SedovaA. Predicted structural proteome of Sphagnum divinum and proteome-scale annotation.Bioinformatics2023398btad51110.1093/bioinformatics/btad511 37589594
    [Google Scholar]
  37. KendziorekM. PaszkowskiA. Properties of serine:glyoxylate aminotransferase purified from Arabidopsis thaliana leaves.Acta Biochim. Biophys. Sin. (Shanghai)200840210211010.1111/j.1745‑7270.2008.00383.x 18235971
    [Google Scholar]
  38. ZhangQ. LeeJ. PanduranganS. ClarkeM. PajakA. MarsolaisF. Characterization of Arabidopsis serine:glyoxylate aminotransferase, AGT1, as an asparagine aminotransferase.Phytochemistry201385303510.1016/j.phytochem.2012.09.017 23098902
    [Google Scholar]
  39. LuZ. LiuD. LiuS. Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis.Plant Cell Rep.200726101909191710.1007/s00299‑007‑0395‑7 17571267
    [Google Scholar]
  40. HongS.H. TripathiB.N. ChungM.S. ChoC. LeeS. KimJ.H. BaiH.W. BaeH.J. ChoJ.Y. ChungB.Y. LeeS.S. Functional switching of ascorbate peroxidase 2 of rice (OsAPX2) between peroxidase and molecular chaperone.Sci. Rep.201881917110.1038/s41598‑018‑27459‑1 29907832
    [Google Scholar]
  41. BonifácioA. MartinsM.O. RibeiroC.W. de Vasconcelos FonteneleA. CarvalhoF.E.L. Margis-PinheiroM. SilveiraJ.A. Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress.Plant Cell Environ.2011341017052210.1111/j.1365‑3040.2011.02366.x
    [Google Scholar]
  42. MatsumuraH. ShiomiK. YamamotoA. TaketaniY. KobayashiN. YoshizawaT. TanakaS. YoshikawaH. EndoM. FukayamaH. Hybrid rubisco with complete replacement of rice rubisco small subunits by Sorghum counterparts confers c4 plant-like high catalytic activity.Mol. Plant202013111570158110.1016/j.molp.2020.08.012 32882392
    [Google Scholar]
  43. SchlüterU. BenchabaneM. MungerA. KiggunduA. VorsterJ. GouletM.C. CloutierC. MichaudD. Recombinant protease inhibitors for herbivore pest control: A multitrophic perspective.J. Exp. Bot.201061154169418310.1093/jxb/erq166 20581122
    [Google Scholar]
  44. Zhu-SalzmanK. ZengR. Insect response to plant defensive protease inhibitors.Annu. Rev. Entomol.201560123325210.1146/annurev‑ento‑010814‑020816 25341101
    [Google Scholar]
  45. EaglingT. WawerA.A. ShewryP.R. ZhaoF.J. Fairweather-TaitS.J. Iron bioavailability in two commercial cultivars of wheat: comparison between wholegrain and white flour and the effects of nicotianamine and 2′-deoxymugineic acid on iron uptake into Caco-2 cells.J. Agric. Food Chem.20146242103201032510.1021/jf5026295 25275535
    [Google Scholar]
  46. ArakiR. NambaK. MurataY. MurataJ. Phytosiderophores revisited: 2′-deoxymugineic acid-mediated iron uptake triggers nitrogen assimilation in rice (Oryza sativa L.) seedlings.Plant Signal. Behav.2015106e103194010.1080/15592324.2015.1031940 26023724
    [Google Scholar]
  47. BashirK. NishizawaN.K. Deoxymugineic Acid synthase: A gene important for fe-acquisition and homeostasis.Plant Signal. Behav.20061629029210.4161/psb.1.6.3590 19704569
    [Google Scholar]
  48. EbeedH.T. Bioinformatics studies on the identification of new players and candidate genes to improve Brassica response to abiotic stress.The Plant Family Brassicaceae.Springer202048349610.1007/978‑981‑15‑6345‑4_18
    [Google Scholar]
  49. DowB.A. SehanobishE. DavidsonV.L. In silico approaches to identify mutagenesis targets to probe and alter protein-cofactor and protein-protein functional relationships.Methods Mol. Biol.2017149818119010.1007/978‑1‑4939‑6472‑7_12
    [Google Scholar]
  50. SarfatiH. NaftalyS. PapoN. KeasarC. Predicting mutant outcome by combining deep mutational scanning and machine learning.Proteins2022901455710.1002/prot.26184 34293212
    [Google Scholar]
  51. CoccoS. PosaniL. MonassonR. Functional effects of mutations in proteins can be predicted and interpreted by guided selection of sequence covariation information.Proc. Natl. Acad. Sci. USA202412126e231233512110.1073/pnas.2312335121 38889151
    [Google Scholar]
  52. MooreJ.C. Rodriguez-GranilloA. CrespoA. GovindarajanS. WelchM. HiragaK. LexaK. MarshallN. TruppoM.D. “Site and mutation”-specific predictions enable minimal directed evolution libraries.ACS Synth. Biol.2018771730174110.1021/acssynbio.7b00359 29782150
    [Google Scholar]
  53. PangY.T. YangL. GumbartJ.C. From static to dynamic: Rapid mapping of protein conformational transitions using DeepPath.Biophys. J.2024123345a10.1016/j.bpj.2023.11.349
    [Google Scholar]
  54. EllawayJ.I.J. AnyangoS. NairS. ZakiH.A. NadzirinN. PowellH.R. GutmanasA. VaradiM. VelankarS. Identifying protein conformational states in the protein data bank: Toward unlocking the potential of integrative dynamics studies.Struct. Dyn.202411303470110.1063/4.0000251 38774441
    [Google Scholar]
  55. Gavalda-GarciaJ. DixitB. DiazA. GhyselsA. VrankenW.F. Gradations in protein dynamics captured by experimental NMR are not well represented by AlphaFold2 models and other computational metrics.bioRxiv20242024-0710.1101/2024.07.17.603933
    [Google Scholar]
  56. LaurentsD.V. AlphaFold 2 and NMR spectroscopy: Partners to understand protein structure, dynamics and function.Front. Mol. Biosci.2022990643710.3389/fmolb.2022.906437 35655760
    [Google Scholar]
  57. MaP. LiD.W. BrüschweilerR. Predicting protein flexibility with AlphaFold.Proteins202391684785510.1002/prot.26471 36680514
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665335283241003092139
Loading
/content/journals/ppl/10.2174/0109298665335283241003092139
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test