Skip to content
2000
image of The Present State and Impact of AI-Driven Computational Tools for Predicting Plant Protein Structures

Abstract

Several key functions of plants, such as photosynthesis, nutrient transport, disease resistance, and abiotic tolerance, are manifested by several classes of proteins. Prediction of 3-dimensional (3-D) structures of proteins and their working mechanisms can have a profound impact on plant proteomics research and could help improve key agricultural traits in crop plants. This review aims to present the current status of plant protein structure determination and discuss the way forward. Most experimentally proven protein structures are available only for the model plant . Most of the key crop plants have only a few hundred or fewer experimentally proven 3-D structures. Fewer than 1% of the protein sequences in the majority of plants have had their 3D structures experimentally determined, and is the sole plant with the highest percentage of 1.4% of protein sequences with experimentally determined structures. AI-based protein structure prediction tool AlphaFold has predicted models of several thousand proteins for many crop plants. In AlphaFold predicted protein models, soybean has the highest percentage (65%) of its UniProt protein sequences with predicted models, and a few other crop plants have also a considerable percentage of its UniProt sequences with AlphaFold predicted models. AlphaFold might help predict models and bridge the gap in plant structure determination studies. Protein structure information might lead to engineering key residues to improve the agronomical performance of crop plants.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665335283241003092139
2024-10-23
2024-11-23
Loading full text...

Full text loading...

References

  1. Varadi M. Velankar S. The impact of AlphaFold protein structure database on the fields of life sciences. Proteomics 2023 23 17 e2200128 10.1002/pmic.202200128
    [Google Scholar]
  2. Kuhlman B. Bradley P. Advances in protein structure prediction and design. Nat. Rev. Mol. Cell Biol. 2019 20 11 681 697 10.1038/s41580‑019‑0163‑x 31417196
    [Google Scholar]
  3. Agnihotry S. Pathak R.K. Singh D.B. Tiwari A. Hussain I. Protein structure prediction. Bioinformatics Academic Press 2022 177 188 10.1016/B978‑0‑323‑89775‑4.00023‑7.
    [Google Scholar]
  4. Schroeder J.I. Delhaize E. Frommer W.B. Guerinot M. Harrison M.J. Herrera-Estrella L. Horie T. Kochian L.V. Munns R. Nishizawa N.K. Using membrane transporters to improve crops for sustainable food production. Nature 2013 497 7447 60 6 10.1038/nature11909.
    [Google Scholar]
  5. Velankar S. Burley S.K. Kurisu G. Hoch J.C. Markley J.L. The protein data bank archive BT Structural Proteomics: High-Throughput Methods Owens R.J. New York, NY Springer US 2021 3 21 10.1007/978‑1‑0716‑1406‑8_1
    [Google Scholar]
  6. Burley S.K. Berman H.M. Bhikadiya C. Bi C. Chen L. Costanzo L.D. Christie C. Duarte J.M. Dutta S. Feng Z. Ghosh S. Goodsell D.S. Green R.K. Guranovic V. Guzenko D. Hudson B.P. Liang Y. Lowe R. Peisach E. Periskova I. Randle C. Rose A. Sekharan M. Shao C. Tao Y-P. Valasatava Y. Voigt M. Westbrook J. Young J. Zardecki C. Zhuravleva M. Kurisu G. Nakamura H. Kengaku Y. Cho H. Sato J. Kim J.Y. Ikegawa Y. Nakagawa A. Yamashita R. Kudou T. Bekker G-J. Suzuki H. Iwata T. Yokochi M. Kobayashi N. Fujiwara T. Velankar S. Kleywegt G.J. Anyango S. Armstrong D.R. Berrisford J.M. Conroy M.J. Dana J.M. Deshpande M. Gane P. Gáborová R. Gupta D. Gutmanas A. Koča J. Mak L. Mir S. Mukhopadhyay A. Nadzirin N. Nair S. Patwardhan A. Paysan-Lafosse T. Pravda L. Salih O. Sehnal D. Varadi M. Vařeková R. Markley J.L. Hoch J.C. Romero P.R. Baskaran K. Maziuk D. Ulrich E.L. Wedell J.R. Yao H. Livny M. Ioannidis Y.E. Protein data bank: The single global archive for 3D macromolecular structure data. Nucleic Acids Res. 2019 47 D1 D520 D528 10.1093/nar/gky949 30357364
    [Google Scholar]
  7. Bateman A. Martin M.J. Orchard S. Magrane M. Ahmad S. Alpi E. Bowler-Barnett E.H. Britto R. Bye-A-Jee H. Cukura A. Denny P. Dogan T. Ebenezer T.G. Fan J. Garmiri P. da Costa Gonzales L.J. Hatton-Ellis E. Hussein A. Ignatchenko A. Insana G. Ishtiaq R. Joshi V. Jyothi D. Kandasaamy S. Lock A. Luciani A. Lugaric M. Luo J. Lussi Y. MacDougall A. Madeira F. Mahmoudy M. Mishra A. Moulang K. Nightingale A. Pundir S. Qi G. Raj S. Raposo P. Rice D.L. Saidi R. Santos R. Speretta E. Stephenson J. Totoo P. Turner E. Tyagi N. Vasudev P. Warner K. Watkins X. Zaru R. Zellner H. Bridge A.J. Aimo L. Argoud-Puy G. Auchincloss A.H. Axelsen K.B. Bansal P. Baratin D. Batista Neto T.M. Blatter M-C. Bolleman J.T. Boutet E. Breuza L. Gil B.C. Casals-Casas C. Echioukh K.C. Coudert E. Cuche B. de Castro E. Estreicher A. Famiglietti M.L. Feuermann M. Gasteiger E. Gaudet P. Gehant S. Gerritsen V. Gos A. Gruaz N. Hulo C. Hyka-Nouspikel N. Jungo F. Kerhornou A. Le Mercier P. Lieberherr D. Masson P. Morgat A. Muthukrishnan V. Paesano S. Pedruzzi I. Pilbout S. Pourcel L. Poux S. Pozzato M. Pruess M. Redaschi N. Rivoire C. Sigrist C.J.A. Sonesson K. Sundaram S. Wu C.H. Arighi C.N. Arminski L. Chen C. Chen Y. Huang H. Laiho K. McGarvey P. Natale D.A. Ross K. Vinayaka C.R. Wang Q. Wang Y. Zhang J. UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res. 2023 51 D1 D523 D531 10.1093/nar/gkac1052 36408920
    [Google Scholar]
  8. Baek M. DiMaio F. Anishchenko I. Dauparas J. Ovchinnikov S. Lee G.R. Wang J. Cong Q. Kinch L.N. Schaeffer R.D. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021 373 6557 871 876 10.1126/science.abj8754
    [Google Scholar]
  9. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  10. Porta-Pardo E. Ruiz-Serra V. Valentini S. Valencia A. The structural coverage of the human proteome before and after AlphaFold. PLOS Comput. Biol. 2022 18 1 e1009818 10.1371/journal.pcbi.1009818 35073311
    [Google Scholar]
  11. Rasheed F. Markgren J. Hedenqvist M. Johansson E. Modeling to understand plant protein structure-function relationships—implications for seed storage proteins. Molecules 2020 25 4 873 10.3390/molecules25040873
    [Google Scholar]
  12. Ceasar S.A. Maharajan T. Hillary V.E. Ajeesh Krishna T.P. Insights to improve the plant nutrient transport by CRISPR/Cas system. Biotechnol. Adv. 2022 59 107963 10.1016/j.biotechadv.2022.107963 35452778
    [Google Scholar]
  13. Antony Ceasar S. Maharajan T. García-Caparrós P. Functional residues in plant nutrient transporters: An opportunity for gene editing to improve agronomic traits. Crit. Rev. Plant Sci. 2023 42 5 324 343 10.1080/07352689.2023.2243108
    [Google Scholar]
  14. Ródenas R. Ragel P. Nieves-Cordones M. Martínez-Martínez A. Amo J. Lara A. Martínez V. Quintero F.J. Pardo J.M. Rubio F. Insights into the mechanisms of transport and regulation of the arabidopsis high-affinity K+ transporter HAK51. Plant Physiol. 2021 185 4 1860 1874 10.1093/plphys/kiab028 33595056
    [Google Scholar]
  15. Sun J. Bankston J.R. Payandeh J. Hinds T.R. Zagotta W.N. Zheng N. Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 2014 507 7490 73 77 10.1038/nature13074 24572362
    [Google Scholar]
  16. Newstead S. Parker J. Crystal structure of the plant nitrate transporter NRT1.1. Acta Cryst. 2014 507 A70 C1487 10.1038/nature13074.
    [Google Scholar]
  17. Wang L. Chen K. Zhou M. Structure and function of an Arabidopsis thaliana sulfate transporter. Nat. Commun. 2021 12 1 4455 10.1038/s41467‑021‑24778‑2 34294705
    [Google Scholar]
  18. Wienkoop S. Baginsky S. Weckwerth W. Arabidopsis thaliana as a model organism for plant proteome research. J. Proteomics 2010 73 11 2239 2248 10.1016/j.jprot.2010.07.012 20692386
    [Google Scholar]
  19. Yahya R.T. Describe of Arabidopsis thaliana plant as a model plant in biotechnology. NTU J Pure Sci 1 3 10 17 2022 10.56286/ntujps.v1i3.251
    [Google Scholar]
  20. Meinke D.W. Cherry J.M. Dean C. Rounsley S.D. Koornneef M. Arabidopsis thaliana : A model plant for genome analysis.. Science 1998 282 5389 662 682 10.1126/science.282.5389.662
    [Google Scholar]
  21. Matsumura H. Mizohata E. Ishida H. Kogami A. Ueno T. Makino A. Inoue T. Yokota A. Mae T. Kai Y. Crystal structure of rice Rubisco and implications for activation induced by positive effectors NADPH and 6-phosphogluconate. J. Mol. Biol. 2012 422 1 75 86 10.1016/j.jmb.2012.05.014 22609438
    [Google Scholar]
  22. Tao Y. Cheung L.S. Li S. Eom J.S. Chen L.Q. Xu Y. Perry K. Frommer W.B. Feng L. Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 2015 527 7577 259 263 10.1038/nature15391 26479032
    [Google Scholar]
  23. Saitoh Y. Mitani-Ueno N. Saito K. Matsuki K. Huang S. Yang L. Yamaji N. Ishikita H. Shen J.R. Ma J.F. Suga M. Structural basis for high selectivity of a rice silicon channel Lsi1. Nat. Commun. 2021 12 1 6236 10.1038/s41467‑021‑26535‑x 34716344
    [Google Scholar]
  24. Choi S. Prabhakar P.K. Chowdhury R. Pendergast T.H. IV Urbanowicz B.R. Maranas C. Devos K.M. A single amino acid change led to structural and functional differentiation of PvHd1 to control flowering in switchgrass. J. Exp. Bot. 2023 74 18 5532 5546 10.1093/jxb/erad255 37402629
    [Google Scholar]
  25. Eddy S.R. Profile hidden Markov models. Bioinformatics 1998 14 9 755 763 10.1093/bioinformatics/14.9.755 9918945
    [Google Scholar]
  26. Remmert M. Biegert A. Hauser A. Söding J. HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 2012 9 2 173 175 10.1038/nmeth.1818 22198341
    [Google Scholar]
  27. Sadreyev R. Grishin N. COMPASS: A tool for comparison of multiple protein alignments with assessment of statistical significance. J. Mol. Biol. 2003 326 1 317 336 10.1016/S0022‑2836(02)01371‑2 12547212
    [Google Scholar]
  28. Söding J. Protein homology detection by HMM–HMM comparison. Bioinformatics 2005 21 7 951 960 10.1093/bioinformatics/bti125 15531603
    [Google Scholar]
  29. Ovchinnikov S. Park H. Varghese N. Huang P.S. Pavlopoulos G.A. Kim D.E. Kamisetty H. Kyrpides N.C. Baker D. Protein structure determination using metagenome sequence data. Science 2017 355 6322 294 398 10.1126/science.aah4043
    [Google Scholar]
  30. Li J. Adhikari B. Cheng J. An improved integration of template-based and template-free protein structure modeling methods and its assessment in CASP11. Protein Pept. Lett. 2015 22 7 586 593 10.2174/0929866522666150520145717 25990081
    [Google Scholar]
  31. AlQuraishi M. Protein-structure prediction gets real. Nature 2020 577 7792 627 628 10.1038/d41586‑019‑03951‑0 31988401
    [Google Scholar]
  32. Bertoline L.M.F. Lima A.N. Krieger J.E. Teixeira S.K. Before and after AlphaFold2: An overview of protein structure prediction. Front. Bioinform 2023 3 1120370 10.3389/fbinf.2023.1120370.
    [Google Scholar]
  33. Senior A.W. Evans R. Jumper J. Kirkpatrick J. Sifre L. Green T. Qin C. Žídek A. Nelson A.W.R. Bridgland A. Penedones H. Petersen S. Simonyan K. Crossan S. Kohli P. Jones D.T. Silver D. Kavukcuoglu K. Hassabis D. Improved protein structure prediction using potentials from deep learning. Nature 2020 577 7792 706 710 10.1038/s41586‑019‑1923‑7 31942072
    [Google Scholar]
  34. Tunyasuvunakool K. Adler J. Wu Z. Green T. Zielinski M. Žídek A. Bridgland A. Cowie A. Meyer C. Laydon A. Velankar S. Kleywegt G.J. Bateman A. Evans R. Pritzel A. Figurnov M. Ronneberger O. Bates R. Kohl S.A.A. Potapenko A. Ballard A.J. Romera-Paredes B. Nikolov S. Jain R. Clancy E. Reiman D. Petersen S. Senior A.W. Kavukcuoglu K. Birney E. Kohli P. Jumper J. Hassabis D. Highly accurate protein structure prediction for the human proteome. Nature 2021 596 7873 590 596 10.1038/s41586‑021‑03828‑1 34293799
    [Google Scholar]
  35. David A. Islam S. Tankhilevich E. Sternberg M.J.E. The AlphaFold database of protein structures: A biologist’s guide. J. Mol. Biol. 2022 434 2 167336 10.1016/j.jmb.2021.167336 34757056
    [Google Scholar]
  36. Davidson R.B. Coletti M. Gao M. Piatkowski B. Sreedasyam A. Quadir F. Weston D.J. Schmutz J. Cheng J. Skolnick J. Parks J.M. Sedova A. Predicted structural proteome of Sphagnum divinum and proteome-scale annotation. Bioinformatics 2023 39 8 btad511 10.1093/bioinformatics/btad511 37589594
    [Google Scholar]
  37. Kendziorek M. Paszkowski A. Properties of serine:glyoxylate aminotransferase purified from Arabidopsis thaliana leaves. Acta Biochim. Biophys. Sin. (Shanghai) 2008 40 2 102 110 10.1111/j.1745‑7270.2008.00383.x 18235971
    [Google Scholar]
  38. Zhang Q. Lee J. Pandurangan S. Clarke M. Pajak A. Marsolais F. Characterization of Arabidopsis serine:glyoxylate aminotransferase, AGT1, as an asparagine aminotransferase. Phytochemistry 2013 85 30 35 10.1016/j.phytochem.2012.09.017 23098902
    [Google Scholar]
  39. Lu Z. Liu D. Liu S. Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep. 2007 26 10 1909 1917 10.1007/s00299‑007‑0395‑7 17571267
    [Google Scholar]
  40. Hong S.H. Tripathi B.N. Chung M.S. Cho C. Lee S. Kim J.H. Bai H.W. Bae H.J. Cho J.Y. Chung B.Y. Lee S.S. Functional switching of ascorbate peroxidase 2 of rice (OsAPX2) between peroxidase and molecular chaperone. Sci. Rep. 2018 8 1 9171 10.1038/s41598‑018‑27459‑1 29907832
    [Google Scholar]
  41. Bonifácio A. Martins M.O. Ribeiro C.W. de Vasconcelos Fontenele A. Carvalho F.E.L. Margis-Pinheiro M. Silveira J.A. Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant Cell Environ 2011 34 10 1705 22 10.1111/j.1365‑3040.2011.02366.x
    [Google Scholar]
  42. Matsumura H. Shiomi K. Yamamoto A. Taketani Y. Kobayashi N. Yoshizawa T. Tanaka S. Yoshikawa H. Endo M. Fukayama H. Hybrid rubisco with complete replacement of rice rubisco small subunits by Sorghum counterparts confers c4 plant-like high catalytic activity. Mol. Plant 2020 13 11 1570 1581 10.1016/j.molp.2020.08.012 32882392
    [Google Scholar]
  43. Schlüter U. Benchabane M. Munger A. Kiggundu A. Vorster J. Goulet M.C. Cloutier C. Michaud D. Recombinant protease inhibitors for herbivore pest control: A multitrophic perspective. J. Exp. Bot. 2010 61 15 4169 4183 10.1093/jxb/erq166 20581122
    [Google Scholar]
  44. Zhu-Salzman K. Zeng R. Insect response to plant defensive protease inhibitors. Annu. Rev. Entomol. 2015 60 1 233 252 10.1146/annurev‑ento‑010814‑020816 25341101
    [Google Scholar]
  45. Eagling T. Wawer A.A. Shewry P.R. Zhao F.J. Fairweather-Tait S.J. Iron bioavailability in two commercial cultivars of wheat: comparison between wholegrain and white flour and the effects of nicotianamine and 2′-deoxymugineic acid on iron uptake into Caco-2 cells. J. Agric. Food Chem. 2014 62 42 10320 10325 10.1021/jf5026295 25275535
    [Google Scholar]
  46. Araki R. Namba K. Murata Y. Murata J. Phytosiderophores revisited: 2′-deoxymugineic acid-mediated iron uptake triggers nitrogen assimilation in rice ( Oryza sativa L.) seedlings. Plant Signal. Behav. 2015 10 6 e1031940 10.1080/15592324.2015.1031940 26023724
    [Google Scholar]
  47. Bashir K. Nishizawa N.K. Deoxymugineic Acid synthase: A gene important for fe-acquisition and homeostasis. Plant Signal. Behav. 2006 1 6 290 292 10.4161/psb.1.6.3590 19704569
    [Google Scholar]
  48. Ebeed H.T. Bioinformatics studies on the identification of new players and candidate genes to improve Brassica response to abiotic stress. The Plant Family Brassicaceae. Springer 2020 483 496 10.1007/978‑981‑15‑6345‑4_18
    [Google Scholar]
  49. Dow B.A. Sehanobish E. Davidson V.L. In silico approaches to identify mutagenesis targets to probe and alter protein-cofactor and protein-protein functional relationships. Methods Mol Biol 2017 1498 181 190 10.1007/978‑1‑4939‑6472‑7_12
    [Google Scholar]
  50. Sarfati H. Naftaly S. Papo N. Keasar C. Predicting mutant outcome by combining deep mutational scanning and machine learning. Proteins 2022 90 1 45 57 10.1002/prot.26184 34293212
    [Google Scholar]
  51. Cocco S. Posani L. Monasson R. Functional effects of mutations in proteins can be predicted and interpreted by guided selection of sequence covariation information. Proc. Natl. Acad. Sci. USA 2024 121 26 e2312335121 10.1073/pnas.2312335121 38889151
    [Google Scholar]
  52. Moore J.C. Rodriguez-Granillo A. Crespo A. Govindarajan S. Welch M. Hiraga K. Lexa K. Marshall N. Truppo M.D. “Site and mutation”-specific predictions enable minimal directed evolution libraries. ACS Synth. Biol. 2018 7 7 1730 1741 10.1021/acssynbio.7b00359 29782150
    [Google Scholar]
  53. Pang Y.T. Yang L. Gumbart J.C. From static to dynamic: Rapid mapping of protein conformational transitions using DeepPath. Biophys. J. 2024 123 3 45a 10.1016/j.bpj.2023.11.349
    [Google Scholar]
  54. Ellaway J.I.J. Anyango S. Nair S. Zaki H.A. Nadzirin N. Powell H.R. Gutmanas A. Varadi M. Velankar S. Identifying protein conformational states in the protein data bank: Toward unlocking the potential of integrative dynamics studies. Struct. Dyn. 2024 11 3 034701 10.1063/4.0000251 38774441
    [Google Scholar]
  55. Gavalda-Garcia J. Dixit B. Diaz A. Ghysels A. Vranken W.F. Gradations in protein dynamics captured by experimental NMR are not well represented by AlphaFold2 models and other computational metrics. bioRxiv 10.1101/2024.07.17.603933
    [Google Scholar]
  56. Laurents D.V. AlphaFold 2 and NMR spectroscopy: Partners to understand protein structure, dynamics and function. Front. Mol. Biosci. 2022 9 906437 10.3389/fmolb.2022.906437 35655760
    [Google Scholar]
  57. Ma P. Li D.W. Brüschweiler R. Predicting protein flexibility with AlphaFold. Proteins 2023 91 6 847 855 10.1002/prot.26471 36680514
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665335283241003092139
Loading
/content/journals/ppl/10.2174/0109298665335283241003092139
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test