Skip to content
2000
Volume 31, Issue 9
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Aim

This study aimed to investigate how diosmetin interacts with seven target receptors associated with oxidative stress (OS) and validate its antioxidant properties for the potential management of Parkinson’s disease (PD).

Background

In PD, the degeneration of dopaminergic cells is strongly influenced by OS. This stressor is intricately connected to various mechanisms involved in neurodegeneration, such as mitochondrial dysfunction, neuroinflammation, and excitotoxicity induced by nitric oxide.

Objective

The aim of this research was to establish a molecular connection between diosmetin and OS-associated target receptors was the goal, and it investigated how this interaction can lessen PD.

Methods

Seven molecular targets - Adenosine A2A (AA2A), Peroxisome Proliferator-Activated Receptor Gamma (PPARγ), Protein Kinase AKT1, Nucleolar Receptor NURR1, Liver - X Receptor Beta (LXRβ), Monoamine Oxidase - B (MAO-B) and Tropomyosin receptor kinase B (TrkB) were obtained from RCSB. Molecular docking software was employed to determine molecular interactions, while antioxidant activity was assessed through assays against various free radicals.

Results

Diosmetin exhibited interactions with all seven target receptors at their binding sites. Notably, it showed superior interaction with AA2A and NURR1 compared to native ligands, with binding energies of -7.55, and -6.34 kcal/mol, respectively. Additionally, significant interactions were observed with PPARγ, AKT1, LXRβ, MAO-B, and TrkB with binding energies of -8.34, -5.42, -7.66, -8.82, -8.45 kcal/mol, respectively. Diosmetin also demonstrated antioxidant activity against various free radicals, particularly against hypochlorous acid (HOCl) and nitric oxide (NO) free radicals.

Conclusion

Diosmetin possibly acts on several target receptors linked to the pathophysiology of PD, demonstrating promise as an OS inhibitor and scavenger.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665333333240909104354
2024-09-25
2024-12-23
Loading full text...

Full text loading...

References

  1. HayesM.T. Parkinson’s disease and Parkinsonism.Am. J. Med.2019132780280710.1016/j.amjmed.2019.03.00130890425
    [Google Scholar]
  2. ReichS.G. SavittJ.M. Parkinson’s disease.Med. Clin. North Am.2019103233735010.1016/j.mcna.2018.10.01430704685
    [Google Scholar]
  3. AllamM.F. Del CastilloA.S. NavajasR.F.C. Parkinson’s disease risk factors: Genetic, environmental, or both?Neurol. Res.200527220620810.1179/016164105X2205715829184
    [Google Scholar]
  4. ArmstrongM.J. OkunM.S. Diagnosis and treatment of Parkinson disease.JAMA2020323654856010.1001/jama.2019.2236032044947
    [Google Scholar]
  5. KhatriD.K. ChoudharyM. SoodA. SinghS.B. Anxiety: An ignored aspect of Parkinson’s disease lacking attention.Biomed. Pharmacother.202013111077610.1016/j.biopha.2020.11077633152935
    [Google Scholar]
  6. MalekN. Deep brain stimulation in Parkinson’s Disease.Neurol. India201967496897810.4103/0028‑3886.26626831512617
    [Google Scholar]
  7. StreckE.L. CzapskiG.A. Gonçalves da SilvaC. Neurodegeneration, mitochondrial dysfunction, and oxidative stress.Oxid. Med. Cell. Longev.201320131210.1155/2013/82604624191177
    [Google Scholar]
  8. ZhangJ. ButterfieldD.A. Oxidative stress and neurodegeneration.Brain Res. Bull.20171331310.1016/j.brainresbull.2017.04.01828473190
    [Google Scholar]
  9. MoriA. How do adenosine A2A receptors regulate motor function?Parkinsonism Relat. Disord.202080Suppl. 1S13S2010.1016/j.parkreldis.2020.09.02533349575
    [Google Scholar]
  10. FredholmB.B. SvenningssonP. Why target brain adenosine receptors? A historical perspective.Parkinsonism Relat. Disord.202080Suppl. 1S3S610.1016/j.parkreldis.2020.09.02733349578
    [Google Scholar]
  11. MoriA. ShindouT. Modulation of GABAergic transmission in the striatopallidal system by adenosine A 2A receptors.Neurology20036111_suppl_6Suppl. 6S44S4810.1212/01.WNL.0000095211.71092.A014663009
    [Google Scholar]
  12. CieślakM. KomoszyńskiM. WojtczakA. Adenosine A2A receptors in Parkinson’s disease treatment.Purinergic Signal.20084430531210.1007/s11302‑008‑9100‑818438720
    [Google Scholar]
  13. MoriA. ChenJ.F. UchidaS. DurlachC. KingS.M. JennerP. The pharmacological potential of adenosine A2A receptor antagonists for treating Parkinson’s disease.Molecules2022277236610.3390/molecules2707236635408767
    [Google Scholar]
  14. CartaA.R. PPAR-γ: therapeutic prospects in Parkinson’s disease.Curr. Drug Targets201314774375110.2174/138945011131407000423469878
    [Google Scholar]
  15. ChenY.C. WuJ.S. TsaiH.D. HuangC.Y. ChenJ.J. SunG.Y. LinT.N. Peroxisome proliferator-activated receptor gamma (PPAR-γ) and neurodegenerative disorders.Mol. Neurobiol.201246111412410.1007/s12035‑012‑8259‑822434581
    [Google Scholar]
  16. LiuT.W. ChenC.M. ChangK.H. Biomarker of neuroinflammation in Parkinson’s disease.Int. J. Mol. Sci.2022238414810.3390/ijms2308414835456966
    [Google Scholar]
  17. RanC. WesterlundM. AnvretA. WillowsT. SydowO. GalterD. BelinA.C. Genetic studies of the protein kinase AKT1 in Parkinson’s disease.Neurosci. Lett.20115011414410.1016/j.neulet.2011.06.03821741444
    [Google Scholar]
  18. XiromerisiouG. HadjigeorgiouG.M. PapadimitriouA. KatsarogiannisE. GourbaliV. SingletonA.B. Association between AKT1 gene and Parkinson’s disease: A protective haplotype.Neurosci. Lett.2008436223223410.1016/j.neulet.2008.03.02618395980
    [Google Scholar]
  19. GoyalA. AgrawalA. VermaA. DubeyN. The PI3K-AKT pathway: A plausible therapeutic target in Parkinson’s disease.Exp. Mol. Pathol.202312910484610.1016/j.yexmp.2022.10484636436571
    [Google Scholar]
  20. Al-NusaifM. YangY. LiS. ChengC. LeW. The role of NURR1 in metabolic abnormalities of Parkinson’s disease.Mol. Neurodegener.20221714610.1186/s13024‑022‑00544‑w35761385
    [Google Scholar]
  21. Al-NusaifM. LinY. LiT. ChengC. LeW. Advances in NURR1-regulated neuroinflammation associated with Parkinson’s disease.Int. J. Mol. Sci.202223241618410.3390/ijms23241618436555826
    [Google Scholar]
  22. ChuY. LeW. KompolitiK. JankovicJ. MufsonE.J. KordowerJ.H. Nurr1 in Parkinson’s disease and related disorders.J. Comp. Neurol.2006494349551410.1002/cne.2082816320253
    [Google Scholar]
  23. DecressacM. VolakakisN. BjörklundA. PerlmannT. NURR1 in Parkinson disease—from pathogenesis to therapeutic potential.Nat. Rev. Neurol.201391162963610.1038/nrneurol.2013.20924126627
    [Google Scholar]
  24. BruningJ.M. WangY. OltrabellaF. TianB. KholodarS.A. LiuH. BhattacharyaP. GuoS. HoltonJ.M. FletterickR.J. JacobsonM.P. EnglandP.M. Covalent modification and regulation of the nuclear receptor Nurr1 by a dopamine metabolite.Cell Chem. Biol.2019265674685.e610.1016/j.chembiol.2019.02.00230853418
    [Google Scholar]
  25. AlnaaimS.A. Al-KuraishyH.M. AlexiouA. PapadakisM. SaadH.M. BatihaG.E.S. Role of brain liver X receptor in Parkinson’s disease: Hidden treasure and emerging opportunities.Mol. Neurobiol.202461134135710.1007/s12035‑023‑03561‑y37606719
    [Google Scholar]
  26. HichorM. SundaramV.K. EidS.A. Abdel-RassoulR. PetitP.X. BorderieD. BastinJ. EidA.A. ManuelM. GrenierJ. MassaadC. LiverX. Liver X Receptor exerts a protective effect against the oxidative stress in the peripheral nerve.Sci. Rep.201881252410.1038/s41598‑018‑20980‑329410501
    [Google Scholar]
  27. TheofilopoulosS. WangY. KitambiS.S. SacchettiP. SousaK.M. BodinK. KirkJ. SaltóC. GustafssonM. ToledoE.M. KaruK. GustafssonJ.Å. SteffensenK.R. ErnforsP. SjövallJ. GriffithsW.J. ArenasE. Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis.Nat. Chem. Biol.20139212613310.1038/nchembio.115623292650
    [Google Scholar]
  28. PaternitiI. CampoloM. SiracusaR. CordaroM. Di PaolaR. CalabreseV. NavarraM. CuzzocreaS. EspositoE. Liver X receptors activation, through TO901317 binding, reduces neuroinflammation in Parkinson’s disease.PLoS One2017124e017447010.1371/journal.pone.017447028369131
    [Google Scholar]
  29. TanY.Y. JennerP. ChenS.D. Monoamine oxidase-B inhibitors for the treatment of Parkinson’s disease: Past, present, and future.J. Parkinsons Dis.202212247749310.3233/JPD‑21297634957948
    [Google Scholar]
  30. RegensburgerM. IpC.W. KohlZ. SchraderC. UrbanP.P. KassubekJ. JostW.H. Clinical benefit of MAO-B and COMT inhibition in Parkinson’s disease: practical considerations.J. Neural Transm. (Vienna)2023130684786110.1007/s00702‑023‑02623‑836964457
    [Google Scholar]
  31. IshikiH.M. FilhoJ.M.B. da SilvaM.S. ScottiM.T. ScottiL. Computer-aided drug design applied to Parkinson targets.Curr. Neuropharmacol.201816686588010.2174/1570159X1566617112814542329189169
    [Google Scholar]
  32. SinghM.P. SinghB. RaiS.N. SinghP. VarshneyR. ChaturvediV.K. VamanuE. Promising drug targets and associated therapeutic interventions in Parkinson’s disease.Neural Regen. Res.20211691730173910.4103/1673‑5374.30606633510062
    [Google Scholar]
  33. GnanarajC. SekarM. FuloriaS. SwainS.S. GanS.H. ChidambaramK. RaniN.N.I.M. BalanT. StephenieS. LumP.T. JeyabalanS. BegumM.Y. ChandramohanV. ThangaveluL. SubramaniyanV. FuloriaN.K. In silico molecular docking analysis of Karanjin against Alzheimer’s and Parkinson’s diseases as a potential natural lead molecule for new drug design, development and therapy.Molecules2022279283410.3390/molecules2709283435566187
    [Google Scholar]
  34. LeeD.H. ParkJ.K. ChoiJ. JangH. SeolJ.W. Anti-inflammatory effects of natural flavonoid diosmetin in IL-4 and LPS-induced macrophage activation and atopic dermatitis model.Int. Immunopharmacol.20208910704610.1016/j.intimp.2020.107046
    [Google Scholar]
  35. PanZ. TanZ. LiH. WangY. DuH. SunJ. LiC. YeS. LiX. QuanJ. Diosmetin induces apoptosis and protective autophagy in human gastric cancer HGC-27 cells via the PI3K/Akt/FoxO1 and MAPK/JNK pathways.Med. Oncol.2023401131910.1007/s12032‑023‑02180‑w37796396
    [Google Scholar]
  36. ShiM. WangJ. BiF. BaiZ. Diosmetin alleviates cerebral ischemia-reperfusion injury through Keap1-mediated Nrf2/ ARE signaling pathway activation and NLRP3 inflammasome inhibition.Environ. Toxicol.20223761529154210.1002/tox.2350435191607
    [Google Scholar]
  37. AhmadT. KhanT. KiraboA. ShahA.J. Antioxidant flavonoid diosmetin is cardioprotective in a rat model of myocardial infarction induced by beta 1-adrenergic receptors activation.Curr. Issues Mol. Biol.20234564675468610.3390/cimb4506029737367046
    [Google Scholar]
  38. WangC. LiaoY. WangS. WangD. WuN. XuQ. JiangW. QiuM. LiuC. Cytoprotective effects of diosmetin against hydrogen peroxide-induced L02 cell oxidative damage via activation of the Nrf2-ARE signaling pathway.Mol. Med. Rep.20181757331733810.3892/mmr.2018.875029568961
    [Google Scholar]
  39. SiQ. ShiY. HuangD. ZhangN. Diosmetin alleviates hypoxia-induced myocardial apoptosis by inducing autophagy through AMPK activation.Mol. Med. Rep.20202221335134110.3892/mmr.2020.1124132627001
    [Google Scholar]
  40. BednarskaK. FeckaI. Potential of vasoprotectives to inhibit non-enzymatic protein glycation, and reactive carbonyl and oxygen species uptake.Int. J. Mol. Sci.202122181002610.3390/ijms22181002634576189
    [Google Scholar]
  41. EkinsS. MestresJ. TestaB. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling.Br. J. Pharmacol.2007152192010.1038/sj.bjp.070730517549047
    [Google Scholar]
  42. AzamF. MadiA.M. AliH.I. Molecular docking and prediction of pharmacokinetic properties of dual mechanism drugs that block MAO-B and adenosine A2A receptors for the treatment of Parkinson’s disease.J. Young Pharm.20124318419210.4103/0975‑1483.10002723112538
    [Google Scholar]
  43. KumarA.P. MandalS. PP. FaizanS. KumarB.R.P. DhanabalS.P. JustinA. Rational design, molecular docking, dynamic simulation, synthesis, PPAR-γ competitive binding and transcription analysis of novel glitazones.J. Mol. Struct.2022126513335410.1016/j.molstruc.2022.133354
    [Google Scholar]
  44. LiuY. YuL. ZhangJ. XieD. ZhangX. YuJ. Network pharmacology-based and molecular docking-based analysis of suanzaoren decoction for the treatment of Parkinson’s disease with sleep disorder.BioMed Res. Int.2021202111210.1155/2021/175257034660782
    [Google Scholar]
  45. NiP. ZhaoB. PangY. PanK. Mechanism of tianma gouteng decoction in the treatment of Parkinson’s disease based on network pharmacology and molecular docking.Am. J. Transl. Res.202315159661136777831
    [Google Scholar]
  46. KomatiR. SpadoniD. ZhengS. SridharJ. RileyK. WangG. Ligands of therapeutic utility for the liver X receptors.Molecules20172218810.3390/molecules2201008828067791
    [Google Scholar]
  47. JaitehM. ZeifmanA. SaarinenM. SvenningssonP. BréaJ. LozaM.I. CarlssonJ. Docking screens for dual inhibitors of disparate drug targets for Parkinson’s disease.J. Med. Chem.201861125269527810.1021/acs.jmedchem.8b0020429792714
    [Google Scholar]
  48. BoulaamaneY. IbrahimM.A.A. BritelM.R. MauradyA. In silico studies of natural product-like caffeine derivatives as potential MAO-B inhibitors/AA 2A R antagonists for the treatment of Parkinson’s disease.J. Integr. Bioinform.20221942021002710.1515/jib‑2021‑002736112816
    [Google Scholar]
  49. ChoA.E. GuallarV. BerneB.J. FriesnerR. Importance of accurate charges in molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach.J. Comput. Chem.200526991593110.1002/jcc.2022215841474
    [Google Scholar]
  50. HouX. DuJ. ZhangJ. DuL. FangH. LiM. How to improve docking accuracy of AutoDock4.2: a case study using different electrostatic potentials.J. Chem. Inf. Model.201353118820010.1021/ci300417y23244516
    [Google Scholar]
  51. RavindranathP.A. ForliS. GoodsellD.S. OlsonA.J. SannerM.F. AutoDockFR: Advances in protein-ligand docking with explicitly specified binding site flexibility.PLOS Comput. Biol.20151112e100458610.1371/journal.pcbi.100458626629955
    [Google Scholar]
  52. DhanikA. McMurrayJ.S. KavrakiL.E. DINC: a new AutoDock-based protocol for docking large ligands.BMC Struct. Biol.201313S1110.1186/1472‑6807‑13‑S1‑S11
    [Google Scholar]
  53. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  54. ForliS. HueyR. PiqueM.E. SannerM.F. GoodsellD.S. OlsonA.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite.Nat. Protoc.201611590591910.1038/nprot.2016.05127077332
    [Google Scholar]
  55. DevS.K. ChoudhuryP.K. SrivastavaR. SharmaM. Phytochemical characterization and antioxidant assessment of herbal extracts.J. Drug Deliv. Ther.20188412613310.22270/jddt.v8i4.1736
    [Google Scholar]
  56. JanS. KhanM.R. RashidU. BokhariJ. Assessment of antioxidant potential, total phenolics and flavonoids of different solvent fractions of monotheca buxifolia fruit.Osong Public Health Res. Perspect.20134524625410.1016/j.phrp.2013.09.00324298440
    [Google Scholar]
  57. BaliyanS. MukherjeeR. PriyadarshiniA. VibhutiA. GuptaA. PandeyR.P. ChangC.M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules2022274132610.3390/molecules2704132635209118
    [Google Scholar]
  58. BenzieI.F.F. StrainJ.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration.Methods Enzymol.1999299152710.1016/S0076‑6879(99)99005‑59916193
    [Google Scholar]
  59. RajurkarN. HandeS.M. Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants.Indian J. Pharm. Sci.201173214615110.4103/0250‑474X.9157422303056
    [Google Scholar]
  60. Zheleva-DimitrovaD. NedialkovP. KitanovG. Radical scavenging and antioxidant activities of methanolic extracts from Hypericum species growing in Bulgaria.Pharmacogn. Mag.2010622747810.4103/0973‑1296.6288920668569
    [Google Scholar]
  61. PulidoR. BravoL. Saura-CalixtoF. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay.J. Agric. Food Chem.20004883396340210.1021/jf991345810956123
    [Google Scholar]
  62. FernandesR.P.P. TrindadeM.A. ToninF.G. LimaC.G. PugineS.M.P. MunekataP.E.S. LorenzoJ.M. de MeloM.P. Evaluation of antioxidant capacity of 13 plant extracts by three different methods: cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers.J. Food Sci. Technol.201653145146010.1007/s13197‑015‑1994‑x26787964
    [Google Scholar]
  63. PriyanthiC. SivakanesanR. The total antioxidant capacity and the total phenolic content of rice using water as a solvent.Int. J. Food Sci.202120211610.1155/2021/526858433855066
    [Google Scholar]
  64. HazraB. BiswasS. MandalN. Antioxidant and free radical scavenging activity of Spondias pinnata.BMC Complement. Altern. Med.2008816310.1186/1472‑6882‑8‑6319068130
    [Google Scholar]
  65. RoyS. HazraB. MandalN. ChaudhuriT.K. Assessment of the antioxidant and free radical scavenging activities of methanolic extract of Diplazium esculentum.Int. J. Food Prop.20131661351137010.1080/10942912.2011.587382
    [Google Scholar]
  66. AkamoA.J. AkinloyeD.I. UgbajaR.N. AdeleyeO.O. DosumuO.A. EtengO.E. AntiyaM.C. AmahG. AjayiO.A. FaseunS.O. Naringin prevents cyclophosphamide-induced erythrocytotoxicity in rats by abrogating oxidative stress.Toxicol. Rep.202181803181310.1016/j.toxrep.2021.10.01134760624
    [Google Scholar]
  67. SarwarR. FarooqU. KhanA. NazS. KhanS. KhanA. RaufA. BahadarH. UddinR. Evaluation of antioxidant, free radical scavenging, and antimicrobial activity of quercus incana roxb.Front. Pharmacol.2015627710.3389/fphar.2015.0027726635607
    [Google Scholar]
  68. BeckmanJ.S. ChenJ. IschiropoulosH. CrowJ.P. Oxidative chemistry of peroxynitrite.Methods Enzymol.199423322924010.1016/S0076‑6879(94)33026‑38015460
    [Google Scholar]
  69. BaillyF. ZoeteV. VamecqJ. CatteauJ.P. BernierJ.L. Antioxidant actions of ovothiol-derived 4-mercaptoimidazoles: glutathione peroxidase activity and protection against peroxynitrite-induced damage.FEBS Lett.20004861192210.1016/S0014‑5793(00)02234‑111108835
    [Google Scholar]
  70. KleinS.M. CohenG. CederbaumA.I. Production of formaldehyde during metabolism of dimethyl sulfoxide by hydroxyl radical-generating systems.Biochemistry198120216006601210.1021/bi00524a0136272833
    [Google Scholar]
  71. LoganayakiN. SiddhurajuP. ManianS. Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L.J. Food Sci. Technol.201350468769510.1007/s13197‑011‑0389‑x24425970
    [Google Scholar]
  72. AruomaO.I. HalliwellB. Action of hypochlorous acid on the antioxidant protective enzymes superoxide dismutase, catalase and glutathione peroxidase.Biochem. J.1987248397397610.1042/bj24809732829848
    [Google Scholar]
  73. MandalS. HazraB. SarkarR. BiswasS. MandalN. Assessment of the antioxidant and reactive oxygen species scavenging activity of methanolic extract of Caesalpinia crista leaf.Evid. Based Complement. Alternat. Med.20112011117376810.1093/ecam/nep07219596746
    [Google Scholar]
  74. AguP.C. AfiukwaC.A. OrjiO.U. EzehE.M. OfokeI.H. OgbuC.O. UgwujaE.I. AjaP.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑237592012
    [Google Scholar]
  75. GrewalA. SheokandD. SainiV. KumarA. Molecular docking analysis of α-Synuclein aggregation with Anle138b.Bioinformation202420321722210.6026/97320630020021738711999
    [Google Scholar]
  76. YahayaM.A.F. BakarA.R.A. StanslasJ. NordinN. ZainolM. MehatM.Z. Insights from molecular docking and molecular dynamics on the potential of vitexin as an antagonist candidate against lipopolysaccharide (LPS) for microglial activation in neuroinflammation.BMC Biotechnol.20212113810.1186/s12896‑021‑00697‑434090414
    [Google Scholar]
  77. GanesanP. KoH.M. KimI.S. ChoiD.K. Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson’s disease models.Int. J. Nanomedicine2015106757677210.2147/IJN.S9391826604750
    [Google Scholar]
  78. ThiruvengadamM. VenkidasamyB. SubramanianU. SamynathanR. Ali ShariatiM. RebezovM. GirishS. ThangavelS. DhanapalA.R. FedoseevaN. LeeJ. ChungI.M. Bioactive compounds in oxidative stress-mediated diseases: Targeting the NRF2/ARE signaling pathway and epigenetic regulation.Antioxidants20211012185910.3390/antiox1012185934942962
    [Google Scholar]
  79. HugheyJ.J. LeeT.K. CovertM.W. Computational modeling of mammalian signaling networks.Wiley Interdiscip. Rev. Syst. Biol. Med.20102219420910.1002/wsbm.5220836022
    [Google Scholar]
  80. AiresI.D. BoiaR. Rodrigues-NevesA.C. MadeiraM.H. MarquesC. AmbrósioA.F. SantiagoA.R. Blockade of microglial adenosine A2A receptor suppresses elevated pressure-induced inflammation, oxidative stress, and cell death in retinal cells.Glia201967589691410.1002/glia.2357930667095
    [Google Scholar]
  81. PinnaA. Adenosine A2A receptor antagonists in Parkinson’s disease: Progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued.CNS Drugs201428545547410.1007/s40263‑014‑0161‑724687255
    [Google Scholar]
  82. ShookB.C. JacksonP.F. Adenosine A2A receptor antagonists and Parkinson’s disease.ACS Chem. Neurosci.201121055556710.1021/cn200053722860156
    [Google Scholar]
  83. FengX. WengD. ZhouF. OwenY.D. QinH. ZhaoJ. WenYu HuangY. ChenJ. FuH. YangN. ChenD. LiJ. TanR. ShenP. Activation of PPARγ by a natural flavonoid modulator, apigenin ameliorates obesity-related inflammation via regulation of macrophage polarization.EBioMedicine20169617610.1016/j.ebiom.2016.06.01727374313
    [Google Scholar]
  84. HasegawaT. OsakaM. MiyamaeY. NishinoK. IsodaH. KawadaK. NeffatiM. IrieK. NagaoM. Two types of PPARγ ligands identified in the extract of Artemisia campestris.Chemistry (Basel)20213264765710.3390/chemistry3020045
    [Google Scholar]
  85. ChengC.F. KuH.C. LinH. PGC-1α as a pivotal factor in lipid and metabolic regulation.Int. J. Mol. Sci.20181911344710.3390/ijms1911344730400212
    [Google Scholar]
  86. CoronaJ.C. DuchenM.R. PPARγ and PGC-1α as therapeutic targets in Parkinson’s disease.Neurochem. Res.201540230831610.1007/s11064‑014‑1377‑025007880
    [Google Scholar]
  87. CartaA.R. PisanuA. Modulating microglia activity with PPAR-γ agonists: a promising therapy for Parkinson’s disease?Neurotox. Res.201323211212310.1007/s12640‑012‑9342‑722869006
    [Google Scholar]
  88. ChinnamP. MohsinM. ShafeeL. Evaluation of acute toxicity of pioglitazone in mice.Toxicol. Int.201219325025410.4103/0971‑6580.10366023293462
    [Google Scholar]
  89. Pérez-SeguraI. Santiago-BalmasedaA. Rodríguez-HernándezL.D. Morales-MartínezA. Martínez-BecerrilH.A. Martínez-GómezP.A. Delgado-MinjaresK.M. Salinas-LaraC. Martínez-DávilaI.A. Guerra-CrespoM. Pérez-SeverianoF. Soto-RojasL.O. PPARs and their neuroprotective effects in Parkinson’s disease: A novel therapeutic approach in α-synucleinopathy?Int. J. Mol. Sci.2023244326410.3390/ijms2404326436834679
    [Google Scholar]
  90. CostaL.G. de LaatR. DaoK. PellacaniC. ColeT.B. FurlongC.E. Paraoxonase-2 (PON2) in brain and its potential role in neuroprotection.Neurotoxicology2014433910.1016/j.neuro.2013.08.01124012887
    [Google Scholar]
  91. GaoJ. ZhangM. ZuX. GuX. HaoE. HouX. BaiG. Glucuronic acid metabolites of phenolic acids target AKT-PH domain to improve glucose metabolism.Chin. Herb. Med.202315339840610.1016/j.chmed.2022.11.00537538860
    [Google Scholar]
  92. KumarH.B. ManandharS. RathiE. KabekkoduS.P. MehtaC.H. NayakU.Y. KiniS.G. PaiK.S.R. Identification of potential Akt activators: A ligand and structure-based computational approach.Mol. Divers.2023Epub ahead of print10.1007/s11030‑022‑10541‑237394684
    [Google Scholar]
  93. JiangY. LiuJ. ZhouZ. LiuK. LiuC. Diosmetin attenuates Akt signaling pathway by modulating nuclear factor kappa-light-chain-enhancer of Activated B cells (NF-κB)/inducible nitric oxide synthase (iNOS) in streptozotocin (STZ)-induced diabetic nephropathy Mice.Med. Sci. Monit.2018247007701410.12659/MSM.91076430278036
    [Google Scholar]
  94. ChenY. WangY. LiuM. ZhouB. YangG. Diosmetin exhibits anti-proliferative and anti-inflammatory effects on TNF-α-stimulated human Rheumatoid arthritis fibroblast-like synoviocytes through regulating the Akt and NF-κB signaling pathways.Phytother. Res.20203461310131910.1002/ptr.659631833613
    [Google Scholar]
  95. JiR. SanchezC.M. ChouC.L. ChenX.B. WoodwardD.F. ReganJ.W. Prostanoid EP 1 receptors mediate up-regulation of the orphan nuclear receptor Nurr1 by cAMP-independent activation of protein kinase A, CREB and NF-κB.Br. J. Pharmacol.201216631033104610.1111/j.1476‑5381.2011.01817.x22188298
    [Google Scholar]
  96. SrivastavaR. ChoudhuryP.K. DevS.K. RathoreV. Alpha-pine self-emulsifying nano formulation attenuates rotenone and trichloroethylene-induced dopaminergic loss.Int. J. Neurosci.20242411810.1080/00207454.2024.2341916
    [Google Scholar]
  97. SrivastavaR. DilnashinH. KapoorD. SaiA. HeidarliE. SinghS.P. JainV. Role of animal models in Parkinson’s disease (PD): What role they play in preclinical translational research.CNS Neurol. Disord. Drug Targets202336815656
    [Google Scholar]
  98. VarshneyK.K. GuptaJ.K. SrivastavaR. Unveiling the molecular mechanism of diosmetin and its impact on multifaceted cellular signaling pathways.Protein Pept. Lett.202431427528910.2174/010929866529410924032303360138629379
    [Google Scholar]
  99. SrivastavaR. ChoudhuryP.K. DevS.K. RathoreV. Neuroprotective effect of α-pinene self-emulsifying nanoformulation against 6-OHDA induced neurotoxicity on human SH-SY5Y cells and its in vivo validation for anti-Parkinson’s effect.J. Biochem. Mol. Toxicol.20213511e2290210.1002/jbt.2290234464010
    [Google Scholar]
  100. AbdollahiM. FahnestockM. Nurr1 is not an essential regulator of BDNF in mouse cortical neurons.Int. J. Mol. Sci.20222312685310.3390/ijms2312685335743300
    [Google Scholar]
  101. VietorJ. GegeC. StillerT. BuschR. SchallmayerE. KohlhofH. HöfnerG. PabelJ. MarschnerJ.A. MerkD. Development of a potent Nurr1 agonist tool for in vivo applications.J. Med. Chem.20236696391640210.1021/acs.jmedchem.3c0041537127285
    [Google Scholar]
  102. CourtneyR. LandrethG.E. LXR regulation of brain cholesterol: From development to disease.Trends Endocrinol. Metab.201627640441410.1016/j.tem.2016.03.01827113081
    [Google Scholar]
  103. MeiZ. DuL. LiuX. ChenX. TianH. DengY. ZhangW. Diosmetin alleviated cerebral ischemia/reperfusion injury in vivo and in vitro by inhibiting oxidative stress via the SIRT1/Nrf2 signaling pathway.Food Funct.202213119821210.1039/D1FO02579A34881386
    [Google Scholar]
  104. DaiY. TanX. WuW. WarnerM. GustafssonJ.Å. Liver X receptor β protects dopaminergic neurons in a mouse model of Parkinson disease.Proc. Natl. Acad. Sci. USA201210932131121311710.1073/pnas.121083310922826221
    [Google Scholar]
  105. MateevE. GeorgievaM. MateevaA. ZlatkovA. AhmadS. RazaK. AzevedoV. BarhD. Structure-based design of novel MAO-B Inhibitors: A review.Molecules20232812481410.3390/molecules2812481437375370
    [Google Scholar]
  106. Seif-El-NasrM. AtiaA. AbdelsalamR. Effect of MAO-B inhibition against ischemia-induced oxidative stress in the rat brain. Comparison with a rational antioxidant.Arzneimittel- forschung201158416016710.1055/s‑0031‑129648718540477
    [Google Scholar]
  107. ChiuY.J. LinT.H. ChangK.H. LinW. Hsieh-LiH.M. SuM.T. ChenC.M. SunY.C. Lee-ChenG.J. Novel TRKB agonists activate TRKB and downstream ERK and AKT signaling to protect Aβ-GFP SH-SY5Y cells against Aβ toxicity.Aging202214187568758610.18632/aging.20430636170028
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665333333240909104354
Loading
/content/journals/ppl/10.2174/0109298665333333240909104354
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test