Skip to content
2000
image of Qualitative and Structural Insights into Levantilides C/D via LC-MS

Abstract

In this study, we utilized high-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry (HPLC-Q-TOF/MS/MS), combined with electrospray ionization in the positive mode (ESI+), to establish a comprehensive framework for chromatographic separation and mass spectrometric detection.

The primary focus was on performing collision-induced dissociation (CID) experiments on levantilide D, a newly identified macrolide, and its well-established analog, levantilide C, in order to elucidate their mass spectral fragmentation patterns.

The results revealed that the cleavage patterns of levantilides were successfully characterized when ionized in the positive mode. These fragmentation profiles provide valuable insights for the rapid and accurate structural identification and quantitative analysis of levantilides when they often occur in trace amounts.

Furthermore, this methodology offers crucial technical references for environmental pollutant monitoring and pharmacokinetic investigations for levantilide-related compounds.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155362964250115112834
2025-01-20
2025-04-16
Loading full text...

Full text loading...

References

  1. Khebizi N. Boudjella H. Bijani C. Bouras N. Klenk H.P. Pont F. Mathieu F. Sabaou N. Oligomycins A and E, major bioactive secondary metabolites produced by Streptomyces sp. strain HG29 isolated from a Saharan soil. J. Mycol. Med. 2018 28 1 150 160 10.1016/j.mycmed.2017.10.007 29158025
    [Google Scholar]
  2. Liu Z. Yashiroda Y. Sun P. Ma H. Wang Y. Li L. Yan F. Sun Y. Argenteolides a and b, glycosylated polyketide–peptide hybrid macrolides from an actinomycete streptomyces argenteolus. Org. Lett. 2023 25 4 571 575 10.1021/acs.orglett.2c03290 36469481
    [Google Scholar]
  3. Fang Z. Zhang Q. Zhang L. She J. Li J. Zhang W. Zhang H. Zhu Y. Zhang C. Antifungal macrolides kongjuemycins from coral-associated rare actinomycete pseudonocardia kongjuensis scsio 11457. Org. Lett. 2022 24 19 3482 3487 10.1021/acs.orglett.2c01089 35476540
    [Google Scholar]
  4. Fadhli A.A.A. Threadgill M.D. Mohammed F. Sibley P. Ariqi A.W. Parveen I. Macrolides from rare actinomycetes: Structures and bioactivities. Int. J. Antimicrob. Agents 2022 59 2 106523 10.1016/j.ijantimicag.2022.106523 35041941
    [Google Scholar]
  5. Lenz K.D. Klosterman K.E. Mukundan H. Sutherland K.J.Z. Macrolides: From toxins to therapeutics. Toxins 2021 13 5 347 10.3390/toxins13050347 34065929
    [Google Scholar]
  6. Chitneni K.S. Govaerts C. Adams E. Schepdael V.A. Hoogmartens J. Identification of impurities in erythromycin by liquid chromatography–mass spectrometric detection. J. Chromatogr. A 2004 1056 1-2 111 120 10.1016/j.chroma.2004.07.091 15595540
    [Google Scholar]
  7. Chen J. Mei G. Zhang X. Huang D. He P. Xu D. Dispersive solid-phase extraction and ultra-performance liquid chromatography–tandem mass spectrometry—a rapid and accurate method for detecting 10 macrolide residues in aquatic products. Foods 2024 13 6 866 10.3390/foods13060866 38540855
    [Google Scholar]
  8. Sterenczak K.A. Fuellen G. Jünemann A. Guthoff R.F. Stachs O. Stahnke T. The antibiotic kitasamycin—a potential agent for specific fibrosis preventing therapy after fistulating glaucoma surgery? Pharmaceutics 2023 15 2 329 10.3390/pharmaceutics15020329 36839651
    [Google Scholar]
  9. Yao Y. Wang Q. Lu Y. Zhang J. Yao W. Yuan Y. Optimized analysis for related substances in spiramycin based on high performance liquid chromatography with hybrid particle column and characterization of its impurities by single heartcut two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometer. J. Pharm. Biomed. Anal. 2025 252 116486 10.1016/j.jpba.2024.116486 39326378
    [Google Scholar]
  10. Telnova T.Y. Morgunova M.M. Shashkina S.S. Vlasova A.A. Dmitrieva M.E. Shelkovnikova V.N. Malygina E.V. Imidoeva N.A. Belyshenko A.Y. Konovalov A.S. Misharina E.A. Gribanov A.D.V. Detection of pharmaceutical contamination in amphipods of lake baikal by the hplc-ms method. Antibiotics 2024 13 8 738 10.3390/antibiotics13080738 39200038
    [Google Scholar]
  11. Kwiecień A. Krzek J. Żmudzki P. Matoga U. Długosz M. Szczubiałka K. Nowakowska M. Roxithromycin degradation by acidic hydrolysis and photocatalysis. Anal. Methods 2014 6 16 6414 6423 10.1039/C4AY00708E
    [Google Scholar]
  12. Zhu S. Xiao Y. Xia L. Li J. Lei S. Liu J. Liu L. Occurrence, spatiotemporal distribution, and health risk of antibiotics in the Wuhan section of the Yangtze River, China. Environ. Sci. Pollut. Res. Int. 2024 31 55 64152 64170 10.1007/s11356‑024‑35513‑x 39531106
    [Google Scholar]
  13. Wang M. Li J. Zhou Y. Zhou W. Huang S. Spatial and temporal distribution and ecological risk assessment of typical antibiotics in natural and wastewater of Jinjiang River Basin. PLoS One 2024 19 11 e0310865 10.1371/journal.pone.0310865 39541361
    [Google Scholar]
  14. Alhijazien S.H. Daoud S. Alzayadi M.T. Sarhan A.M.R. Aldomi M.K. Shawabkeh A.T.A. Alsmadi M.M. Comparative efficacy of azithromycin and clarithromycin in the management of helicobacter pylori infection. Cureus 2024 16 10 e72033 10.7759/cureus.72033 39569309
    [Google Scholar]
  15. Anaya BJ D'Angelo D Bettini R Molina G Perez S.A Ayuela D.MA Galiana C Rodríguez C Tirado DF Lalatsa A Burgos G.E Serrano DR Heparin-azithromycin microparticles show anti-inflammatory effects and inhibit SARS-CoV-2 and bacterial pathogens associated to lung infections. Carbohydrate Polymers 2025 348 122930 10.1016/j.carbpol.2024.122930
    [Google Scholar]
  16. Leonard S. Ferraro M. Adams E. Hoogmartens J. Schepdael A.V. Application of liquid chromatography/ion trap mass spectrometry to the characterization of the related substances of clarithromycin. Rapid Commun. Mass Spectrom. 2006 20 20 3101 3110 10.1002/rcm.2704 16991103
    [Google Scholar]
  17. Barshevskaya L.V. Sotnikov D.V. Zvereva E.A. Dzantiev B.B. Zherdev A.V. Comparative characteristics of immunochromatographic test systems for tylosin antibiotic in meat products. Sensors 2024 24 21 6865 10.3390/s24216865 39517762
    [Google Scholar]
  18. Hanifeh M. Scarsella E. Rojas C.A. Ganz H.H. Huhtinen M. Laine T. Spillmann T. Oral fecal microbiota transplantation in dogs with tylosin-responsive enteropathy—a proof-of-concept study. Vet. Sci. 2024 11 9 439 10.3390/vetsci11090439 39330818
    [Google Scholar]
  19. Basha A.E.A. Ismail B.Z. Idkaidek N.M. Hamzeh E. Comparison of pharmacokinetics of two tylvalosin oral formulations in broiler chickens. J. Vet. Pharmacol. Ther. 2023 46 3 165 169 10.1111/jvp.13116 36789654
    [Google Scholar]
  20. Aissaoui Y. Skrzypek J.G. Sálamo G.J. Ayadi T.M. Abid G.I. Borges H.J. Determination of multiclass antibiotics in fish muscle using a quechers-uhplc-ms/ms method. Foods 2024 13 7 1081 10.3390/foods13071081 38611385
    [Google Scholar]
  21. Sarma M. Bora K. Ranjan P. Dubey V.K. Identification of novel anti‐leishmanials targeting glutathione synthetase of the parasite: A drug repurposing approach. FEBS Lett. 2024 ••• 1873-3468.15016 10.1002/1873‑3468.15016 39266470
    [Google Scholar]
  22. Wheat W. Chow L. Brooks S.K. Foster M.R. Herman J. Hunter R. Garry F. Dow S. Immune modulatory effects of tulathromycin, gamithromycin, and oxytetracycline in cattle. BMC Vet. Res. 2024 20 1 456 10.1186/s12917‑024‑04254‑x 39385141
    [Google Scholar]
  23. Wei X.Y. Zhang J. Zhang Y. Fu W.Z. Zhong L.G. Pan Y.D. Sun J. Liao X.P. Liu Y.H. Zhou Y.F. Pharmacokinetic/pharmacodynamic evaluation of gamithromycin against rabbit pasteurellosis. BMC Vet. Res. 2024 20 1 147 10.1186/s12917‑024‑03988‑y 38643185
    [Google Scholar]
  24. Blondeau J.M. Fitch S.D. Comparative in vitro killing by pradofloxacin in comparison to ceftiofur, enrofloxacin, florfenicol, marbofloxacin, tildipirosin, tilmicosin and tulathromycin against bovine respiratory bacterial pathogens. Microorganisms 2024 12 5 996 10.3390/microorganisms12050996 38792823
    [Google Scholar]
  25. Wang P. Wei Q. Zhang C. Pan H. Li J. Ji P. Ma Y. Dou T. Wang Y. Li Q. An Q. Effect of rosemary on growth performance, meat quality, fatty acid content, intestinal flora, and antioxidant capacity of broilers. Animals 2024 14 17 2480 10.3390/ani14172480 39272265
    [Google Scholar]
  26. Han G. Yu J. He J. Zheng P. Mao X. Yu B. Subtherapeutic kitasamycin promoted fat accumulation in the longissimus dorsi muscle in growing–finishing pigs. Animals 2024 14 7 1057 10.3390/ani14071057 38612296
    [Google Scholar]
  27. Xu F. Yu J. Zhang R. Zhang Z. Sun A. Shi X. Wu Y. A green and rapid analytical method for determination of kitasamycin in animal feedstuffs by ultra-high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2022 1676 463203 10.1016/j.chroma.2022.463203 35753112
    [Google Scholar]
  28. Vetmb J.F.P.M. Macrolides, azalides and ketolides. Antimicrobial Therapy in Veterinary Medicine. JF Prescott JD Baggot RD Walker Ames. IA. 2013 179 190
    [Google Scholar]
  29. Pyörälä S. Baptiste K.E. Catry B. Duijkeren v.E. Greko C. Moreno M.A. Pomba M.C.M.F. Rantala M. Ružauskas M. Sanders P. Threlfall E.J. Edo T.J. Törneke K. Macrolides and lincosamides in cattle and pigs: Use and development of antimicrobial resistance. Vet. J. 2014 200 2 230 239 10.1016/j.tvjl.2014.02.028 24685099
    [Google Scholar]
  30. Arsic B. Barber J. Čikoš A. Mladenovic M. Stankovic N. Novak P. 16-membered macrolide antibiotics: A review. Int. J. Antimicrob. Agents 2018 51 3 283 298 10.1016/j.ijantimicag.2017.05.020 28668674
    [Google Scholar]
  31. Southern K.W. Moya S.A. Kurz D. Smith S. Macrolide antibiotics (including azithromycin) for cystic fibrosis. Cochrane Libr. 2024 2024 2 CD002203 10.1002/14651858.CD002203.pub5 38411248
    [Google Scholar]
  32. Mehdi Y. Montminy L.M.P. Gaucher M.L. Chorfi Y. Suresh G. Rouissi T. Brar S.K. Côté C. Ramirez A.A. Godbout S. Use of antibiotics in broiler production: Global impacts and alternatives. Anim. Nutr. 2018 4 2 170 178 10.1016/j.aninu.2018.03.002 30140756
    [Google Scholar]
  33. Cameron A. McAllister T.A. Antimicrobial usage and resistance in beef production. J. Anim. Sci. Biotechnol. 2016 7 1 68 10.1186/s40104‑016‑0127‑3 27999667
    [Google Scholar]
  34. Trott D.J. Turnidge J. Kovac J.H. Simjee S. Wilson D. Watts J. Comparative macrolide use in humans and animals: Should macrolides be moved off the World Health Organisation’s critically important antimicrobial list? J. Antimicrob. Chemother. 2021 76 8 1955 1961 10.1093/jac/dkab120 33956974
    [Google Scholar]
  35. Fei P. xi C.W. Yang X. lei H.J. jie L.C. Uribe P. Bull A.T. Goodfellow M. Hong J. yang Y.L. A new 20-membered macrolide produced by a marine-derived Micromonospora strain. Nat. Prod. Res. 2013 27 15 1366 1371 10.1080/14786419.2012.740038 23157320
    [Google Scholar]
  36. Gärtner A. Ohlendorf B. Schulz D. Zinecker H. Wiese J. Imhoff J.F. Levantilides A and B, 20-membered macrolides from a Micromonospora strain isolated from the Mediterranean deep sea sediment. Mar. Drugs 2011 9 1 98 108 10.3390/md9010098 21339949
    [Google Scholar]
  37. Zhao W. Zhou J. Jiang H. Ge Y. Zhou J. Zhao M. Lin R. Jiang H. Wu B. Antimicrobial macrolide levantilide d from rare marine micromonospora sp. Nat. Prod. J. 2024 15 1 8 10.2174/0122103155325417241001112138
    [Google Scholar]
  38. Wang Z. Beier R.C. Shen J. Immunoassays for the detection of macrocyclic lactones in food matrices – A review. Trends Analyt. Chem. 2017 92 42 61 10.1016/j.trac.2017.04.008
    [Google Scholar]
  39. Kobuchi S. Fujita A. Kato A. Kobayashi H. Ito Y. Sakaeda T. Pharmacokinetics and lung distribution of macrolide antibiotics in sepsis model rats. Xenobiotica 2020 50 5 552 558 10.1080/00498254.2019.1654633 31424300
    [Google Scholar]
  40. Chen Y.R. Duan Y.P. Zhang Z.B. Gao Y.F. Dai C.M. Tu Y.J. Gao J. Comprehensive evaluation of antibiotics pollution the Yangtze River basin, China: Emission, multimedia fate and risk assessment. J. Hazard. Mater. 2024 465 133247 10.1016/j.jhazmat.2023.133247 38141293
    [Google Scholar]
  41. Chen Y. Schwack W. High-performance thin-layer chromatography screening of multi class antibiotics in animal food by bioluminescent bioautography and electrospray ionization mass spectrometry. J. Chromatogr. A 2014 1356 249 257 10.1016/j.chroma.2014.06.043 25015242
    [Google Scholar]
  42. Chen Y. Zhang J. Liu R. Zhang Y. Zhou J. Liu H. Liu Y. Yan K. Qi Y. Liu E. Zhu X. Wang A. A highly sensitive electrochemical immunosensor based on rGO-PEI-Ag nanocomposites for the detection of tilmicosin. Food Chem. 2024 461 140009 10.1016/j.foodchem.2024.140009 39167943
    [Google Scholar]
  43. Li L. Hou R. Shen W. Chen Y. Wu S. Wang Y. Wang X. Yuan Z. Peng D. Development of a monoclonal-based ic-ELISA for the determination of kitasamycin in animal tissues and simulation studying its molecular recognition mechanism. Food Chem. 2021 363 129465 10.1016/j.foodchem.2021.129465 34247034
    [Google Scholar]
  44. Kanfer I. Skinner M.F. Walker R.B. Analysis of macrolide antibiotics. J. Chromatogr. A 1998 812 1-2 255 286 10.1016/S0021‑9673(98)00276‑3 9691324
    [Google Scholar]
  45. Senta I. Matasic K.I. Terzic S. Ahel M. Comprehensive determination of macrolide antibiotics, their synthesis intermediates and transformation products in wastewater effluents and ambient waters by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2017 1509 60 68 10.1016/j.chroma.2017.06.005 28625676
    [Google Scholar]
  46. Brown L.P. Murray R. Scott A. Tien Y.C. Lau C.H.F. Tai V. Topp E. Responses of the soil bacterial community, resistome, and mobilome to a decade of annual exposure to macrolide antibiotics. Appl. Environ. Microbiol. 2022 88 8 e00316-22 10.1128/aem.00316‑22 35384705
    [Google Scholar]
  47. Hernández F. Ibáñez M. Portoles T. Troya H.A. Ramírez J.D. Paredes M.A. Hidalgo A.F. García A.M. Galeano L.A. High resolution mass spectrometry-based screening for the comprehensive investigation of organic micropollutants in surface water and wastewater from Pasto city, Colombian Andean highlands. Sci. Total Environ. 2024 922 171293 10.1016/j.scitotenv.2024.171293 38417505
    [Google Scholar]
  48. Alam J. Jantan I. Yuandani Nafiah M.A. Mesaik M.A. Ibrahim S. Effects of polyphenols and lignans of phyllanthus amarus schumach. and thonn. on il-1β and tnf-α secretions from lps-induced thp-1-derived macrophages. Nat. Prod. J. 2024 14 5 e100124225476 10.2174/0122103155285107231229060123
    [Google Scholar]
  49. Jia W. Shi L. Chu X. Chang J. Chen Y. Zhang F. A strategy for untargeted screening of macrolides and metabolites in bass by liquid chromatography coupled to quadrupole orbitrap mass spectrometry. Food Chem. 2018 262 110 117 10.1016/j.foodchem.2018.04.090 29751897
    [Google Scholar]
  50. Erenler R. Yaman C. Demirtas Alma H.M. Phytochemical investigation of hypericum heterophyllum flowers: Lc-esi-ms/ms analysis, total phenolic and flavonoid contents, antioxidant activity. Nat. Prod. J. 2023 13 7 e120123212672 10.2174/2210315513666230112165545
    [Google Scholar]
  51. Johnson A.R. Carlson E.E. Structure elucidation of macrolide antibiotics using ms n analysis and deuterium labelling. J. Am. Soc. Mass Spectrom. 2019 30 8 1464 1480 10.1007/s13361‑019‑02210‑w 30993640
    [Google Scholar]
  52. Song X. Zhou T. Li J. Zhang M. Xie J. He L. Determination of ten macrolide drugs in environmental water using molecularly imprinted solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry. Molecules 2018 23 5 1172 10.3390/molecules23051172 29757980
    [Google Scholar]
  53. Boernsen K.O. Jacobsen E.W. Inverardi B. Strom T. Streit F. Schiebel H.M. Benet L.Z. Christians U. Assessment and validation of the MS/MS fragmentation patterns of the macrolide immunosuppressant everolimus. J. Mass Spectrom. 2007 42 6 793 802 10.1002/jms.1215 17511017
    [Google Scholar]
  54. Demarque D.P. Crotti A.E.M. Vessecchi R. Lopes J.L.C. Lopes N.P. Fragmentation reactions using electrospray ionization mass spectrometry: An important tool for the structural elucidation and characterization of synthetic and natural products. Nat. Prod. Rep. 2016 33 3 432 455 10.1039/C5NP00073D 26673733
    [Google Scholar]
/content/journals/npj/10.2174/0122103155362964250115112834
Loading
/content/journals/npj/10.2174/0122103155362964250115112834
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test