Skip to content
2000
Volume 16, Issue 3
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Introduction

Aquaporins are one of the important but challenging targets in drug discovery. They are of great interest owing to their diverse physiological roles in health and diseases and their broad tissue distribution. However, there has been little progress so far in this quest and some have started to doubt whether AQPs are druggable at all.

Methods

The Web of Science Core Collection database was used to extract all the literature with different combinations of keywords: “aquaporin”, “compound”, and “natural” from 2013 until 2024. The quality of each publication was further assessed.

Results

The identified natural compounds can be divided into three categories: 1) compounds that regulate AQP expression, 2) AQP inhibitors, and 3) inhibitors of AQP-protein interactions. Overall, most reported natural product-based AQP modulators are of terpenoid, polyphenolic and polysaccharide origin.

Discussion

Essential challenges in AQP drug development seem to be difficult in modeling selective inhibitors and a lack of robust and reliable and assays. Numerous studies report natural products modulating AQPs at the expression level, directly inhibiting AQPs and disturbing their interaction with other intracellular proteins. Since direct targeting of AQPs has not yielded promising results, using natural products as AQP modulators could be a new possibility.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155347626250109114848
2025-01-30
2026-02-11
Loading full text...

Full text loading...

References

  1. AgreP. Aquaporin water channels (Nobel Lecture).Angew. Chem. Int. Ed.200443334278429010.1002/anie.200460804 15368374
    [Google Scholar]
  2. AgreP. KingL.S. YasuiM. GugginoW.B. OttersenO.P. FujiyoshiY. EngelA. NielsenS. Aquaporin water channels – From atomic structure to clinical medicine.J. Physiol.2002542131610.1113/jphysiol.2002.020818 12096044
    [Google Scholar]
  3. De IesoM.L. YoolA.J. Mechanisms of aquaporin-facilitated cancer invasion and metastasis.Front Chem.2018613510.3389/fchem.2018.00135 29922644
    [Google Scholar]
  4. Traberg-NyborgL. LoginF.H. EdamanaS. TrammT. BorgquistS. NejsumL.N. Aquaporin‐1 in breast cancer.Acta Pathol. Microbiol. Scand. Suppl.2022130131010.1111/apm.13192 34758159
    [Google Scholar]
  5. LoginF.H. NejsumL.N. Aquaporin water channels: Roles beyond renal water handling.Nat. Rev. Nephrol.202319960461810.1038/s41581‑023‑00734‑9 37460759
    [Google Scholar]
  6. JazaeriS.Z. TaghizadehG. BabaeiJ.F. GoudarziS. SaadatmandP. JoghataeiM.T. KhanahmadiZ. Aquaporin 4 beyond a water channel; participation in motor, sensory, cognitive and psychological performances, a comprehensive review.Physiol. Behav.202327111435310.1016/j.physbeh.2023.114353 37714320
    [Google Scholar]
  7. PapadopoulosM.C. VerkmanA.S. Aquaporin water channels in the nervous system.Nat. Rev. Neurosci.201314426527710.1038/nrn3468 23481483
    [Google Scholar]
  8. VerkmanA.S. Physiological importance of aquaporin water channels.Ann. Med.200234319220010.1080/ann.34.3.192.200 12173689
    [Google Scholar]
  9. FazlievS. TursunovK. RazzokovJ. SharipovA. Escin’s multifaceted therapeutic profile in treatment and post-treatment of various cancers: A comprehensive review.Biomolecules202313231510.3390/biom13020315 36830684
    [Google Scholar]
  10. SalmanM.M. KitchenP. YoolA.J. BillR.M. Recent breakthroughs and future directions in drugging aquaporins.Trends Pharmacol. Sci.2022431304210.1016/j.tips.2021.10.009 34863533
    [Google Scholar]
  11. SoveralG. CasiniA. Aquaporin modulators: A patent review (2010–2015).Expert Opin. Ther. Pat.2017271496210.1080/13543776.2017.1236085 27622909
    [Google Scholar]
  12. Abir-AwanM. KitchenP. SalmanM.M. ConnerM.T. ConnerA.C. BillR.M. Inhibitors of mammalian aquaporin water channels.Int. J. Mol. Sci.2019207158910.3390/ijms20071589 30934923
    [Google Scholar]
  13. KingL.S. KozonoD. AgreP. From structure to disease: The evolving tale of aquaporin biology.Nat. Rev. Mol. Cell Biol.20045968769810.1038/nrm1469 15340377
    [Google Scholar]
  14. NagelhusE.A. OttersenO.P. Physiological roles of aquaporin-4 in brain.Physiol. Rev.20139341543156210.1152/physrev.00011.2013 24137016
    [Google Scholar]
  15. MaderS. BrimbergL. Aquaporin-4 water channel in the brain and its implication for health and disease.Cells2019829010.3390/cells8020090 30691235
    [Google Scholar]
  16. VerkmanA.S. SmithA.J. PhuanP. TradtrantipL. AndersonM.O. The aquaporin-4 water channel as a potential drug target in neurological disorders.Expert Opin. Ther. Targets201721121161117010.1080/14728222.2017.1398236 29072508
    [Google Scholar]
  17. SilverglateB. GaoX. LeeH.P. MalihaP. GrossbergG.T. The aquaporin-4 water channel and updates on its potential as a drug target for Alzheimer’s disease.Expert Opin. Ther. Targets202327752353010.1080/14728222.2023.2240017 37475487
    [Google Scholar]
  18. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the last 25 years.J. Nat. Prod.200770346147710.1021/np068054v 17309302
    [Google Scholar]
  19. FazlievS. TursunovK. SharipovA. XaydarovV. NormakhamatovN. RizaevK. WangT. AisaH.A. Escin’s phytochemistry and pharmacy: Biosynthesis, chemistry, synergism and novel activities.Phytochem. Rev.202410.1007/s11101‑024‑09956‑6
    [Google Scholar]
  20. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  21. TesseA. GrossiniE. TammaG. BrennerC. PortincasaP. MarinelliR.A. CalamitaG. Aquaporins as targets of dietary bioactive phytocompounds.Front. Mol. Biosci.201853010.3389/fmolb.2018.00030 29721498
    [Google Scholar]
  22. CataldoI. MaggioA. GenaP. de bariO. TammaG. PortincasaP. CalamitaG. Modulation of aquaporins by dietary patterns and plant bioactive compounds.Curr. Med. Chem.201926193457347010.2174/0929867324666170523123010 28545373
    [Google Scholar]
  23. del Carmen Martínez-BallestaM. BouG. CarvajalM. Aquaporins as targets of pharmacological plant-derived compounds.Phytochem. Rev.201413357358610.1007/s11101‑013‑9314‑4
    [Google Scholar]
  24. HeJ. ZengL. WeiR. ZhongG. ZhuY. XuT. YangL. Lagopsis supina exerts its diuretic effect via inhibition of aquaporin-1, 2 and 3 expression in a rat model of traumatic blood stasis.J. Ethnopharmacol.201923144645210.1016/j.jep.2018.10.034 30394291
    [Google Scholar]
  25. CuiX. ZhangJ. LiY. SunY. CaoJ. ZhaoM. ZhaoY. ZhaoX. HeY. HanA. Effects of Qili Qiangxin capsule on AQP2, V2R, and AT1R in rats with chronic heart failure.Evid. Based Complement. Alternat. Med.2015201511110.1155/2015/639450 26074997
    [Google Scholar]
  26. NoitemR. YuajitC. SoodvilaiS. MuanprasatC. ChatsudthipongV. Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation.Biomed. Pharmacother.201810175476210.1016/j.biopha.2018.02.139 29524884
    [Google Scholar]
  27. ChaudhuriR.K. BojanowskiK. Bakuchiol: A retinol‐like functional compound revealed by gene expression profiling and clinically proven to have anti‐aging effects.Int. J. Cosmet. Sci.201436322123010.1111/ics.12117 24471735
    [Google Scholar]
  28. ChenW. PengX. YuJ. ChenX. YuanM. XiangR. HeL. YuD. KangH. PanY. XuZ. FengLiao affects gut microbiota and the expression levels of Na+/H+ exchangers, aquaporins and acute phase proteins in mice with castor oil-induced diarrhea.PLoS One2020157e023651110.1371/journal.pone.0236511 32722717
    [Google Scholar]
  29. di MartinoO. TitoA. De LuciaA. CimminoA. CicottiF. AponeF. ColucciG. CalabròV. Hibiscus syriacus extract from an established cell culture stimulates skin wound healing.BioMed Res. Int.201720171910.1155/2017/7932019 29333453
    [Google Scholar]
  30. HeH. TangJ. RuD. ShuX. LiW. LiJ. MaL. HuX. XiongL. LiL. Protective effects of Cordyceps extract against UVB induced damage and prediction of application prospects in the topical administration: An experimental validation and network pharmacology study.Biomed. Pharmacother.202012110960010.1016/j.biopha.2019.109600 31707352
    [Google Scholar]
  31. HungC.F. HsiaoC.Y. HsiehW.H. LiH.J. TsaiY.J. LinC.N. ChangH.H. WuN.L. 18ß-glycyrrhetinic acid derivative promotes proliferation, migration and aquaporin-3 expression in human dermal fibroblasts.PLoS One2017128e018298110.1371/journal.pone.0182981 28813533
    [Google Scholar]
  32. LinY. ZhangM. LinT. WangL. WangG. ChenT. SuS. Royal jelly from different floral sources possesses distinct wound-healing mechanisms and ingredient profiles.Food Funct.20211223120591207610.1039/D1FO00586C 34783324
    [Google Scholar]
  33. NaJ.R. KimE. NaC.S. KimS. Citric acid-enriched extract of ripe Prunus mume (Siebold) Siebold & Zucc. Induces laxative effects by regulating the expression of aquaporin 3 and prostaglandin E 2 in rats with loperamide-induced constipation.J. Med. Food2022251122310.1089/jmf.2021.K.0138 35029511
    [Google Scholar]
  34. NakamuraY. TsuchiyaT. Hara-ChikumaM. YasuiM. FukuiY. Identification of compounds in red wine that effectively upregulate aquaporin-3 as a potential mechanism of enhancement of skin moisturizing.Biochem. Biophys. Rep.20202410086410.1016/j.bbrep.2020.100864 33294640
    [Google Scholar]
  35. ParkC.H. MinS.Y. YuH.W. KimK. KimS. LeeH.J. KimJ.H. ParkY.J. Effects of apigenin on RBL-2H3, RAW264.7, and HaCaT cells: Anti-allergic, anti-inflammatory, and skin-protective activities.Int. J. Mol. Sci.20202113462010.3390/ijms21134620 32610574
    [Google Scholar]
  36. ParkS.C. JiY. RyuJ. KyungS. KimM. KangS. JangY.P. Anti-aging efficacy of solid-state fermented ginseng with Aspergillus cristatus and its active metabolites.Front. Mol. Biosci.2022998430710.3389/fmolb.2022.984307 36250021
    [Google Scholar]
  37. ShinS.Y. LeeD.H. GilH.N. KimB.S. ChoeJ.S. KimJ.B. LeeY.H. LimY. Agerarin, identified from Ageratum houstonianum, stimulates circadian CLOCK-mediated aquaporin-3 gene expression in HaCaT keratinocytes.Sci. Rep.2017711117510.1038/s41598‑017‑11642‑x 28894278
    [Google Scholar]
  38. TitoA. BimonteM. CarolaA. De LuciaA. BarbulovaA. TortoraA. ColucciG. AponeF. An oil‐soluble extract of Rubus idaeus cells enhances hydration and water homeostasis in skin cells.Int. J. Cosmet. Sci.201537658859410.1111/ics.12236 25940647
    [Google Scholar]
  39. VarmaS.R. SivaprakasamT.O. MishraA. KumarL.M.S. PrakashN.S. PrabhuS. RamakrishnanS. Protective effects of triphala on dermal fibroblasts and human keratinocytes.PLoS One2016111e014592110.1371/journal.pone.0145921 26731545
    [Google Scholar]
  40. WangZ. PerumalsamyH. WangX. AhnY.J. Toxicity and possible mechanisms of action of honokiol from Magnolia denudata seeds against four mosquito species.Sci. Rep.20199141110.1038/s41598‑018‑36558‑y 30674912
    [Google Scholar]
  41. ZhouY. LiH. LuL. FuD. LiuA. LiJ. ZhengG. Ginsenoside Rg1 provides neuroprotection against blood brain barrier disruption and neurological injury in a rat model of cerebral ischemia/reperfusion through downregulation of aquaporin 4 expression.Phytomedicine2014217998100310.1016/j.phymed.2013.12.005 24462216
    [Google Scholar]
  42. ZuJ. WangY. XuG. ZhuangJ. GongH. YanJ. Curcumin improves the recovery of motor function and reduces spinal cord edema in a rat acute spinal cord injury model by inhibiting the JAK/STAT signaling pathway.Acta Histochem.201411681331133610.1016/j.acthis.2014.08.004 25201116
    [Google Scholar]
  43. ChenC. MaT. ZhangC. ZhangH. BaiL. KongL. LuoJ. Down‐regulation of aquaporin 5‐mediated epithelial‐mesenchymal transition and anti‐metastatic effect by natural product Cairicoside E in colorectal cancer.Mol. Carcinog.201756122692270510.1002/mc.22712 28833571
    [Google Scholar]
  44. BhattaraiK. LeeH.Y. KimS.H. KimH.R. ChaeH.J. Ixeris dentata extract increases salivary secretion through the regulation of endoplasmic reticulum stress in a diabetes-induced xerostomia rat model.Int. J. Mol. Sci.2018194105910.3390/ijms19041059 29614832
    [Google Scholar]
  45. TaoX. LiJ. HeJ. JiangY. LiuC. CaoW. WuH. Pinellia ternata (Thunb.) Breit. attenuates the allergic airway inflammation of cold asthma via inhibiting the activation of TLR4-medicated NF-kB and NLRP3 signaling pathway.J. Ethnopharmacol.202331511672010.1016/j.jep.2023.116720 37268256
    [Google Scholar]
  46. PrataC. FacchiniC. LeonciniE. LenziM. MaraldiT. AngeloniC. ZamboninL. HreliaS. FiorentiniD. Sulforaphane modulates AQP8‐linked redox signalling in leukemia cells.Oxid. Med. Cell. Longev.201820181412529710.1155/2018/4125297 30581529
    [Google Scholar]
  47. HanD. MaG. GaoY. SuY. Curcumin synergistically enhances the cytotoxicity of arsenic trioxide in U266 cells by increasing arsenic uptake.Evid. Based Complement. Alternat. Med.202120211910.1155/2021/3083041 34675983
    [Google Scholar]
  48. PeiJ.V. KourghiM. De IesoM.L. CampbellE.M. DorwardH.S. HardinghamJ.E. YoolA.J. Differential inhibition of water and ion channel activities of mammalian aquaporin-1 by two structurally related bacopaside compounds derived from the medicinal plant Bacopa monnieri.Mol. Pharmacol.201690449650710.1124/mol.116.105882 27474162
    [Google Scholar]
  49. Paccetti-AlvesI. BatistaM.S.P. PimpãoC. VictorB.L. SoveralG. Unraveling the aquaporin-3 inhibitory effect of rottlerin by experimental and computational approaches.Int. J. Mol. Sci.2023246600410.3390/ijms24066004 36983077
    [Google Scholar]
  50. DurhanB. YalçınE. ÇavuşoğluK. AcarA. Molecular docking assisted biological functions and phytochemical screening of Amaranthus lividus L. extract.Sci. Rep.2022121430810.1038/s41598‑022‑08421‑8 35279686
    [Google Scholar]
  51. GongY. ZhangY. WangZ. SongH. LiuY. LvA. TianL. ZhuW. FuY. DingX. CuiL. YanY. Tanshinone IIA alleviates brain damage in a mouse model of neuromyelitis optica spectrum disorder by inducing neutrophil apoptosis.J. Neuroinflammation202017119810.1186/s12974‑020‑01874‑6 32586353
    [Google Scholar]
  52. WangJ. WangS. SunM. XuH. LiuW. WangD. ZhangL. LiY. CaoJ. LiF. LiM. Identification of geraldol as an inhibitor of aquaporin 4 binding by NMO IgG.Mol. Med. Rep.20202221111111810.3892/mmr.2020.11212 32626958
    [Google Scholar]
  53. LiH. YangM. SongH. SunM. ZhouH. FuJ. ZhouD. BaiW. ChenB. LaiM. KangH. WeiS. ACT001 relieves NMOSD symptoms by reducing astrocyte damage with an autoimmune antibody.Molecules2023283141210.3390/molecules28031412 36771078
    [Google Scholar]
  54. UrbanK. MehrmalS. UppalP. GieseyR.L. DelostG.R. The global burden of skin cancer: A longitudinal analysis from the global burden of disease study, 1990–2017.JAAD International202129810810.1016/j.jdin.2020.10.013 34409358
    [Google Scholar]
  55. SofroniewM.V. Astrocyte reactivity: Subtypes, states, and functions in CNS innate immunity.Trends Immunol.202041975877010.1016/j.it.2020.07.004 32819810
    [Google Scholar]
  56. AtanasovA.G. WaltenbergerB. Pferschy-WenzigE.M. LinderT. WawroschC. UhrinP. TemmlV. WangL. SchwaigerS. HeissE.H. RollingerJ.M. SchusterD. BreussJ.M. BochkovV. MihovilovicM.D. KoppB. BauerR. DirschV.M. StuppnerH. Discovery and resupply of pharmacologically active plant-derived natural products: A review.Biotechnol. Adv.20153381582161410.1016/j.biotechadv.2015.08.001 26281720
    [Google Scholar]
  57. SharipovA. TursunovK. FazlievS. AzimovaB. RazzokovJ. Hypoglycemic and anti-inflammatory effects of triterpene glycoside fractions from Aeculus hippocastanum Seeds.Molecules20212613378410.3390/molecules26133784 34206308
    [Google Scholar]
  58. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  59. LiJ.W.H. VederasJ.C. Drug discovery and natural products: End of an era or an endless frontier?Science2009325593716116510.1126/science.1168243 19589993
    [Google Scholar]
  60. WeissmanK.J. LeadlayP.F. Combinatorial biosynthesis of reduced polyketides.Nat. Rev. Microbiol.200531292593610.1038/nrmicro1287 16322741
    [Google Scholar]
  61. MorrisonK.C. HergenrotherP.J. Natural products as starting points for the synthesis of complex and diverse compounds.Nat. Prod. Rep.201431161410.1039/C3NP70063A 24219884
    [Google Scholar]
  62. GioielloA. PiccinnoA. LozzaA.M. CerraB. The medicinal chemistry in the era of machines and automation: Recent advances in continuous flow technology.J. Med. Chem.202063136624664710.1021/acs.jmedchem.9b01956 32049517
    [Google Scholar]
  63. GallowayW.R.J.D. Isidro-LlobetA. SpringD.R. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules.Nat. Commun.2010118010.1038/ncomms1081 20865796
    [Google Scholar]
  64. CampbellI.B. MacdonaldS.J.F. ProcopiouP.A. Medicinal chemistry in drug discovery in big pharma: Past, present and future.Drug Discov. Today201823221923410.1016/j.drudis.2017.10.007 29031621
    [Google Scholar]
  65. HoJ.D. YehR. SandstromA. ChornyI. HarriesW.E.C. RobbinsR.A. MierckeL.J.W. StroudR.M. Crystal structure of human aquaporin 4 at 1.8 Å and its mechanism of conductance.Proc. Natl. Acad. Sci. USA2009106187437744210.1073/pnas.0902725106 19383790
    [Google Scholar]
  66. MangiatordiG.F. AlbergaD. SiragusaL. GoracciL. LattanziG. NicolottiO. Challenging AQP4 druggability for NMO-IgG antibody binding using molecular dynamics and molecular interaction fields.Biochim. Biophys. Acta Biomembr.2015184871462147110.1016/j.bbamem.2015.03.019 25839357
    [Google Scholar]
  67. YadavD.K. KumarS. ChoiE.H. ChaudharyS. KimM.H. Computational modeling on aquaporin-3 as skin cancer target: A virtual screening study.Front Chem.2020825010.3389/fchem.2020.00250 32351935
    [Google Scholar]
  68. KharinA. KlussmannE. Many kinases for controlling the water channel aquaporin-2.J. Physiol.2024Jul6021330253039
    [Google Scholar]
  69. JaskiewiczL. Romaszko-WojtowiczA. DoboszynskaA. SkowronskaA. The role of aquaporin 5 (AQP5) in lung adenocarcinoma: A review article.Cells202312346810.3390/cells12030468 36766810
    [Google Scholar]
  70. KitchenP. SalmanM.M. Abir-AwanM. Al-JubairT. Törnroth- Horsefield, S.; Conner, A.C.; Bill, R.M. Calcein fluorescence quenching to measure plasma membrane water flux in live mammalian cells.STAR Protocols20201310015710.1016/j.xpro.2020.100157 33377051
    [Google Scholar]
  71. Esteva-FontC. JinB.J. LeeS. PhuanP.W. AndersonM.O. VerkmanA.S. Experimental evaluation of proposed small-molecule inhibitors of water channel aquaporin-1.Mol. Pharmacol.201689668669310.1124/mol.116.103929 26993802
    [Google Scholar]
  72. YueK. JiangJ. ZhangP. KaiL. Functional analysis of aquaporin water permeability using an Escherichia coli-based cell-free protein synthesis system.Front. Bioeng. Biotechnol.20208100010.3389/fbioe.2020.01000 32974321
    [Google Scholar]
  73. HopkinsA.L. Network pharmacology: The next paradigm in drug discovery.Nat. Chem. Biol.200841168269010.1038/nchembio.118 18936753
    [Google Scholar]
  74. AnL. SaidM. TranL. MajumderS. GoreshnikI. LeeG.R. JuergensD. DauparasJ. AnishchenkoI. CoventryB. BeraA.K. KangA. LevineP.M. AlvarezV. PillaiA. NornC. FeldmanD. ZorineD. HicksD.R. LiX. SanchezM.G. VafeadosD.K. SalvesonP.J. VorobievaA.A. BakerD. Binding and sensing diverse small molecules using shape-complementary pseudocycles.Science2024385670627628210.1126/science.adn3780 39024436
    [Google Scholar]
  75. FrankC. KhoshoueiA. FuβL. SchiwietzD. PutzD. WeberL. ZhaoZ. HattoriM. FengS. de StigterY. OvchinnikovS. DietzH. Scalable protein design using optimization in a relaxed sequence space.Science2024386672043944510.1126/science.adq1741 39446959
    [Google Scholar]
  76. BennettN.R. CoventryB. GoreshnikI. HuangB. AllenA. VafeadosD. PengY.P. DauparasJ. BaekM. StewartL. DiMaioF. De MunckS. SavvidesS.N. BakerD. Improving de novo protein binder design with deep learning.Nat. Commun.2023141262510.1038/s41467‑023‑38328‑5 37149653
    [Google Scholar]
/content/journals/npj/10.2174/0122103155347626250109114848
Loading
/content/journals/npj/10.2174/0122103155347626250109114848
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test