Skip to content
2000
image of Bio-prospecting the Anti-oxidative and Radioprotective Role of Bioactive Pigment Isolated from Pontibacter indicus

Abstract

Aim

To evaluate the anti-oxidative and radioprotective role of SCG24 pigment during radiation exposure

Background

Radiation-induced cytotoxicity is quite common during cancer therapy. There is a need for naturally derived therapeutic molecules that can scavenge free radicals. They may act as substitutes for synthetic molecules. Hence, there is a need for urgent evaluation of these potent compounds before therapeutic application.

Objective

The objective of this study is to examine the anti-oxidative and radioprotective role SCG24 pigment, specifically to evaluate free radical scavenging X-ray irradiated HDF cells

Method

A radiotoleraent pigment-producing SCG24 was isolated from pharmaceutical effluent. Chloroform was used as a primary solvent for pigment extraction. GCMS/MS analysed initial pigment composition. Various antioxidant assays were performed using ABTS, FRAP, and DPPH assay. Flow cytometry was used to determine the rate of scavenging activity of pigment in HDF cells.

Results

The GCMS/MS profile of the chloroform extract revealed twenty-two compounds. Furthermore, based on the DPPH, ABTS, and FRAP assay, the pigment was found to have significant antioxidant properties. The flow cytometry results indicate that the pigment possesses radioprotectant activity by neutralizing ROS species in HDF cells when exposed to X-ray radiation.

Conclusion

These observations on SCG24 pigment suggested that the pigment may have potential therapeutic importance.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155341557241010013223
2024-10-21
2025-05-30
Loading full text...

Full text loading...

References

  1. Kaur H. Bhardwaj A. Sehgal A. Mohi G.K. Kumar R. Skin cancer: An overview. Handbook of Oncobiology: From Basic to Clinical Sciences Springer 2024
    [Google Scholar]
  2. Chiou W.L. Advancing new views on the causes and prevention of skin cancer and aging of the skin. Med. Res. Arch. 2024 12 4 12 10.18103/mra.v12i4.5292
    [Google Scholar]
  3. Afaq F. Zaid M.A. Khan N. Dreher M. Mukhtar H. Protective effect of pomegranate‐derived products on UVB‐mediated damage in human reconstituted skin. Exp. Dermatol. 2009 18 6 553 561 10.1111/j.1600‑0625.2008.00829.x 19320737
    [Google Scholar]
  4. Reddy V.P. Oxidative Stress in Health and Disease. Biomedicines 2023 11 11 2925 10.3390/biomedicines11112925 38001926
    [Google Scholar]
  5. Jomova K. Raptova R. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch. Toxicol. 2023 97 10 2499 2574 10.1007/s00204‑023‑03562‑9 37597078
    [Google Scholar]
  6. Hajam Y.A. Rani R. Ganie S.Y. Sheikh T.A. Javaid D. Qadri S.S. Pramodh S. Alsulimani A. Alkhanani M.F. Harakeh S. Hussain A. Haque S. Reshi M.S. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022 11 3 552 10.3390/cells11030552 35159361
    [Google Scholar]
  7. Bhatti J.S. Sehrawat A. Mishra J. Sidhu I.S. Navik U. Khullar N. Kumar S. Bhatti G.K. Reddy P.H. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic. Biol. Med. 2022 184 114 134 10.1016/j.freeradbiomed.2022.03.019 35398495
    [Google Scholar]
  8. Liguori I. Russo G. Curcio F. Bulli G. Aran L. Della-Morte D. Gargiulo G. Testa G. Cacciatore F. Bonaduce D. Abete P. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018 13 757 772 10.2147/CIA.S158513 29731617
    [Google Scholar]
  9. Mohana D. Thippeswamy S. Abhishek R.U. Antioxidant, antibacterial, and ultraviolet-protective properties of carotenoids isolated from Micrococcus spp. Radiation Protection and Environment 2013 36 4 168 10.4103/0972‑0464.142394
    [Google Scholar]
  10. Mun G.I. Kim S. Choi E. Kim C.S. Lee Y.S. Pharmacology of natural radioprotectors. Arch. Pharm. Res. 2018 41 11 1033 1050 10.1007/s12272‑018‑1083‑6 30361949
    [Google Scholar]
  11. Singh V.K. Seed T.M. The efficacy and safety of amifostine for the acute radiation syndrome. Expert Opin. Drug Saf. 2019 18 11 1077 1090 10.1080/14740338.2019.1666104 31526195
    [Google Scholar]
  12. Montoro A. Obrador E. Mistry D. Forte G.I. Bravatà V. Minafra L. Calvaruso M. Cammarata F.P. Falk M. Schettino G. Radioprotectors, Radiomitigators, and Radiosensitizers BT. Radiobiology Textbook. Baatout S. Cham Springer 2023 571 628
    [Google Scholar]
  13. Koukourakis M.I. Radiation damage and radioprotectants: new concepts in the era of molecular medicine. Br. J. Radiol. 2012 85 1012 313 330 10.1259/bjr/16386034 22294702
    [Google Scholar]
  14. Smith T.A. Kirkpatrick D.R. Smith S. Smith T.K. Pearson T. Kailasam A. Herrmann K.Z. Schubert J. Agrawal D.K. Radioprotective agents to prevent cellular damage due to ionizing radiation. J. Transl. Med. 2017 15 1 232 10.1186/s12967‑017‑1338‑x 29121966
    [Google Scholar]
  15. Kuruba V. Gollapalli P. Natural radioprotectors and their impact on cancer drug discovery. Radiat. Oncol. J. 2018 36 4 265 275 10.3857/roj.2018.00381 30630265
    [Google Scholar]
  16. Andreassen C.N. Grau C. Lindegaard J.C. Chemical radioprotection: A critical review of amifostine as a cytoprotector in radiotherapy. Semin. Radiat. Oncol. 2003 13 62 72 10.1053/srao.2003.50006
    [Google Scholar]
  17. Murray D. Aminothiols. Radioprotectors. CRC Press 2021 53 107 10.4324/9781003068181‑5
    [Google Scholar]
  18. Genvresse I. Lange C. Schanz J. Schweigert M. Harder H. Possinger K. Späth-Schwalbe E. Tolerability of the cytoprotective agent amifostine in elderly patients receiving chemotherapy: a comparative study. Anticancer Drugs 2001 12 4 345 349 10.1097/00001813‑200104000‑00007 11335791
    [Google Scholar]
  19. Javadi A. Nikhbakht M.R. Ghasemian Yadegari J. Rustamzadeh A. Mohammadi M. Shirazinejad A. Azadbakht S. Abdi Z. In-vivo and in vitro assessments of the radioprotective potential natural and chemical compounds: a review. Int. J. Radiat. Biol. 2023 99 2 155 165 10.1080/09553002.2022.2078007 35549605
    [Google Scholar]
  20. Mönig H. Messerschmidt O. Streffer C. Chemical Radioprotection in Mammals and in Man BT. Radiation Exposure and Occupational Risks. Scherer E. Streffer C. Trott K-R. Berlin, Heidelberg Springer 1990 97 143
    [Google Scholar]
  21. Azman A.S. Mawang C-I. Abubakar S. Bacterial Pigments: The Bioactivities and as an Alternative for Therapeutic Applications. Nat. Prod. Commun. 2018 13 12 1934578X1801301 10.1177/1934578X1801301240
    [Google Scholar]
  22. Naik C. Isolation, Identification and Evaluation of Antioxidant, Anti-Inflammatory and Antimitotic Properties of Bioactive Pigment from Rhodococcus Corynebacterioides SCG11. IJAMBR 2020 8 1 14
    [Google Scholar]
  23. Jagetia G.C. Radioprotective Potential of Plants and Herbs against the Effects of Ionizing Radiation. J. Clin. Biochem. Nutr. 2007 40 2 74 81 10.3164/jcbn.40.74 18188408
    [Google Scholar]
  24. Clauditz A. Resch A. Wieland K.P. Peschel A. Götz F. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect. Immun. 2006 74 8 4950 4953 10.1128/IAI.00204‑06 16861688
    [Google Scholar]
  25. Devi M. Ramakrishnan E. Deka S. Parasar D.P. Bacteria as a source of biopigments and their potential applications. J. Microbiol. Methods 2024 219 106907 10.1016/j.mimet.2024.106907 38387652
    [Google Scholar]
  26. Ramesh C. Vinithkumar N. Kirubagaran R. Venil C. Dufossé L. Multifaceted Applications of Microbial Pigments: Current Knowledge, Challenges and Future Directions for Public Health Implications. Microorganisms 2019 7 7 186 10.3390/microorganisms7070186 31261756
    [Google Scholar]
  27. Usman H. Bacterial pigments and its significance. MOJ Bioequival. Bioavailab. 2018 4 3 285 288 10.15406/mojbb.2017.04.00073
    [Google Scholar]
  28. Agarwal H. Bajpai S. Mishra A. Kohli I. Varma A. Fouillaud M. Dufossé L. Joshi N.C. Bacterial Pigments and Their Multifaceted Roles in Contemporary Biotechnology and Pharmacological Applications. Microorganisms 2023 11 3 614 10.3390/microorganisms11030614 36985186
    [Google Scholar]
  29. Kumar Samanta A. Chaudhuri S. Dutta D. Antioxidant efficacy of carotenoid extract from bacterial strain Kocuria marina DAGII. Mater. Today Proc. 2016 3 10 3427 3433 10.1016/j.matpr.2016.10.023
    [Google Scholar]
  30. Kirti K. Amita S. Priti S. Mukesh Kumar A. Jyoti S. Colorful World of Microbes: Carotenoids and Their Applications. Adv. Biol. 2014 2014 1 13 10.1155/2014/837891
    [Google Scholar]
  31. Cooney J.J. Marks H.W. Jr Smith A.M. Isolation and Identification of Canthaxanthin from Micrococcus roseus. J. Bacteriol. 1966 92 2 342 345 10.1128/jb.92.2.342‑345.1966 16562117
    [Google Scholar]
  32. Correa-Llantén D.N. Amenábar M.J. Blamey J.M. Antioxidant capacity of novel pigments from an Antarctic bacterium. J. Microbiol. 2012 50 3 374 379 10.1007/s12275‑012‑2029‑1 22752899
    [Google Scholar]
  33. Durán N. Menck C.F.M. Chromobacterium violaceum: a review of pharmacological and industiral perspectives. Crit. Rev. Microbiol. 2001 27 3 201 222 10.1080/20014091096747 11596879
    [Google Scholar]
  34. Yang L.H. Xiong H. Lee O.O. Qi S.H. Qian P.Y. Effect of agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from a marine sponge. Lett. Appl. Microbiol. 2007 44 6 625 630 10.1111/j.1472‑765X.2007.02125.x 17576224
    [Google Scholar]
  35. Ambrožič Avguštin J. Žgur Bertok D. Kostanjšek R. Avguštin G. Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov. Antonie van Leeuwenhoek 2013 103 4 763 769 10.1007/s10482‑012‑9858‑0 23192307
    [Google Scholar]
  36. Marizcurrena J.J. Cerdá M.F. Alem D. Castro-Sowinski S. Living with pigments: The colour palette of antarctic life BT. The Ecological Role of Micro-Organisms in the Antarctic Environment. Castro-Sowinski S. Cham Springer 2019 65 82
    [Google Scholar]
  37. Yu D. Xu F. Valiente J. Wang S. Zhan J. An indigoidine biosynthetic gene cluster from Streptomyces chromofuscus ATCC 49982 contains an unusual IndB homologue. J. Ind. Microbiol. Biotechnol. 2013 40 1 159 168 10.1007/s10295‑012‑1207‑9 23053349
    [Google Scholar]
  38. Day P.A. Villalba M.S. Herrero O.M. Arancibia L.A. Alvarez H.M. Formation of indigoidine derived-pigments contributes to the adaptation of Vogesella sp. strain EB to cold aquatic iron-oxidizing environments. Antonie van Leeuwenhoek 2017 110 3 415 428 10.1007/s10482‑016‑0814‑2 27915412
    [Google Scholar]
  39. Rajashekarappa K.K. Basavarajappa A. Neelagund S.E. Mahadevan G.D. Achur R.N. Kumar P. Propitious catalytic response of immobilized α-amylase from G. thermoleovorans in modified APTES-Fe3O4 NPs for industrial bio-processing. Int. J. Biol. Macromol. 2024 269 Pt 1 132021 10.1016/j.ijbiomac.2024.132021 38697441
    [Google Scholar]
  40. Altschul S.F. Gish W. Miller W. Myers E.W. Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990 215 3 403 410 10.1016/S0022‑2836(05)80360‑2 2231712
    [Google Scholar]
  41. Mount D.W. Using the basic local alignment search tool (BLAST). Cold Spring Harb. Protoc. 2007 2007 pdb-top17
    [Google Scholar]
  42. Saitou N. Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987 4 4 406 425 10.1093/oxfordjournals.molbev.a040454 3447015
    [Google Scholar]
  43. Poddar K. Padhan B. Sarkar D. Sarkar A. Purification and optimization of pink pigment produced by newly isolated bacterial strain Enterobacter sp. PWN1. SN Appl. Sci. 2021 3 1 105 10.1007/s42452‑021‑04146‑x
    [Google Scholar]
  44. Numan M. Bashir S. Mumtaz R. Tayyab S. Rehman N.U. Khan A.L. Shinwari Z.K. Al-Harrasi A. Therapeutic applications of bacterial pigments: a review of current status and future opportunities. 3 Biotech 2018 8 207 10.1007/s13205‑018‑1227‑x
    [Google Scholar]
  45. Neelamegam R. Ezhilan B.P. GC-MS analysis of phytocomponents in the ethanol extract of Polygonum chinense L. Pharmacognosy Res. 2012 4 1 11 14 10.4103/0974‑8490.91028 22224055
    [Google Scholar]
  46. Thammarat P. Kulsing C. Wongravee K. Leepipatpiboon N. Nhujak T. Identification of volatile compounds and selection of discriminant markers for elephant dung coffee using static headspace gas chromatography—mass spectrometry and chemometrics. Molecules 2018 23 8 1910 10.3390/molecules23081910
    [Google Scholar]
  47. Hatano T. Kagawa H. Yasuhara T. Okuda T. Two new flavonoids and other constituents in licorice root. Their relative astringency and radical scavenging effects. Chem. Pharm. Bull. (Tokyo) 1988 36 6 2090 2097 10.1248/cpb.36.2090 3240445
    [Google Scholar]
  48. Benzie I.F.F. Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 1996 239 1 70 76 10.1006/abio.1996.0292 8660627
    [Google Scholar]
  49. Shalaby E. Shanab S. Comparison of DPPH and ABTS Assays for Determining Antioxidant Potential of Water and Methanol Extracts of Spirulina Platensis. Indian J. Geo-Mar. Sci. 2013 42 556 564
    [Google Scholar]
  50. Li S. Dong Y. Sun X. Zhao Y. Zhao L. Zhang W. Xiao T. Seasonal and spatial variations of Synechococcus in abundance, pigment types, and genetic diversity in a temperate semi-enclosed bay. Front. Microbiol. 2024 14 1322548 10.3389/fmicb.2023.1322548 38274747
    [Google Scholar]
  51. Sajjad W. Din G. Rafiq M. Iqbal A. Khan S. Zada S. Ali B. Kang S. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 2020 24 4 447 473 10.1007/s00792‑020‑01180‑2 32488508
    [Google Scholar]
  52. Singh A.K. Garg N. Lata P. Kumar R. Negi V. Vikram S. Lal R. Pontibacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int. J. Syst. Evol. Microbiol. 2014 64 Pt_1 254 259 10.1099/ijs.0.055319‑0 24052629
    [Google Scholar]
  53. Chen Z. Wu W. Wen Y. Zhang L. Wu Y. Farid M.S. El-Seedi H.R. Capanoglu E. Zhao C. Recent advances of natural pigments from algae. Food Production, Processing and Nutrition 2023 5 1 39 10.1186/s43014‑023‑00155‑y
    [Google Scholar]
  54. Saini R.K. Prasad P. Shang X. Keum Y.S. Advances in Lipid Extraction Methods—A Review. Int. J. Mol. Sci. 2021 22 24 13643 10.3390/ijms222413643 34948437
    [Google Scholar]
  55. Barros R.G.C. Andrade J.K.S. Denadai M. Nunes M.L. Narain N. Evaluation of bioactive compounds potential and antioxidant activity in some Brazilian exotic fruit residues. Food Res. Int. 2017 102 84 92 10.1016/j.foodres.2017.09.082 29196016
    [Google Scholar]
  56. Sowndhararajan K. Kang S.C. Free radical scavenging activity from different extracts of leaves of Bauhinia vahlii Wight & Arn. Saudi J. Biol. Sci. 2013 20 4 319 325 10.1016/j.sjbs.2012.12.005 24235867
    [Google Scholar]
  57. Lü J.M. Lin P.H. Yao Q. Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J. Cell. Mol. Med. 2010 14 4 840 860 10.1111/j.1582‑4934.2009.00897.x 19754673
    [Google Scholar]
  58. Gülçin İ. Alwasel S.H. DPPH Radical Scavenging Assay. Processes (Basel) 2023 11 8 2248 10.3390/pr11082248
    [Google Scholar]
  59. Magalhães L.M. Segundo M.A. Reis S. Lima J.L.F.C. Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta 2008 613 1 1 19 10.1016/j.aca.2008.02.047 18374697
    [Google Scholar]
  60. Sekkout Phytochemistry and pharmacological activities of essential oils, flavonoids, and ascorbic acid in Smyrnium olusatrum L.: A comprehensive review. Euro. J. Med. Chem. Rep. 2024 2024 100201
    [Google Scholar]
  61. Naguib Y.M.A. Antioxidant activities of astaxanthin and related carotenoids. J. Agric. Food Chem. 2000 48 4 1150 1154 10.1021/jf991106k 10775364
    [Google Scholar]
  62. Martemucci G. Costagliola C. Mariano M. D’andrea L. Napolitano P. D’Alessandro A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen (Basel) 2022 2 2 48 78 10.3390/oxygen2020006
    [Google Scholar]
  63. Nuszkiewicz J. Woźniak A. Szewczyk-Golec K. Ionizing Radiation as a Source of Oxidative Stress—The Protective Role of Melatonin and Vitamin D. Int. J. Mol. Sci. 2020 21 16 5804 10.3390/ijms21165804 32823530
    [Google Scholar]
  64. Phaniendra A. Jestadi D.B. Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015 30 1 11 26 10.1007/s12291‑014‑0446‑0 25646037
    [Google Scholar]
  65. Ogawa Y. Kobayashi T. Nishioka A. Kariya S. Hamasato S. Seguchi H. Yoshida S. Radiation-induced reactive oxygen species formation prior to oxidative DNA damage in human peripheral T cells. Int. J. Mol. Med. 2003 11 2 149 152 10.3892/ijmm.11.2.149 12525868
    [Google Scholar]
  66. Glorieux C. Liu S. Trachootham D. Huang P. Targeting ROS in cancer: rationale and strategies. Nat. Rev. Drug Discov. 2024 23 8 583 606 10.1038/s41573‑024‑00979‑4 38982305
    [Google Scholar]
  67. Rauf A. Khalil A.A. Awadallah S. Khan S.A. Abu-Izneid T. Kamran M. Hemeg H.A. Mubarak M.S. Khalid A. Wilairatana P. Reactive oxygen species in biological systems: Pathways, associated diseases, and potential inhibitors—A review. Food Sci. Nutr. 2024 12 2 675 693 10.1002/fsn3.3784 38370049
    [Google Scholar]
  68. Chu H.L. Chien J.C. Duh P.D. Protective effect of Cordyceps militaris against high glucose-induced oxidative stress in human umbilical vein endothelial cells. Food Chem. 2011 129 3 871 876 10.1016/j.foodchem.2011.05.037 25212312
    [Google Scholar]
  69. Motallebnejad M. Zahedpasha S. Moghadamnia A.A. Kazemi S. Moslemi D. Pouramir M. Asgharpour F. . Protective effect of lycopene on oral mucositis and antioxidant capacity of blood plasma in the rat exposed to gamma radiation TT. babol-caspjim 2020 11 419 425 10.22088/cjim.11.4.419
    [Google Scholar]
  70. Srinivasan M. Devipriya N. Kalpana K.B. Menon V.P. Lycopene: An antioxidant and radioprotector against γ-radiation-induced cellular damages in cultured human lymphocytes. Toxicology 2009 262 1 43 49 10.1016/j.tox.2009.05.004 19450652
    [Google Scholar]
  71. Nagpal I. Abraham S.K. Protective effects of tea polyphenols and β-carotene against γ-radiation induced mutation and oxidative stress in Drosophila melanogaster. Genes Environ. 2017 39 1 24 10.1186/s41021‑017‑0084‑x 29118865
    [Google Scholar]
  72. Konopacka M. Rzeszowska-Wolny J. Antioxidant Vitamins C, E and β-carotene reduce DNA damage before as well as after γ-ray irradiation of human lymphocytes in vitro. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2001 491 1-2 1 7 10.1016/S1383‑5718(00)00133‑9 11287291
    [Google Scholar]
  73. Tian B. Xu Z. Sun Z. Lin J. Hua Y. Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim. Biophys. Acta, Gen. Subj. 2007 1770 6 902 911 10.1016/j.bbagen.2007.01.016 17368731
    [Google Scholar]
  74. Biswal S. Oxidative stress and astaxanthin: The novel supernutrient carotenoid. Int. J. Health Allied Sci. 2014 3 3 147 10.4103/2278‑344X.138587
    [Google Scholar]
  75. Guardado Yordi E. Pérez Martínez A. Radice M. Scalvenzi L. Abreu-Naranjo R. Uriarte E. Santana L. Matos M.J. Seaweeds as Source of Bioactive Pigments with Neuroprotective and/or Anti-Neurodegenerative Activities: Astaxanthin and Fucoxanthin. Mar. Drugs 2024 22 7 327 10.3390/md22070327 39057436
    [Google Scholar]
  76. Garcia M.P. Regueiras A. Lopes G. Matos G. da Silva L.P. Cerqueira M.T. Cardoso H. Correia N. Saraiva J.A. Silva J.L. Martins R. Marques A.P. Nonthermal high-pressure microalgae extracts: A new source of natural ingredients for cosmetics. Algal Res. 2024 81 103591 10.1016/j.algal.2024.103591
    [Google Scholar]
  77. Zhang J. Yang H. Sun Y. Yan B. Chen W. Fan D. The potential use of microalgae for nutrient supply and health enhancement in isolated and confined environments. Compr. Rev. Food Sci. Food Saf. 2024 23 4 e13418 10.1111/1541‑4337.13418 39073089
    [Google Scholar]
/content/journals/npj/10.2174/0122103155341557241010013223
Loading
/content/journals/npj/10.2174/0122103155341557241010013223
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: radioprotectant ROS ; Pontibacter indicus ; Flow cytometry ; antioxidant ; ABTS ; FRAP
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test