Skip to content
2000
image of Polyene Macrolactams from Marine Micromonospora sp.

Abstract

Introduction

Three novel macrolactams, FW8-1 (), FW8-4 (), and FW60-20 (), were isolated from a culture of sp. The structures of these compounds were elucidated using Mass Spectrometry (MS) and comprehensive Nuclear Magnetic Resonance (NMR) analyses.

Methods

The relative configurations of compounds - were assigned through theoretical calculations of their NMR spectra.

Results

The isolation and determination of the relative configurations of these macrolactams have provided fresh perspectives on the biosynthetic pathways, leading to the formation of polyene macrolactams.

Conclusion

Further, virtual screening and bioactivity predictions have suggested compounds - to possess potential anti-tumor, anti-inflammatory, and neuroprotective properties.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155340964241009112348
2024-10-11
2024-11-23
Loading full text...

Full text loading...

References

  1. Carroll A.R. Copp B.R. Davis R.A. Keyzers R.A. Prinsep M.R. Marine natural products. Nat. Prod. Rep. 2023 40 2 275 325 10.1039/D2NP00083K 36786022
    [Google Scholar]
  2. Haque N. Parveen S. Tang T. Wei J. Huang Z. Marine natural products in clinical use. Mar. Drugs 2022 20 8 528 10.3390/md20080528 36005531
    [Google Scholar]
  3. Hong G.L. Karunasagara S. Jung J.Y. Scaphechinus mirabilis extract effectively inhibits the proliferation of BPH-1 and LNCaP prostate epithelial cells. Nat. Prod. J. 2022 12 2 e030621193849
    [Google Scholar]
  4. Dehghani H. Rashedinia M. Mohebbi G. Vazirizadeh A. Studies on secondary metabolites and in vitro and in silico anticholinesterases activities of the sea urchin Echinometra mathaei crude venoms from the persian gulf-bushehr. Nat. Prod. J. 2024 14 2 e220623218175 10.2174/2210315514666230622144244
    [Google Scholar]
  5. Hifnawy M.S. Fouda M.M. Sayed A.M. Mohammed R. Hassan H.M. AbouZid S.F. Rateb M.E. Keller A. Adamek M. Ziemert N. Abdelmohsen U.R. The genus Micromonospora as a model microorganism for bioactive natural product discovery. RSC Advances 2020 10 35 20939 20959 10.1039/D0RA04025H 35517724
    [Google Scholar]
  6. Qi S. Gui M. Li H. Yu C. Li H. Zeng Z. Sun P. Secondary metabolites from marine Micromonospora: Chemistry and bioactivities. Chem. Biodivers. 2020 17 4 e2000024 10.1002/cbdv.202000024 32100940
    [Google Scholar]
  7. Kimura T. Iwatsuki M. Asami Y. Ishiyama A. Hokari R. Otoguro K. Matsumoto A. Sato N. Shiomi K. Takahashi Y. Ōmura S. Nakashima T. Anti-trypanosomal compound, sagamilactam, a new polyene macrocyclic lactam from Actinomadura sp. K13-0306. J. Antibiot. (Tokyo) 2016 69 11 818 824 10.1038/ja.2016.28 27025350
    [Google Scholar]
  8. Oh D.C. Poulsen M. Currie C.R. Clardy J. Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated Streptomyces sp. Org. Lett. 2011 13 4 752 755 10.1021/ol102991d 21247188
    [Google Scholar]
  9. Shin Y.H. Beom J.Y. Chung B. Shin Y. Byun W.S. Moon K. Bae M. Lee S.K. Oh K.B. Shin J. Yoon Y.J. Oh D.C. Bombyxamycins A and B, cytotoxic macrocyclic lactams from an intestinal bacterium of the silkworm Bombyx mori. Org. Lett. 2019 21 6 1804 1808 10.1021/acs.orglett.9b00384 30801193
    [Google Scholar]
  10. Wang P. Wang D. Zhang R. Wang Y. Kong F. Fu P. Zhu W. Novel macrolactams from a deep-sea-derived Streptomyces Species. Mar. Drugs 2020 19 1 13 10.3390/md19010013 33383849
    [Google Scholar]
  11. Edmonds L.C. Davidson L. Bertino J.S. Solubility and stability of amphotericin B in human serum. Ther. Drug Monit. 1989 11 3 323 326 10.1097/00007691‑198905000‑00015 2728090
    [Google Scholar]
  12. Sousa F. Nascimento C. Ferreira D. Reis S. Costa P. Reviving the interest in the versatile drug nystatin: A multitude of strategies to increase its potential as an effective and safe antifungal agent. Adv. Drug Deliv. Rev. 2023 199 114969 10.1016/j.addr.2023.114969 37348678
    [Google Scholar]
  13. Hamill R.J. Amphotericin B formulations: A comparative review of efficacy and toxicity. Drugs 2013 73 9 919 934 10.1007/s40265‑013‑0069‑4 23729001
    [Google Scholar]
  14. Zhao W. Jiang H. Liu X.W. Zhou J. Wu B. Polyene macrolactams from marine and terrestrial sources: Structure, production strategies, biosynthesis and bioactivities. Mar. Drugs 2022 20 6 360 10.3390/md20060360 35736163
    [Google Scholar]
  15. Yan S. Zeng M. Wang H. Zhang H. Micromonospora: A prolific source of bioactive secondary metabolites with therapeutic potential. J. Med. Chem. 2022 65 13 8735 8771 10.1021/acs.jmedchem.2c00626 35766919
    [Google Scholar]
  16. Sun F. Chen L. Zhao W. Zhou J. Fang Z. Jiang H. A macrolactam compound FW05328-d and its efficient fermentation method.2021. CN Patent 112939865A 2021
  17. Fei S. Jian Z. Wei Z. Hong J. Method for producing macrolide compound FW05328-1 through high-efficiency fermentation. CN Patent 112608952A 2021
  18. Howarth A. Ermanis K. Goodman J.M. DP4-AI automated NMR data analysis: Straight from spectrometer to structure. Chem. Sci. (Camb.) 2020 11 17 4351 4359 10.1039/D0SC00442A 34122893
    [Google Scholar]
  19. Frisch M.J. Trucks G.W. Schlegel H.B. Scuseria G.E. Robb M.A. Cheeseman J.R. Scalmani G.V/ Barone V. Petersson G.A. Nakatsuji H. GaussView 5.0. Wallingford Gaussian, Inc. Wallingford CT 2016
    [Google Scholar]
  20. Franco B.A. Luciano E.R. Sarotti A.M. Zanardi M.M. DP4+App: Finding the best balance between computational cost and predictive capacity in the structure elucidation process by DP4+. Factors analysis and automation. J. Nat. Prod. 2023 86 10 2360 2367 10.1021/acs.jnatprod.3c00566 37721602
    [Google Scholar]
  21. Rex J.H. Ghannoum M.A. Alexander B.D. Andes D. Brown S.D. Diekema D.J. Espinel-Ingroff A. Fowler C.L. Johnson E.M. Knapp C.C. M44-A2: Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts;Approved Guideline Wayne, PA, USA Clinical and Laboratory Standards Institute 2009 2nd
    [Google Scholar]
  22. Yin X. Wang X. Li Y. Wang J. Wang Y. Deng Y. Hou T. Liu H. Luo P. Yao X. CODD-Pred: A web server for efficient target identification and bioactivity prediction of small molecules. J. Chem. Inf. Model. 2023 63 20 6169 6176 10.1021/acs.jcim.3c00685 37820365
    [Google Scholar]
  23. Chen X. Wang Y. Ma N. Tian J. Shao Y. Zhu B. Wong Y.K. Liang Z. Zou C. Wang J. Target identification of natural medicine with chemical proteomics approach: Probe synthesis, target fishing and protein identification. Signal Transduct. Target. Ther. 2020 5 1 72 10.1038/s41392‑020‑0186‑y 32435053
    [Google Scholar]
  24. Galati S. Di Stefano M. Martinelli E. Poli G. Tuccinardi T. Recent advances in in silico target fishing. Molecules 2021 26 17 5124 10.3390/molecules26175124 34500568
    [Google Scholar]
  25. Pinzi L. Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019 20 18 4331 10.3390/ijms20184331 31487867
    [Google Scholar]
  26. Nie Y.L. Wu Y.D. Wang C.X. Lin R. Xie Y. Fang D.S. Jiang H. Lian Y.Y. Structure elucidation and antitumour activity of a new macrolactam produced by marine-derived actinomycete Micromonospora sp. FIM05328. Nat. Prod. Res. 2018 32 18 2133 2138 10.1080/14786419.2017.1366479 28823189
    [Google Scholar]
  27. Booth T.J. Alt S. Capon R.J. Wilkinson B. Synchronous intramolecular cycloadditions of the polyene macrolactam polyketide heronamide C. Chem. Commun. (Camb.) 2016 52 38 6383 6386 10.1039/C6CC01930G 27091090
    [Google Scholar]
  28. Zhao W. Jiang H. Ge Y. Zhou C. Ma Y. Zhou J. Xie Y. Wang Y. Wu B. Antimicrobial spiroketal macrolides and dichloro-diketopiperazine from Micromonospora sp. FIMYZ51. Fitoterapia 2024 175 105946 10.1016/j.fitote.2024.105946 38575087
    [Google Scholar]
  29. Akhtar F. Muhammad Sharif H. Arshad Mallick M. Zahoor F. Abdulmalik A. Baig W. Shujaat N. Gul S. Bibi G. Ramzan R. Murtaza G. Capsaicin: Its biological activities and in silico target fishing. Acta Pol. Pharm. 2017 74 2 321 329 29624237
    [Google Scholar]
  30. Prieto-Martínez F.D. Norinder U. Medina-Franco J.L. Cheminformatics explorations of natural products. Prog. Chem. Org. Nat. Prod. 2019 110 1 35 10.1007/978‑3‑030‑14632‑0_1 31621009
    [Google Scholar]
  31. Wu X.F. Wei X.H. Wu Y.Z. Xia G.Y. Xia H. Wang L.Y. Shang H.C. Lin S. Progress of target determination and mechanism of bioactive components of traditional Chinese medicine. Zhongguo Zhongyao Zazhi 2022 47 17 4565 4573 36164861
    [Google Scholar]
  32. Zanardi M.M. Suárez A.G. Sarotti A.M. Determination of the relative configuration of terminal and spiroepoxides by computational methods. Advantages of the inclusion of unscaled data. J. Org. Chem. 2017 82 4 1873 1879 10.1021/acs.joc.6b02129 28209066
    [Google Scholar]
/content/journals/npj/10.2174/0122103155340964241009112348
Loading
/content/journals/npj/10.2174/0122103155340964241009112348
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test