Skip to content
2000
image of Unveiling the Underlying Mechanisms Related to the Biological Activities of Cynometra cauliflora

Abstract

Linn. (), a member of the Fabaceae family within the genus, is an underrated medicinal plant in Malaysia. It features frog-like fruits and is known locally as Namnam. The plant grows in tropical regions and is used in the traditional treatment of various medical conditions. Previous studies have revealed a broad range of its pharmacological benefits, including antioxidant, anti-inflammatory, anti-diabetic, anti-lipase, anti-diarrheal, cytotoxic, anti-microbial, and anti-cholinesterase properties. The active constituents identified in are thought to contribute to its diverse range of biological activities. Research shows that different parts of contain phenolic compounds, tannins, saponins, and flavonoids. The leaves and bark also have cardiac glycosides, while the fruit is rich in flavonoids, triterpenoids, saponins, and tannins. Furthermore, ethanol extracts of its leaves were found to contain vitamin C and its major constituent, vitexin. In this review, the biological activities of are explored and reviewed through various literature sources, aiming to highlight the mechanisms and compounds that underlie its potential as a source for natural therapies.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155337729240926033345
2024-10-09
2024-11-26
Loading full text...

Full text loading...

References

  1. Dwyer J.D. The new world species of Cynometra. Ann. Mo. Bot. Gard. 1958 45 4 313 345 10.2307/2394543
    [Google Scholar]
  2. WFO An Online Flora of All Known Plants. 2024 Available From: http://www.worldfloraonline.org
  3. Kew Science Welcome to Plants of the World Online. 2024 Available From: http://powo.science.kew.org
  4. Sabiha S. Serrano R. Hasan K. Moreira da Silva I.B. Rocha J. Islam N. Silva O. The genus Cynometra: A review of ethnomedicine, chemical, and biological data. Plants 2022 11 24 3504 10.3390/plants11243504 36559616
    [Google Scholar]
  5. Ragavan P. Rana T.S. Ravichandran K. Jayaraj R.S.C. Sivakumar K. Saxena A. Mohan P.M. Note on identity and distribution of Cynometra iripa kostel. And C. ramiflora L. (Fabaceae) in the Andaman and Nicobar Islands, India. Check List 2017 13 6 805 812 10.15560/13.6.805
    [Google Scholar]
  6. Seyedan A. Mohamed Z. Alshagga M.A. Koosha S. Alshawsh M.A. Cynometra cauliflora Linn. Attenuates metabolic abnormalities in high-fat diet-induced obese mice. J. Ethnopharmacol. 2019 236 173 182 10.1016/j.jep.2019.03.001 30851371
    [Google Scholar]
  7. Rabeta M.S. Nur Faraniza R. Total phenolic content and ferric reducing antioxidant power of the leaves and fruits of Garcinia atrovirdis and Cynometra cauliflora. Int. Food Res. J. 2013 20 4 1691
    [Google Scholar]
  8. Aziz A. Iqbal M. Antioxidant activity and phytochemical composition of Cynometra cauliflora. J. Exp. Integr. Med. 2013 3 4 337 341 10.5455/jeim.250813.or.086
    [Google Scholar]
  9. Jamaluddin J. Antioxidant activities and phytochemical analysis of muntingia calabural and cynometra cauliflora. 2013 Available From: http://discol.umk.edu.my/id/eprint/5807/
  10. Perera H.D.S.M. Samarasekera J.K.R.R. Handunnetti S.M. Weerasena O.V.D.S.J. In vitro anti-inflammatory and anti-oxidant activities of Sri Lankan medicinal plants. Ind. Crops Prod. 2016 94 610 620 10.1016/j.indcrop.2016.09.009
    [Google Scholar]
  11. Sumarlin L.O. Hadera M. Chalid S.Y. Sukandar D. Aktivitas antioksidan kombinasi madu monoflora dengan ekstrak daun namnam (Cynometra cauliflora L.). ALCHEMY 2018 6 1 10 17 10.18860/al.v6i1.4736
    [Google Scholar]
  12. Ado M. Abas F. Mohammed A. Ghazali H. Anti- and pro-lipase activity of selected medicinal, herbal and aquatic plants, and structure elucidation of an anti-lipase compound. Molecules 2013 18 12 14651 14669 10.3390/molecules181214651 24287996
    [Google Scholar]
  13. Sumarlin L.O. Suprayogi A. Rahminiwati M. Satyaningtijas A. Sukandar D. Nugraha A.T. Amalia I. Antidiabetic and antidiarrheal activity from extract of namnam (Cynometra cauliflora) leaf. Proceedings of the International Conference on Global Resource Conservation Malang, Indonesia 2016 2 4
    [Google Scholar]
  14. Sumarlin L.O. Sukandar D. Pratiwi L. Aktivitas Penghambatan α-Glukosidase Campuran Ekstrak Daun Namnam (Cynometra cauliflora L.) dan Madu Kaliandra. al-Kimiya 2020 6 2 87 94
    [Google Scholar]
  15. Sumarlin L.O. Suprayogi A. Rahminiwati M. Satyaningtijas A. Nugraha A.T. Sukandar D. Pangestika H. Pratiwi L. Identification of compounds flavonoids Namnam leaf extract (Cynometra cauliflora) as inhibiting A-Glucosidase. J. Phys. Conf. Ser. 2020 1594 1 012005 10.1088/1742‑6596/1594/1/012005
    [Google Scholar]
  16. Tajudin T.J.S.A. Mat N. Siti-Aishah A.B. Yusran A.A.M. Alwi A. Ali A.M. Cytotoxicity, antiproliferative effects, and apoptosis induction of methanolic extract of Cynometra cauliflora Linn. whole fruit on human promyelocytic leukemia HL-60 cells. Evidence-based Complement. Evid. Based Complement. Alternat. Med. 2012 2012 1 127373 23227094
    [Google Scholar]
  17. Abd Wahab N.Z. Badya N. Ibrahim N. Kamarudin M.K.A. Juahir H. Toriman M.E. Antiviral activity of Cynometra cauliflora leaves methanolic extract towards dengue virus type 2. Int. J. Engine. Tech. (UAE) 2018 7 14 344 347
    [Google Scholar]
  18. Wahab N.Z.A. Badya N. Ibrahim N. Kamarudin M.K.A. Phytochemistry and antibacterial activity of Cynometra cauliflora. Indian J. Public Health Res. Dev. 2019 10 4 765 10.5958/0976‑5506.2019.00795.2
    [Google Scholar]
  19. Abd Wahab N.Z. Azizul A. Badya N. Ibrahim N. Antiviral activity of an extract from leaves of the tropical plant Cynometra cauliflora. Pharmacogn. J. 2021 13 3 752 757 10.5530/pj.2021.13.96
    [Google Scholar]
  20. Ulpiyah Z. Shita A.D.P. Wahyukundari M.A. Inhibition of namnam (Cynometra cauliflora L.) leaves extract on the growth of Porphyromonas gingivalis. Padjadjaran J. Dentist. 2019 31 2 106 111 10.24198/pjd.vol31no2.18540
    [Google Scholar]
  21. Khalil R.A. Syed Mohamad S.A. Abdul Rahman N.R.H. Kamal Ikhsan N.A. Mohamed Yunus N. Ajibola O.O. Abd Mutalib N. Bin Mohd Amin M.C.I. CHARACTERISATION OF ENDOPHYTIC BACTERIA FROM NAM-NAM PLANTS (Cynometra cauliflora) FOR ANTIBACTERIAL ACTIVITY AND PRODUCTION OF PLANT GROWTH PROMOTING FACTORS. Malays. Appl. Biol. 2022 51 4 119 126 10.55230/mabjournal.v51i4.19
    [Google Scholar]
  22. Himanshi C. Suresh K. Medicinal plants having anti-cholinesterase activity from different regions of the world. World J. Pharm. Res. 2015 4 10 638 653
    [Google Scholar]
  23. Amir Rawa M.S. Hassan Z. Murugaiyah V. Nogawa T. Wahab H.A. Anti-cholinesterase potential of diverse botanical families from Malaysia: Evaluation of crude extracts and fractions from liquid-liquid extraction and acid-base fractionation. J. Ethnopharmacol. 2019 245 112160 10.1016/j.jep.2019.112160 31419500
    [Google Scholar]
  24. Ado M.A. Abas F. Ismail I.S. Ghazali H.M. Shaari K. Chemical profile and antiacetylcholinesterase, antityrosinase, antioxidant and α‐glucosidase inhibitory activity of Cynometra cauliflora L. leaves. J. Sci. Food Agric. 2015 95 3 635 642 10.1002/jsfa.6832 25048579
    [Google Scholar]
  25. Sukandar D. Amelia E.R. Karakterisasi senyawa aktif antioksidan dan antibakteri dalam ekstrak etanol buah Namnam (Cynometra cauliflora L.). Jurnal Kimia VALENSI 2013 3 1 35 40 10.15408/jkv.v3i1.327
    [Google Scholar]
  26. Adawiah A. Sukandar D. Muawanah A. Aktivitas antioksidan dan kandungan komponen bioaktif sari buah Namnam. Jurnal Kimia VALENSI 2015 1 2 130 136 10.15408/jkv.v0i0.3155
    [Google Scholar]
  27. Rekha C. Poornima G. Manasa M. Abhipsa V. Devi J.P. Kumar H.T.V. Kekuda T.R.P. Ascorbic acid, total phenol content and antioxidant activity of fresh juices of four ripe and unripe citrus fruits. Chem. Sci. Trans. 2012 1 2 303 310 10.7598/cst2012.182
    [Google Scholar]
  28. Sukandar D. Nurbayti S. Rudiana T. Husna T.W. Isolation and structure determination of antioxidants active compounds from ethyl acetate extract of heartwood Namnam (Cynometra cauliflora L.). Jurnal Kimia Terapan Indonesia 2017 19 1 11 17 10.14203/jkti.v19i1.325
    [Google Scholar]
  29. Ikram E.H.K. Eng K.H. Jalil A.M.M. Ismail A. Idris S. Azlan A. Nazri H.S.M. Diton N.A.M. Mokhtar R.A.M. Antioxidant capacity and total phenolic content of Malaysian underutilized fruits. J. Food Compos. Anal. 2009 22 5 388 393 10.1016/j.jfca.2009.04.001
    [Google Scholar]
  30. Samling B.A. Assim Z. Tong W.Y. Leong C.R. Ab Rashid S. Nik Mohamed Kamal N.N.S. Muhamad M. Tan W.N. Cynometra cauliflora L.: An indigenous tropical fruit tree in Malaysia bearing essential oils and their biological activities. Arab. J. Chem. 2021 14 9 103302 10.1016/j.arabjc.2021.103302
    [Google Scholar]
  31. Anliza S. Rachmawati N. Activity of ethanol extract namnam (Cynometra cauliflora L.) leaves toward antioxidant. SANITAS: Jurnal Teknologi dan Seni Kesehatan 2023 14 1 1 10
    [Google Scholar]
  32. Zeeshan Bhatti M. Karim A. Plant natural products: A promising source of hyaluronidase enzyme inhibitors. Extracellular Matrix-Developments and Therapeutics London InTechOpen 2021 135
    [Google Scholar]
  33. Zhou H. Zhang X. Li B. Yue R. Fast and efficient identification of hyaluronidase specific inhibitors from Chrysanthemum morifolium Ramat. using UF-LC-MS technique and their anti-inflammation effect in macrophages. Heliyon 2023 9 2 e13709 10.1016/j.heliyon.2023.e13709 36852058
    [Google Scholar]
  34. Chajara A. Raoudi M. Delpech B. Leroy M. Basuyau J.P. Levesque H. Increased hyaluronan and hyaluronidase production and hyaluronan degradation in injured aorta of insulin-resistant rats. Arterioscler. Thromb. Vasc. Biol. 2000 20 6 1480 1487 10.1161/01.ATV.20.6.1480 10845861
    [Google Scholar]
  35. Li X. Xu R. Cheng Z. Song Z. Wang Z. Duan H. Wu X. Ni T. Comparative study on the interaction between flavonoids with different core structures and hyaluronidase. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021 262 120079 10.1016/j.saa.2021.120079 34175762
    [Google Scholar]
  36. Napoleone E. Di Santo A. Amore C. Baccante G. Di Febbo C. Porreca E. De Gaetano G. Donati M.B. Lorenzet R. Leptin induces tissue factor expression in human peripheral blood mononuclear cells: A possible link between obesity and cardiovascular risk? J. Thromb. Haemost. 2007 5 7 1462 1468 10.1111/j.1538‑7836.2007.02578.x 17425664
    [Google Scholar]
  37. Conde J. Scotece M. Gómez R. Gómez-Reino J.J. Lago F. Gualillo O. At the crossroad between immunity and metabolism: Focus on leptin. Expert Rev. Clin. Immunol. 2010 6 5 801 808 10.1586/eci.10.48 20828288
    [Google Scholar]
  38. Fain J.N. Madan A.K. Hiler M.L. Cheema P. Bahouth S.W. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 2004 145 5 2273 2282 10.1210/en.2003‑1336 14726444
    [Google Scholar]
  39. Mohamed-Ali V. Goodrick S. Rawesh A. Katz D.R. Miles J.M. Yudkin J.S. Klein S. Coppack S.W. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo. J. Clin. Endocrinol. Metab. 1997 82 12 4196 4200 10.1210/jc.82.12.4196 9398739
    [Google Scholar]
  40. Leal V.O. Mafra D. Adipokines in obesity. Clin. Chim. Acta 2013 419 87 94 10.1016/j.cca.2013.02.003 23422739
    [Google Scholar]
  41. Nieto-Vazquez I. Fernández-Veledo S. Krämer D.K. Vila-Bedmar R. Garcia-Guerra L. Lorenzo M. Insulin resistance associated to obesity: The link TNF-alpha. Arch. Physiol. Biochem. 2008 114 3 183 194 10.1080/13813450802181047 18629684
    [Google Scholar]
  42. Lagathu C. Bastard J.P. Auclair M. Maachi M. Capeau J. Caron M. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: Prevention by rosiglitazone. Biochem. Biophys. Res. Commun. 2003 311 2 372 379 10.1016/j.bbrc.2003.10.013 14592424
    [Google Scholar]
  43. Fasshauer M. Blüher M. Adipokines in health and disease. Trends Pharmacol. Sci. 2015 36 7 461 470 10.1016/j.tips.2015.04.014 26022934
    [Google Scholar]
  44. Mattu H.S. Randeva H.S. Role of adipokines in cardiovascular disease. J. Endocrinol. 2013 216 1 T17 T36 10.1530/JOE‑12‑0232 23160967
    [Google Scholar]
  45. Lau W.B. Ohashi K. Wang Y. Ogawa H. Murohara T. Ma X.L. Ouchi N. Role of adipokines in cardiovascular disease. Circ. J. 2017 81 7 920 928 10.1253/circj.CJ‑17‑0458 28603178
    [Google Scholar]
  46. Senesi P. Luzi L. Terruzzi I. Adipokines, myokines, and cardiokines: The role of nutritional interventions. Int. J. Mol. Sci. 2020 21 21 8372 10.3390/ijms21218372 33171610
    [Google Scholar]
  47. Griffin M.J. Nipping adipocyte inflammation in the bud. Immunometabolism (Cobham) 2021 3 2 e210012 10.20900/immunometab20210012 33732506
    [Google Scholar]
  48. Sun S.C. Liu Z.G. A special issue on NF-κB signaling and function. Cell Res. 2011 21 1 1 2 10.1038/cr.2011.1 21196938
    [Google Scholar]
  49. Vallabhapurapu S. Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu. Rev. Immunol. 2009 27 1 693 733 10.1146/annurev.immunol.021908.132641 19302050
    [Google Scholar]
  50. Zhang H. Sun S.C. NF-κB in inflammation and renal diseases. Cell Biosci. 2015 5 1 63 10.1186/s13578‑015‑0056‑4
    [Google Scholar]
  51. Sun S.C. The noncanonical NF‐κB pathway. Immunol. Rev. 2012 246 1 125 140 10.1111/j.1600‑065X.2011.01088.x 22435551
    [Google Scholar]
  52. Sun S.C. Non-canonical NF-κB signaling pathway. Cell Res. 2011 21 1 71 85 10.1038/cr.2010.177 21173796
    [Google Scholar]
  53. Yamazaki H. Hiramatsu N. Hayakawa K. Tagawa Y. Okamura M. Ogata R. Huang T. Nakajima S. Yao J. Paton A.W. Paton J.C. Kitamura M. Activation of the Akt-NF-kappaB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response. J. Immunol. 2009 183 2 1480 1487 10.4049/jimmunol.0900017 19561103
    [Google Scholar]
  54. Poltorak A. He X. Smirnova I. Liu M. Y. Van Huffel C. Du X. Birdwell D. Alejos E. Silva M. Galanos C. Freudenberg M. Ricciardi-Castagnoli P. Layton B. Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science (1979) 1998 282 5396 2085 2088
    [Google Scholar]
  55. Qureshi S.T. Larivière L. Leveque G. Clermont S. Moore K.J. Gros P. Malo D. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 1999 189 4 615 625 10.1084/jem.189.4.615 9989976
    [Google Scholar]
  56. Pal D. Dasgupta S. Kundu R. Maitra S. Das G. Mukhopadhyay S. Ray S. Majumdar S.S. Bhattacharya S. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 2012 18 8 1279 1285 10.1038/nm.2851 22842477
    [Google Scholar]
  57. Schaeffler A. Gross P. Buettner R. Bollheimer C. Buechler C. Neumeier M. Kopp A. Schoelmerich J. Falk W. Fatty acid‐induced induction of Toll‐like receptor‐4/nuclear factor‐κB pathway in adipocytes links nutritional signalling with innate immunity. Immunology 2009 126 2 233 245 10.1111/j.1365‑2567.2008.02892.x 18624726
    [Google Scholar]
  58. Suganami T. Tanimoto-Koyama K. Nishida J. Itoh M. Yuan X. Mizuarai S. Kotani H. Yamaoka S. Miyake K. Aoe S. Kamei Y. Ogawa Y. Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler. Thromb. Vasc. Biol. 2007 27 1 84 91 10.1161/01.ATV.0000251608.09329.9a 17082484
    [Google Scholar]
  59. Shi H. Kokoeva M.V. Inouye K. Tzameli I. Yin H. Flier J.S. TLR4 links innate immunity and fatty acid–induced insulin resistance. J. Clin. Invest. 2006 116 11 3015 3025 10.1172/JCI28898 17053832
    [Google Scholar]
  60. Suganami T. Mieda T. Itoh M. Shimoda Y. Kamei Y. Ogawa Y. Attenuation of obesity-induced adipose tissue inflammation in C3H/HeJ mice carrying a Toll-like receptor 4 mutation. Biochem. Biophys. Res. Commun. 2007 354 1 45 49 10.1016/j.bbrc.2006.12.190 17210129
    [Google Scholar]
  61. He Q. Yang Q. Zhou Q. Zhu H. Niu W. Feng J. Wang Y. Cao J. Chen B. Effects of varying degrees of intermittent hypoxia on proinflammatory cytokines and adipokines in rats and 3T3-L1 adipocytes. PLoS One 2014 9 1 e86326 10.1371/journal.pone.0086326 24466027
    [Google Scholar]
  62. Taylor C.T. Kent B.D. Crinion S.J. McNicholas W.T. Ryan S. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression. Biochem. Biophys. Res. Commun. 2014 447 4 660 665 10.1016/j.bbrc.2014.04.062 24755071
    [Google Scholar]
  63. Lee M.Y.K. Wang Y. Mak J.C.W. Ip M.S.M. Intermittent hypoxia induces NF-κB-dependent endothelial activation via adipocyte-derived mediators. Am. J. Physiol. Cell Physiol. 2016 310 6 C446 C455 10.1152/ajpcell.00240.2015 26739492
    [Google Scholar]
  64. Tang Y. Wang J. Cai W. Xu J. RAGE/NF-κB pathway mediates hypoxia-induced insulin resistance in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 2020 521 1 77 83 10.1016/j.bbrc.2019.10.076 31629469
    [Google Scholar]
  65. Weidemann A. Lovas A. Rauch A. Andreas N. von Maltzahn J. Riemann M. Weih F. Classical and alternative NF-κB signaling cooperate in regulating adipocyte differentiation and function. Int. J. Obes. 2016 40 3 452 459 10.1038/ijo.2015.198 26403432
    [Google Scholar]
  66. Jurga L. Vanessa H. Elisabet A.N. Andrea D. Lennart B. Erik N. Dominique L. Peter A. Mikael R. NF-κB is important for TNF-α-induced lipolysis in human adipocytes. J. Lipid Res. 2007 48 5 1069 1077 10.1194/jlr.M600471‑JLR200 17272828
    [Google Scholar]
  67. Qi R. Huang J. Wang Q. Liu H. Wang R. Wang J. Yang F. MicroRNA‐224‐5p regulates adipocyte apoptosis induced by TNFα via controlling NF‐κB activation. J. Cell. Physiol. 2018 233 2 1236 1246 10.1002/jcp.25992 28488777
    [Google Scholar]
  68. Ruan H. Hacohen N. Golub T.R. Van Parijs L. Lodish H.F. Tumor necrosis factor-α suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: Nuclear factor-kappaB activation by TNF-α is obligatory. Diabetes 2002 51 5 1319 1336 10.2337/diabetes.51.5.1319 11978627
    [Google Scholar]
  69. Tourniaire F. Romier-Crouzet B. Lee J.H. Marcotorchino J. Gouranton E. Salles J. Malezet C. Astier J. Darmon P. Blouin E. Walrand S. Ye J. Landrier J.F. Chemokine expression in inflamed adipose tissue is mainly mediated by NF-κB. PLoS One 2013 8 6 e66515 10.1371/journal.pone.0066515 23824685
    [Google Scholar]
  70. Schmitz M.L. Shaban M.S. Albert B.V. Gökçen A. Kracht M. The crosstalk of endoplasmic reticulum (ER) stress pathways with NF-κB: Complex mechanisms relevant for cancer, inflammation and infection. Biomedicines 2018 6 2 58 10.3390/biomedicines6020058 29772680
    [Google Scholar]
  71. Kawasaki N. Asada R. Saito A. Kanemoto S. Imaizumi K. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci. Rep. 2012 2 1 799 10.1038/srep00799 23150771
    [Google Scholar]
  72. Jiao P. Ma J. Feng B. Zhang H. Alan-Diehl J. Eugene-Chin Y. Yan W. Xu H. FFA-induced adipocyte inflammation and insulin resistance: Involvement of ER stress and IKKβ pathways. Obesity (Silver Spring) 2011 19 3 483 491 10.1038/oby.2010.200 20829802
    [Google Scholar]
  73. Sharma N.K. Das S.K. Mondal A.K. Hackney O.G. Chu W.S. Kern P.A. Rasouli N. Spencer H.J. Yao-Borengasser A. Elbein S.C. Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects. J. Clin. Endocrinol. Metab. 2008 93 11 4532 4541 10.1210/jc.2008‑1001 18728164
    [Google Scholar]
  74. Boden G. Duan X. Homko C. Molina E.J. Song W. Perez O. Cheung P. Merali S. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 2008 57 9 2438 2444 10.2337/db08‑0604 18567819
    [Google Scholar]
  75. Gregor M.F. Hotamisligil G.S. Thematic review series: Adipocyte Biology. Adipocyte stress: The endoplasmic reticulum and metabolic disease. J. Lipid Res. 2007 48 9 1905 1914 10.1194/jlr.R700007‑JLR200 17699733
    [Google Scholar]
  76. Özcan U. Cao Q. Yilmaz E. Lee A.H. Iwakoshi N.N. Özdelen E. Tuncman G. Görgün C. Glimcher L.H. Hotamisligil G. S. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science (1979) 2004 306 5695 457 461
    [Google Scholar]
  77. Goldstein B.J. Scalia R. Adiponectin: A novel adipokine linking adipocytes and vascular function. J. Clin. Endocrinol. Metab. 2004 89 6 2563 2568 10.1210/jc.2004‑0518 15181024
    [Google Scholar]
  78. Fernández-Real J.M. Castro A. Vázquez G. Casamitjana R. López-Bermejo A. Peñarroja G. Ricart W. Adiponectin is associated with vascular function independent of insulin sensitivity. Diabetes Care 2004 27 3 739 745 10.2337/diacare.27.3.739 14988295
    [Google Scholar]
  79. Kubota N. Terauchi Y. Yamauchi T. Kubota T. Moroi M. Matsui J. Eto K. Yamashita T. Kamon J. Satoh H. Yano W. Froguel P. Nagai R. Kimura S. Kadowaki T. Noda T. Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem. 2002 277 29 25863 25866 10.1074/jbc.C200251200 12032136
    [Google Scholar]
  80. Matsuda M. Shimomura I. Sata M. Arita Y. Nishida M. Maeda N. Kumada M. Okamoto Y. Nagaretani H. Nishizawa H. Kishida K. Komuro R. Ouchi N. Kihara S. Nagai R. Funahashi T. Matsuzawa Y. Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J. Biol. Chem. 2002 277 40 37487 37491 10.1074/jbc.M206083200 12138120
    [Google Scholar]
  81. Steppan C.M. Wang J. Whiteman E.L. Birnbaum M.J. Lazar M.A. Activation of SOCS-3 by Resistin. Mol. Cell. Biol. 2005 25 4 1569 1575 10.1128/MCB.25.4.1569‑1575.2005 15684405
    [Google Scholar]
  82. Jamaluddin M.S. Weakley S.M. Yao Q. Chen C. Resistin: Functional roles and therapeutic considerations for cardiovascular disease. Br. J. Pharmacol. 2012 165 3 622 632 10.1111/j.1476‑5381.2011.01369.x 21545576
    [Google Scholar]
  83. Verma S. Li S.H. Wang C.H. Fedak P.W.M. Li R.K. Weisel R.D. Mickle D.A.G. Resistin promotes endothelial cell activation: Further evidence of adipokine-endothelial interaction. Circulation 2003 108 6 736 740 10.1161/01.CIR.0000084503.91330.49 12874180
    [Google Scholar]
  84. Steppan C.M. Lazar M.A. Resistin and obesity-associated insulin resistance. Trends Endocrinol. Metab. 2002 13 1 18 23 10.1016/S1043‑2760(01)00522‑7 11750858
    [Google Scholar]
  85. Muse E.D. Feldman D.I. Blaha M.J. Dardari Z.A. Blumenthal R.S. Budoff M.J. Nasir K. Criqui M.H. Cushman M. McClelland R.L. Allison M.A. The association of resistin with cardiovascular disease in the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 2015 239 1 101 108 10.1016/j.atherosclerosis.2014.12.044 25585029
    [Google Scholar]
  86. Askin L. Abus S. Tanriverdi O. Resistin and cardiovascular disease: A Review of the current literature regarding clinical and pathological relationships. Curr Cardiol Rev. 2022 18 1 e290721195114 10.2174/1573403X17666210729101120
    [Google Scholar]
  87. Patel L. Buckels A.C. Kinghorn I.J. Murdock P.R. Holbrook J.D. Plumpton C. Macphee C.H. Smith S.A. Resistin is expressed in human macrophages and directly regulated by PPARγ activators. Biochem. Biophys. Res. Commun. 2003 300 2 472 476 10.1016/S0006‑291X(02)02841‑3 12504108
    [Google Scholar]
  88. Bokarewa M. Nagaev I. Dahlberg L. Smith U. Tarkowski A. Resistin, an adipokine with potent proinflammatory properties. J. Immunol. 2005 174 9 5789 5795 10.4049/jimmunol.174.9.5789 15843582
    [Google Scholar]
  89. Su X. Peng D. Adipokines as novel biomarkers of cardio-metabolic disorders. Clin. Chim. Acta 2020 507 31 38 10.1016/j.cca.2020.04.009 32283064
    [Google Scholar]
  90. Lee Y.H. Mottillo E.P. Granneman J.G. Adipose tissue plasticity from WAT to BAT and in between. Biochim. Biophys. Acta Mol. Basis Dis. 2014 1842 3 358 369 10.1016/j.bbadis.2013.05.011 23688783
    [Google Scholar]
  91. Sumarlin L.O. Suprayogi A. Rahminiwati M. Satyaningtijas A. Hajar H. Wulandari M. Studi of in vivo antidiabetic activity of Namnam leaves (Cynometra cauliflora) extract in Sprague Dawley rat. al-Kimiya 2023 10 1 20 30
    [Google Scholar]
  92. Aziz F.A.A. Bhuiyan A. Iqbal M. An evaluation of antioxidant and antidiabetic potential of Cynometra cauliflora (Nam-nam, Fabaceae). Transact. Sci. Technol. 2017 4 372 383
    [Google Scholar]
  93. Siddiqui M.J. Mohd Bukhari D.A. Shamsudin S.B. Rahman M.M. So’ad S.M. α-Glucosidase inhibitory activity of selected Malaysian plants. J. Pharm. Bioallied Sci. 2017 9 3 164 170 10.4103/jpbs.JPBS_35_17 28979070
    [Google Scholar]
  94. Wong P.L. Fauzi N.A. Mohamed Yunus S.N. Abdul Hamid N.A. Abd Ghafar S.Z. Azizan A. Zolkeflee N.K.Z. Abas F. Biological activities of selected plants and detection of bioactive compounds from Ardisia elliptica using UHPLC-Q-Exactive orbitrap mass spectrometry. Molecules 2020 25 13 3067 10.3390/molecules25133067 32640504
    [Google Scholar]
  95. Ado M.A. Mediani A. Maulidiani Ismail I.S. Ghazali H.M. Abas F. Flavonoids from Cynometra cauliflora and their antioxidant, α-Glucosidase, and cholinesterase inhibitory activities. Chem. Nat. Compd. 2019 55 1 112 114 10.1007/s10600‑019‑02627‑5
    [Google Scholar]
  96. Sit N.W. Ong C.W. Chan Y.S. Khoo K.S. Ong H.C. Antifungal and cytotoxic activities of extracts obtained from underutilised edible tropical fruits. Asian Pac. J. Trop. Biomed. 2018 8 6 313 319 10.4103/2221‑1691.235326
    [Google Scholar]
  97. Cos P. Vlietinck A.J. Berghe D.V. Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006 106 3 290 302 10.1016/j.jep.2006.04.003 16698208
    [Google Scholar]
  98. Ode Sumarlin L. Suprayogi A. Rahminiwati M. Tjachja A. Sukandar D. Bioaktivitas ekstrak metanol daun Namnam serta kombinasinya dengan madu Trigona. J. Teknol. Ind. Pangan 2015 26 2 144 154 10.6066/jtip.2015.26.2.144
    [Google Scholar]
  99. Fenty W. The world’s largest collection of open access research papers. 2016 Available From: core.ac.uk
  100. Anliza S. Rachmawati N. Cytotoxic activity of ethanol Extract in Namnam leaves (Cynometra cauliflora l.) to Hela cell. Walisongo J. Chem. 2021 4 2 107 112 10.21580/wjc.v4i2.7999
    [Google Scholar]
  101. Komarudin D. Fauziah S. Vera Nisa Br Perangin-Angin I. Potensi ekstrak etanol daun Namnam (Cynometra cauliflora L.) sebagai sumber vitamin C. Jurnal Ilmiah Kedokteran dan Ilmu Kesehatan 2019 6 2 114 121
    [Google Scholar]
  102. PubChem Explore Chemistry. 2024 Available From: https://pubchem.ncbi.nlm.nih.gov/
  103. Fang R. Redfern S.P. Kirkup D. Porter E.A. Kite G.C. Terry L.A. Berry M.J. Simmonds M.S.J. Variation of theanine, phenolic, and methylxanthine compounds in 21 cultivars of Camellia sinensis harvested in different seasons. Food Chem. 2017 220 517 526 10.1016/j.foodchem.2016.09.047 27855934
    [Google Scholar]
  104. Macedo S.K.S. Almeida T.S. Ferraz C.A.A. Oliveira A.P. Hugo Almeida A.V. Almeida J.R.G.S. Silva N.D.S. Nunes X.P. Identification of flavonol glycosides and in vitro photoprotective and antioxidant activities of Triplaris gardneriana Wedd. J. Med. Plants Res. 2015 9 7 207 215 10.5897/JMPR2014.5555
    [Google Scholar]
  105. Dias M.I. Barros L. Morales P. Cámara M. Alves M.J. Oliveira M.B.P.P. Santos-Buelga C. Ferreira I.C.F.R. Wild Fragaria vesca L. fruits: A rich source of bioactive phytochemicals. Food Funct. 2016 7 11 4523 4532 10.1039/C6FO01042C 27775146
    [Google Scholar]
  106. Han A.R. Nam B. Kim B.R. Lee K.C. Song B.S. Kim S.H. Kim J.B. Jin C.H. Phytochemical composition and antioxidant activities of two different color chrysanthemum flower teas. Molecules 2019 24 2 329 10.3390/molecules24020329 30658439
    [Google Scholar]
  107. Ryu J. Nam B. Kim B.R. Kim S.H. Jo Y.D. Ahn J.W. Kim J.B. Jin C.H. Han A.R. Comparative analysis of phytochemical composition of gamma-irradiated mutant cultivars of Chrysanthemum morifolium. Molecules 2019 24 16 3003 10.3390/molecules24163003 31430944
    [Google Scholar]
/content/journals/npj/10.2174/0122103155337729240926033345
Loading
/content/journals/npj/10.2174/0122103155337729240926033345
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: plant ; alternative medicine ; namnam ; vitexin ; natural product ; Cynometra cauliflora ; properties
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test