Skip to content
2000
Volume 16, Issue 3
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Research has been carried out regarding the benefits and influence of saffron and its derivatives on skin health. Crocin from L., and , and safranal from L. might alleviate skin aging effects. This literature review discusses the mechanism of crocin and safranal as anti-inflammatory agents in reversing oxidative stress and improving aging effects on the skin. Based on the literature review, crocin and safranal have strong antioxidant capacity. The mechanism that allows crocin to reduce oxidative stress is by directly neutralizing reactive oxygen species in human dermal fibroblasts and modifying keratinocyte O-linked glycobiology in human keratinocytes. Crocin also increases skin thickness and protects against blue light stress; its derivative, crocetin, could act like melatonin. Meanwhile, safranal also has a potential mechanism for alleviating skin aging in the form of nanoparticles (liposome and solid nanoparticles) or pure safranal through inhibiting dermal enzymes that are involved in the process of skin aging, such as elastase, collagenase, and hyaluronidase.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155333158241210174935
2025-01-16
2026-02-16
Loading full text...

Full text loading...

References

  1. BoschR. PhilipsN. Suárez-PérezJ. JuarranzA. DevmurariA. Chalensouk-KhaosaatJ. GonzálezS. Mechanisms of photoaging and cutaneous photocarcinogenesis, and photoprotective strategies with phytochemicals.Antioxidants20154224826810.3390/antiox402024826783703
    [Google Scholar]
  2. DengM. LiD. ZhangY. ZhouG. LiuW. CaoY. ZhangW. Protective effect of crocin on ultraviolet B‑induced dermal fibroblast photoaging.Mol. Med. Rep.20181821439144610.3892/mmr.2018.915029901204
    [Google Scholar]
  3. WongQ.Y.A. ChewF.T. Defining skin aging and its risk factors: a systematic review and meta-analysis.Sci. Rep.20211112207510.1038/s41598‑021‑01573‑z34764376
    [Google Scholar]
  4. ChaudharyM. KhanA. GuptaM. Skin ageing: Pathophysiology and current market treatment approaches.Curr. Aging Sci.2020131223010.2174/156720501666619080916111531530270
    [Google Scholar]
  5. CiążyńskaM. Olejniczak-StaruchI. Sobolewska-SztychnyD. NarbuttJ. SkibińskaM. LesiakA. Ultraviolet radiation and chronic inflammation—molecules and mechanisms involved in skin carcinogenesis: A narrative review.Life202111432610.3390/life1104032633917793
    [Google Scholar]
  6. Gromkowska-KępkaK.J. Puścion-JakubikA. Markiewicz-ŻukowskaR. SochaK. The impact of ultraviolet radiation on skin photoaging — review of in vitro studies.J. Cosmet. Dermatol.202120113427343110.1111/jocd.1403333655657
    [Google Scholar]
  7. Dale WilsonB. MoonS. ArmstrongF. Comprehensive review of ultraviolet radiation and the current status on sunscreens.J. Clin. Aesthet. Dermatol.201259182323050030
    [Google Scholar]
  8. ZorovD.B. JuhaszovaM. SollottS.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.Physiol. Rev.201494390995010.1152/physrev.00026.201324987008
    [Google Scholar]
  9. WeiM. HeX. LiuN. DengH. Role of reactive oxygen species in ultraviolet-induced photodamage of the skin.Cell Div.2024191110.1186/s13008‑024‑00107‑z38217019
    [Google Scholar]
  10. GeG. WangY. XuY. PuW. TanY. LiuP. DingH. LuY.M. WangJ. LiuW. MaY. Induced skin aging by blue-light irradiation in human skin fibroblasts via TGF-β, JNK and EGFR pathways.J. Dermatol. Sci.20231112525910.1016/j.jdermsci.2023.06.00737438186
    [Google Scholar]
  11. KleinpenningM.M. SmitsT. FruntM.H.A. van ErpP.E.J. van de KerkhofP.C.M. GerritsenR.M.J.P. Clinical and histological effects of blue light on normal skin.Photodermatol. Photoimmunol. Photomed.2010261162110.1111/j.1600‑0781.2009.00474.x20070834
    [Google Scholar]
  12. NakashimaY. OhtaS. WolfA.M. Blue light-induced oxidative stress in live skin.Free Radic. Biol. Med.201710830031010.1016/j.freeradbiomed.2017.03.01028315451
    [Google Scholar]
  13. RegazzettiC. SormaniL. DebayleD. BernerdF. TulicM.K. De DonatisG.M. Chignon-SicardB. RocchiS. PasseronT. Melanocytes sense blue light and regulate pigmentation through opsin-3.J. Invest. Dermatol.2018138117117810.1016/j.jid.2017.07.83328842328
    [Google Scholar]
  14. CirilliI. DamianiE. DludlaP.V. HargreavesI. MarcheggianiF. MillichapL.E. OrlandoP. SilvestriS. TianoL. Role of coenzyme Q10 in health and disease: An update on the last 10 years (2010–2020).Antioxidants2021108132510.3390/antiox1008132534439573
    [Google Scholar]
  15. DidierA.J. StieneJ. FangL. WatkinsD. DworkinL.D. CreedenJ.F. Antioxidant and anti-tumor effects of dietary Vitamins A, C, and E.Antioxidants202312363210.3390/antiox1203063236978880
    [Google Scholar]
  16. CardoneL. CastronuovoD. PerniolaM. CiccoN. CandidoV. Saffron (Crocus sativus L.), the king of spices: An overview.Sci. Hortic.202027210956010.1016/j.scienta.2020.109560
    [Google Scholar]
  17. Moratalla-LópezN. Bioactivity and bioavailability of the major metabolites of Crocus sativus L.Flower. Molecules.201924282710.3390/molecules2415282731382514
    [Google Scholar]
  18. SuX. YuanC. WangL. ChenR. LiX. ZhangY. The beneficial effects of saffron extract on potential oxidative stress in cardiovascular diseases.Oxid Med Cell Longev.20212021669982110.1155/2021/6699821
    [Google Scholar]
  19. Cerdá-BernadD. CostaL. SerraA.T. BronzeM.R. Valero-CasesE. Pérez-LlamasF. CandelaM.E. ArnaoM.B. BarberánF.T. VillalbaR.G. García-ConesaM.T. FrutosM.J. Saffron against neuro-cognitive disorders: an overview of its main bioactive compounds, their metabolic fate and potential mechanisms of neurological protection.Nutrients20221424536810.3390/nu1424536836558528
    [Google Scholar]
  20. LambrianidouA. KoutsougianniF. PapapostolouI. DimasK. Recent advances on the anticancer properties of saffron (Crocus sativus L.) and its major constituents.Molecules20202618610.3390/molecules2601008633375488
    [Google Scholar]
  21. SaniA. TajikA. SeiiediS.S. KhademR. TootooniH. TaherynejadM. Sabet EqlidiN. Alavi danaS. DeraviN. A review of the anti-diabetic potential of saffron.Nutr. Metab. Insights2022151178638822109522310.1177/1178638822109522335911474
    [Google Scholar]
  22. DamayantiG RiyantoP. Literature review: the role of saffron (Crocus sativus L.) in cosmetic dermatology.Jurnal Kedokteran Diponegoro202312
    [Google Scholar]
  23. MzabriI. AddiM. cosmetics Traditional and Modern Uses of Saffron (Crocus sativus L.).Cosmetics2019663111
    [Google Scholar]
  24. Sadat RafieiS.K. AbolghasemiS. FrashidiM. EbrahimiS. GhareiF. RazmkhahZ. TavousiN. MahmoudvandB. FaaniM. KarimiN. AbdiA. SoleimanzadehM. Ahmadpour YoushanluiM. SadatmadaniS.F. AlikhaniR. PishkariY. DeraviN. Saffron and sleep quality: A systematic review of randomized controlled trials.Nutr. Metab. Insights2023161178638823116031710.1177/1178638823116031737484523
    [Google Scholar]
  25. Cerdá-BernadD. Valero-CasesE. PastorJ.J. FrutosM.J. Saffron bioactives crocin, crocetin and safranal: effect on oxidative stress and mechanisms of action.Crit. Rev. Food Sci. Nutr.202262123232324910.1080/10408398.2020.186427933356506
    [Google Scholar]
  26. XiaoW. LiS. WangS. HoC.T. Chemistry and bioactivity of Gardenia jasminoides.Yao Wu Shi Pin Fen Xi2017251436128911543
    [Google Scholar]
  27. TangZ. LiL. XiaZ. Exploring anti-nonalcoholic fatty liver disease mechanism of Gardeniae fructus by network pharmacology, molecular docking, and experiment validation.ACS Omega2022729255212553110.1021/acsomega.2c0262935910181
    [Google Scholar]
  28. ChenJ. TchiveleketeG. ZhouX. TangW. LiuF. LiuM. ZhaoC. ShuX. ZengZ. Anti‑inflammatory activities of Gardenia jasminoides extracts in retinal pigment epithelial cells and zebrafish embryos.Exp. Ther. Med.202122170010.3892/etm.2021.1013234007309
    [Google Scholar]
  29. SaravanakumarK. ParkS. SathiyaseelanA. KimK.N. ChoS.H. MariadossA.V.A. WangM.H. Metabolite profiling of methanolic extract of Gardenia jaminoides by LC-MS/MS and GC-MS and its anti-diabetic, and anti-oxidant activities.Pharmaceuticals202114210210.3390/ph1402010233525758
    [Google Scholar]
  30. ZhangH. LaiQ. LiY. LiuY. YangM. Learning and memory improvement and neuroprotection of Gardenia jasminoides (Fructus gardenia) extract on ischemic brain injury rats.J. Ethnopharmacol.201719622523510.1016/j.jep.2016.11.04227940085
    [Google Scholar]
  31. SinghJ SinghA SinghA. Nyctanthes arbor-tristis: a comprehensive review.WJCMPR20213474810.37022/wjcmpr.v3i4.181
    [Google Scholar]
  32. MishraA.K. UpadhyayR. ChaurasiaJ.K. TiwariK.N. Comparative antioxidant study in different flower extracts of Nyctanthes arbor-tristis (L.) (Oleaceae): an important medicinal plant.Rev. Bras. Bot.201639381382010.1007/s40415‑016‑0283‑x
    [Google Scholar]
  33. UroosM. AbbasZ. SattarS. UmerN. ShabbirA. Shafiq-ur-Rehman SharifA. Nyctanthes arbor-tristis ameliorated FCA‐induced experimental arthritis: A comparative study among different extracts.Evid. Based Complement. Alternat. Med.201720171463485310.1155/2017/463485328676830
    [Google Scholar]
  34. ParekhS. ArkatkarA. SoniA. PatelP. MishraK. Nyctanthes arbor-tristis alkaloids activates p53 independent cell death receptor and necroptosis pathways in HepG2 cells.3 Biotech.202313616710.1007/s13205‑023‑03594‑z
    [Google Scholar]
  35. Ghasemnejad-BerenjiM. Immunomodulatory and anti‐inflammatory potential of crocin in COVID‐19 treatment.J. Food Biochem.2021455e1371810.1111/jfbc.1371833817822
    [Google Scholar]
  36. BaoX. HuJ. ZhaoY. JiaR. ZhangH. XiaL. Advances on the anti-tumor mechanisms of the carotenoid Crocin.PeerJ202311e1553510.7717/peerj.1553537404473
    [Google Scholar]
  37. BastaniS. VahedianV. RashidiM. MirA. MirzaeiS. AlipourfardI. PouremamaliF. NejabatiH. kadkhodaJ. MaroufiN.F. AkbarzadehM. An evaluation on potential anti-oxidant and anti-inflammatory effects of Crocin.Biomed. Pharmacother.202215311329710.1016/j.biopha.2022.11329735738178
    [Google Scholar]
  38. SongY. WangY. ZhengY. LiuT. ZhangC. Crocins: A comprehensive review of structural characteristics, pharmacokinetics and therapeutic effects.Fitoterapia202115310496910.1016/j.fitote.2021.10496934147548
    [Google Scholar]
  39. AliA. YuL. KousarS. KhalidW. MaqboolZ. AzizA. ArshadM.S. AadilR.M. TrifM. RiazS. ShaukatH. ManzoorM.F. QinH. Crocin: Functional characteristics, extraction, food applications and efficacy against brain related disorders.Front. Nutr.20229100980710.3389/fnut.2022.100980736583211
    [Google Scholar]
  40. EsmaealzadehD. Moodi GhalibafA. Shariati RadM. RezaeeR. RazaviB.M. HosseinzadehH. Pharmacological effects of Safranal: An updated review.Iran. J. Basic Med. Sci.202326101131114337736506
    [Google Scholar]
  41. MentisA.F.A. DalamagaM. LuC. PolissiouM.G. Saffron for “toning down” COVID-19-related cytokine storm: Hype or hope? A mini-review of current evidence.Metab. Open202111September10011110.1016/j.metop.2021.10011134312610
    [Google Scholar]
  42. AfifahM.N. HasanahA.N. Saffron (Crocus sativus L.): Kandungan dan Aktivitas Farmakologinya.Majalah Farmasetika20205311612310.24198/mfarmasetika.v5i3.26291
    [Google Scholar]
  43. El MidaouiA. GhzaielI. Vervandier-FasseurD. KsilaM. ZarroukA. NuryT. KhalloukiF. El HessniA. IbrahimiS.O. LatruffeN. CoutureR. KharoubiO. BrahmiF. HammamiS. Masmoudi-KoukiO. HammamiM. GhrairiT. VejuxA. LizardG. Saffron (Crocus sativus L.): A source of nutrients for health and for the treatment of neuropsychiatric and age-related diseases.Nutrients202214359710.3390/nu1403059735276955
    [Google Scholar]
  44. José BagurM. Alonso SalinasG. Jiménez-MonrealA. ChaouqiS. LlorensS. Martínez-ToméM. AlonsoG. Saffron: An old medicinal plant and a potential novel functional food.Molecules20172313010.3390/molecules2301003029295497
    [Google Scholar]
  45. MarxW. LaneM. RocksT. RuusunenA. LoughmanA. LoprestiA. MarshallS. BerkM. JackaF. DeanO.M. Effect of saffron supplementation on symptoms of depression and anxiety: a systematic review and meta-analysis.Nutr. Rev.201977855757110.1093/nutrit/nuz02331135916
    [Google Scholar]
  46. ShafieeM. ArekhiS. OmranzadehA. SahebkarA. Saffron in the treatment of depression, anxiety and other mental disorders: Current evidence and potential mechanisms of action.J. Affect. Disord.201822733033710.1016/j.jad.2017.11.02029136602
    [Google Scholar]
  47. BianY. ZhaoC. LeeS.M.Y. Neuroprotective potency of saffron against neuropsychiatric diseases, neurodegenerative diseases, and other brain disorders: from bench to bedside.Front. Pharmacol.20201157905210.3389/fphar.2020.57905233117172
    [Google Scholar]
  48. NaimN. BouymajaneA. Oulad El MajdoubY. EzrariS. LahlaliR. TahiriA. EnnahliS. Laganà VinciR. CacciolaF. MondelloL. MadaniI. Flavonoid composition and antibacterial properties of Crocus sativus L. petal extracts.Molecules202228118610.3390/molecules2801018636615378
    [Google Scholar]
  49. RigiH. MohtashamiL. AsnaashariM. EmamiS.A. Tayarani-NajaranZ. Dermoprotective effects of saffron: A mini review.Curr. Pharm. Des.202127464693469810.2174/138161282766621092015085534544335
    [Google Scholar]
  50. ZekaK. RupareliaK.C. SansoneC. MacchiarelliG. ContinenzaM.A. ArrooR.R.J. New hydrogels enriched with antioxidants from saffron crocus can find applications in wound treatment and/or beautification.Skin Pharmacol. Physiol.2018312959810.1159/00048613529393263
    [Google Scholar]
  51. AktarN. KhanH.M.S. AshrafS. MohammadI.S. AliA. Skin depigmentation activity of Crocus sativus extract cream.Trop. J. Pharm. Res.201413111803180810.4314/tjpr.v13i11.5
    [Google Scholar]
  52. KhadfyZ. AtifiH. MamouniR. JadoualiS.M. ChartierA. NehméR. KarraY. TahiriA. Nutraceutical and cosmetic applications of bioactive compounds of Saffron (Crocus Sativus L.) stigmas and its by-products.S. Afr. J. Bot.202316325026110.1016/j.sajb.2023.10.058
    [Google Scholar]
  53. XiongJ. GraceM.H. KobayashiH. LilaM.A. Evaluation of saffron extract bioactivities relevant to skin resilience.J. Herb. Med.202337February10062910.1016/j.hermed.2023.100629
    [Google Scholar]
  54. NandaS. MadanK. The role of Safranal and saffron stigma extracts in oxidative stress, diseases and photoaging: A systematic review.Heliyon202172e0611710.1016/j.heliyon.2021.e0611733615006
    [Google Scholar]
  55. FagotD. PhamD.M. LaboureauJ. PlanelE. GuerinL. NègreC. DonovanM. BernardB.A. Crocin, a natural molecule with potentially beneficial effects against skin ageing.Int. J. Cosmet. Sci.201840438840010.1111/ics.1247229893408
    [Google Scholar]
  56. HafizaS SilitongaS SofiahE AkmalO. Saffron petal of Mask Kuma.Medan Stimsukma Journal.20227569
    [Google Scholar]
  57. MoshiriM. VahabzadehM. HosseinzadehH. Clinical applications of saffron (Crocus sativus) and its constituents: a review.Drug Res.201565628729524848002
    [Google Scholar]
  58. RzepkaZ. BuszmanE. BeberokA. WrześniokD. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis.Postepy Hig. Med. Dosw.201670069570810.5604/17322693.120803327356601
    [Google Scholar]
  59. RahimanN. AkaberiM. SahebkarA. EmamiS.A. Tayarani-NajaranZ. Protective effects of saffron and its active components against oxidative stress and apoptosis in endothelial cells.Microvasc. Res.2018118July828910.1016/j.mvr.2018.03.00329524452
    [Google Scholar]
  60. BanimohammadM. FarrokhiM. VarshoeiB. AyatollahiS.A. Effects of saffron oral gavage on protection of skin flaps against tissue necrosis and oxidative stress in rats.Koomesh201921347353
    [Google Scholar]
  61. HabibiZ. HoormandM. BanimohammadM. AjamiM. AminG. AminM. Pazoki-ToroudiH. The novel role of Crocus sativus L. in enhancing skin flap survival by affecting apoptosis independent of mTOR: A data-virtualized study.Aesthetic Plast. Surg.20224663047306210.1007/s00266‑022‑03048‑636044060
    [Google Scholar]
  62. AfroogheA. DamavandiA.R. AhmadiE. JafariR.M. DehpourA.R. The current state of knowledge on how to improve skin flap survival: A review.J. Plast. Reconstr. Aesthet. Surg.202382485710.1016/j.bjps.2023.04.02137149909
    [Google Scholar]
  63. GigliobiancoM.R. CorteseM. PeregrinaD.V. VillaC. LupidiG. PruccoliL. AngeloniC. TarozziA. CensiR. Di MartinoP. Development of new extracts of Crocus sativus L. by-product from two different italian regions as new potential active ingredient in cosmetic formulations.Cosmetics2021825110.3390/cosmetics8020051
    [Google Scholar]
  64. XiaoL. SunR. HanY. XiaL. LinK. FuW. ZhongK. YeY. NAMPT‑NAD + is involved in the senescence‑delaying effects of saffron in aging mice.Exp. Ther. Med.202427312310.3892/etm.2024.1241138410190
    [Google Scholar]
  65. NaeimifarA. Ahmad NasrollahiS. SamadiA. TalariR. Sajad Ale-nabiS. Massoud HossiniA. FiroozA. Preparation and evaluation of anti‐wrinkle cream containing saffron extract and avocado oil.J. Cosmet. Dermatol.20201992366237310.1111/jocd.1328431957954
    [Google Scholar]
  66. De TollenaereM. ChapuisE. MartinezJ. PaulusC. DupontJ. Don SimoniE. RobeP. Sennelier-PortetB. AuriolD. ScandoleraA. ReynaudR. Gardenia jasminoides extract, with a melatonin-like activity, protects against digital stress and reverses signs of aging.Int. J. Mol. Sci.2023245494810.3390/ijms2405494836902379
    [Google Scholar]
  67. ZhangS. DuanE. Fighting against Skin Aging.Cell Transplant.201827572973810.1177/096368971772575529692196
    [Google Scholar]
  68. HoodaR. MadkeB. ChoudharyA. Photoaging: Reversal of the oxidative stress through dietary changes and plant-based products.Cureus2023154e3732110.7759/cureus.3732137182009
    [Google Scholar]
  69. KimJ.C. ParkT.J. KangH.Y. Skin-aging pigmentation: Who is the real enemy?Cells20221116254110.3390/cells1116254136010618
    [Google Scholar]
  70. D’OrazioJ. JarrettS. Amaro-OrtizA. ScottT. UV radiation and the skin.Int. J. Mol. Sci.2013146122221224810.3390/ijms14061222223749111
    [Google Scholar]
  71. MazumderA.G. SharmaP. PatialV. SinghD. Crocin attenuates kindling development and associated cognitive impairments in mice via inhibiting reactive oxygen species‐mediated NF‐κB activation.Basic Clin. Pharmacol. Toxicol.2017120542643310.1111/bcpt.1269427800651
    [Google Scholar]
  72. AhmedS. HasanM.M. HeydariM. RaufA. BawazeerS. Abu-IzneidT. RebezovM. ShariatiM.A. DagliaM. RengasamyK.R.R. Therapeutic potentials of crocin in medication of neurological disorders.Food Chem. Toxicol.202014511173910.1016/j.fct.2020.11173932916219
    [Google Scholar]
  73. AzamiS. ShahriariZ. AsgharzadeS. FarkhondehT. SadeghiM. AhmadiF. VahediM.M. ForouzanfarF. Therapeutic potential of saffron (Crocus sativus L.) in ischemia stroke.Evid. Based Complement. Alternat. Med.202120211810.1155/2021/664395033747107
    [Google Scholar]
  74. MohammadzadehL RahbardarMG RazaviBM HosseinzadehH Crocin protects malathion-induced striatal biochemical deficits by inhibiting apoptosis and increasing α-synuclein in Rats' Striatum.J Mol Neurosci.2021725983993
    [Google Scholar]
  75. OmidkhodaS.F. MehriS. HeidariS. HosseinzadehH. Protective effects of crocin against hepatic damages in D-galactose aging model in rats.Iran. J. Pharm. Res.202019344045033680043
    [Google Scholar]
  76. LiguoriI. RussoG. CurcioF. BulliG. AranL. Della-MorteD. GargiuloG. TestaG. CacciatoreF. BonaduceD. AbeteP. Oxidative stress, aging, and diseases.Clin. Interv. Aging20181375777210.2147/CIA.S15851329731617
    [Google Scholar]
  77. ChaudhuriJ. BainsY. GuhaS. KahnA. HallD. BoseN. GugliucciA. KapahiP. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality.Cell Metab.201828333735210.1016/j.cmet.2018.08.01430184484
    [Google Scholar]
  78. ParkJ.H. LeeK.Y. ParkB. YoonJ. Suppression of Th2 chemokines by crocin via blocking of ERK-MAPK/NF-κB/STAT1 signalling pathways in TNF-α/IFN-γ-stimulated human epidermal keratinocytes.Exp Dermatol.20152486346
    [Google Scholar]
  79. OhbaT. IshisakaM. TsujiiS. TsurumaK. ShimazawaM. KuboK. UmigaiN. IwawakiT. HaraH. Crocetin protects ultraviolet A-induced oxidative stress and cell death in skin in vitro and in vivo.Eur. J. Pharmacol.201678924425310.1016/j.ejphar.2016.07.03627452919
    [Google Scholar]
  80. NaikA.A. GadgoliC.H. NaikA.B. Formulation containing phytosomes of carotenoids from Nyctanthes arbor-tristis and Tagetes patula protect D-galactose induced skin aging in mice.CCMP202331100070
    [Google Scholar]
  81. ChenX. YangC. JiangG. Research progress on skin photoaging and oxidative stress.Postepy Dermatol. Alergol.202138693193610.5114/ada.2021.11227535125996
    [Google Scholar]
  82. Houshang MohamadpourA. AyatiZ. ParizadehM.R. RajbaiO. HosseinzadehH. Safety evaluation of Crocin (a constituent of saffron) tablets in healthy volunteers.Iran. J. Basic. Med. Sci.201316
    [Google Scholar]
  83. Jalali-HeraviM. ParastarH. Ebrahimi-NajafabadiH. Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography–mass spectrometry analysis.J. Chromatogr. A20091216336088609710.1016/j.chroma.2009.06.06719595355
    [Google Scholar]
  84. MohajeriS.A. SepahiS. Ghorani AzamA. Antidepressant and antianxiety properties of saffron.Woodhead Publishing Series in Food Science, Technology and Nutrition.Chapter 27 KoochekiA. Khajeh-HosseiniM.B.T.S. Woodhead Publishing2020431444
    [Google Scholar]
  85. RezaeeR. HosseinzadehH. Safranal: from an aromatic natural product to a rewarding pharmacological agent.Iran. J. Basic Med. Sci.2013161122623638289
    [Google Scholar]
  86. BoskabadyM.H. ByramiG. FeizpourA. The effect of safranal, a constituent of Crocus sativus (saffron), on tracheal responsiveness, serum levels of cytokines, total NO and nitrite in sensitized guinea pigs.Pharmacol. Rep.2014661566110.1016/j.pharep.2013.08.00424905307
    [Google Scholar]
  87. HazmanÖ. BozkurtM.F. Anti-inflammatory and antioxidative activities of safranal in the reduction of renal dysfunction and damage that occur in diabetic nephropathy.Inflammation20153841537154510.1007/s10753‑015‑0128‑y25667012
    [Google Scholar]
  88. ImenshahidiM. RazaviB.M. FaalA. GholampoorA. MousaviS.M. HosseinzadehH. The effect of chronic administration of safranal on systolic blood pressure in rats.Iran. J. Pharm. Res.201514258559025901167
    [Google Scholar]
  89. FarahmandS.K. SaminiF. SaminiM. SamarghandianS. Safranal ameliorates antioxidant enzymes and suppresses lipid peroxidation and nitric oxide formation in aged male rat liver.Biogerontology2013141637110.1007/s10522‑012‑9409‑023179288
    [Google Scholar]
  90. Popović-DjordjevićJ.B. KostićA.Ž. KiralanM. Antioxidant activities of bioactive compounds and various extracts obtained from saffron.Saffron.20210419710.1016/B978‑0‑12‑821219‑6.00002‑6
    [Google Scholar]
  91. GolmohammadzadehS. ImaniF. HosseinzadehH. JaafariM.R. Preparation, characterization and evaluation of sun protective and moisturizing effects of nanoliposomes containing safranal.Iran. J. Basic Med. Sci.201114652153323493792
    [Google Scholar]
  92. KhamenehB. HalimiV. JaafariM.R. GolmohammadzadehS. Safranal-loaded solid lipid nanoparticles: evaluation of sunscreen and moisturizing potential for topical applications.Iran. J. Basic Med. Sci.2015181586325810877
    [Google Scholar]
  93. BernasquéA. FaureC. RezvaniH. CarioM. A new eco‐friendly and water‐resistant sunscreen agent: Lecithin‐based multilamellar liposomes.J. Cosmet. Dermatol.202423391892510.1111/jocd.1607237947116
    [Google Scholar]
/content/journals/npj/10.2174/0122103155333158241210174935
Loading
/content/journals/npj/10.2174/0122103155333158241210174935
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Blue light; crocin; nanoparticles; safranal; skin aging; ultraviolet
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test