Skip to content
2000
image of Recent Insights into the Potential Roles of Crocin and Safranal in Alleviating Skin Aging: A Mini-Review

Abstract

Research has been carried out regarding the benefits and influence of saffron and its derivatives on skin health. Crocin from and , and safranal from . might alleviate skin aging effects. This literature review discusses the mechanism of crocin and safranal as anti-inflammatory agents in reversing oxidative stress and improving aging effects on the skin. Based on the literature review, crocin and safranal have strong antioxidant capacity. The mechanism that allows crocin to reduce oxidative stress is by directly neutralizing reactive oxygen species in human dermal fibroblasts and modifying keratinocyte O-linked glycobiology in human keratinocytes. Crocin also increases skin thickness and protects against blue light stress; its derivative, crocetin, could act like melatonin. Meanwhile, safranal also has a potential mechanism for alleviating skin aging in the form of nanoparticles (liposome and solid nanoparticles) or pure safranal through inhibiting dermal enzymes that are involved in the process of skin aging, such as elastase, collagenase, and hyaluronidase.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155333158241210174935
2025-01-16
2025-04-07
Loading full text...

Full text loading...

References

  1. Bosch R. Philips N. Suárez-Pérez J. Juarranz A. Devmurari A. Chalensouk-Khaosaat J. González S. Mechanisms of photoaging and cutaneous photocarcinogenesis, and photoprotective strategies with phytochemicals. Antioxidants 2015 4 2 248 268 10.3390/antiox4020248 26783703
    [Google Scholar]
  2. Deng M. Li D. Zhang Y. Zhou G. Liu W. Cao Y. Zhang W. Protective effect of crocin on ultraviolet B‑induced dermal fibroblast photoaging. Mol. Med. Rep. 2018 18 2 1439 1446 10.3892/mmr.2018.9150 29901204
    [Google Scholar]
  3. Wong Q.Y.A. Chew F.T. Defining skin aging and its risk factors: a systematic review and meta-analysis. Sci. Rep. 2021 11 1 22075 10.1038/s41598‑021‑01573‑z 34764376
    [Google Scholar]
  4. Chaudhary M. Khan A. Gupta M. Skin ageing: Pathophysiology and current market treatment approaches. Curr. Aging Sci. 2020 13 1 22 30 10.2174/1567205016666190809161115 31530270
    [Google Scholar]
  5. Ciążyńska M. Olejniczak-Staruch I. Sobolewska-Sztychny D. Narbutt J. Skibińska M. Lesiak A. Ultraviolet radiation and chronic inflammation—molecules and mechanisms involved in skin carcinogenesis: A narrative review. Life 2021 11 4 326 10.3390/life11040326 33917793
    [Google Scholar]
  6. Gromkowska-Kępka K.J. Puścion-Jakubik A. Markiewicz-Żukowska R. Socha K. The impact of ultraviolet radiation on skin photoaging — review of in vitro studies. J. Cosmet. Dermatol. 2021 20 11 3427 3431 10.1111/jocd.14033 33655657
    [Google Scholar]
  7. Dale Wilson B. Moon S. Armstrong F. Comprehensive review of ultraviolet radiation and the current status on sunscreens. J. Clin. Aesthet. Dermatol. 2012 5 9 18 23 23050030
    [Google Scholar]
  8. Zorov D.B. Juhaszova M. Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014 94 3 909 950 10.1152/physrev.00026.2013 24987008
    [Google Scholar]
  9. Wei M. He X. Liu N. Deng H. Role of reactive oxygen species in ultraviolet-induced photodamage of the skin. Cell Div. 2024 19 1 1 10.1186/s13008‑024‑00107‑z 38217019
    [Google Scholar]
  10. Ge G. Wang Y. Xu Y. Pu W. Tan Y. Liu P. Ding H. Lu Y.M. Wang J. Liu W. Ma Y. Induced skin aging by blue-light irradiation in human skin fibroblasts via TGF-β, JNK and EGFR pathways. J. Dermatol. Sci. 2023 111 2 52 59 10.1016/j.jdermsci.2023.06.007 37438186
    [Google Scholar]
  11. Kleinpenning M.M. Smits T. Frunt M.H.A. van Erp P.E.J. van de Kerkhof P.C.M. Gerritsen R.M.J.P. Clinical and histological effects of blue light on normal skin. Photodermatol. Photoimmunol. Photomed. 2010 26 1 16 21 10.1111/j.1600‑0781.2009.00474.x 20070834
    [Google Scholar]
  12. Nakashima Y. Ohta S. Wolf A.M. Blue light-induced oxidative stress in live skin. Free Radic. Biol. Med. 2017 108 300 310 10.1016/j.freeradbiomed.2017.03.010 28315451
    [Google Scholar]
  13. Regazzetti C. Sormani L. Debayle D. Bernerd F. Tulic M.K. De Donatis G.M. Chignon-Sicard B. Rocchi S. Passeron T. Melanocytes sense blue light and regulate pigmentation through opsin-3. J. Invest. Dermatol. 2018 138 1 171 178 10.1016/j.jid.2017.07.833 28842328
    [Google Scholar]
  14. Cirilli I. Damiani E. Dludla P.V. Hargreaves I. Marcheggiani F. Millichap L.E. Orlando P. Silvestri S. Tiano L. Role of coenzyme Q10 in health and disease: An update on the last 10 years (2010–2020). Antioxidants 2021 10 8 1325 10.3390/antiox10081325 34439573
    [Google Scholar]
  15. Didier A.J. Stiene J. Fang L. Watkins D. Dworkin L.D. Creeden J.F. Antioxidant and anti-tumor effects of dietary Vitamins A, C, and E. Antioxidants 2023 12 3 632 10.3390/antiox12030632 36978880
    [Google Scholar]
  16. Cardone L. Castronuovo D. Perniola M. Cicco N. Candido V. Saffron (Crocus sativus L.), the king of spices: An overview. Sci. Hortic. 2020 272 109560 10.1016/j.scienta.2020.109560
    [Google Scholar]
  17. Moratalla-López N. Bioactivity and bioavailability of the major metabolites of Crocus sativus L. Flower. Molecules. 2019 24 2827 10.3390/molecules24152827 31382514
    [Google Scholar]
  18. Su X Yuan C Wang L Chen R Li X Zhang Y The beneficial effects of saffron extract on potential oxidative stress in cardiovascular diseases. Oxid Med Cell Longev. 2021 2021 6699821 10.1155/2021/6699821
    [Google Scholar]
  19. Cerdá-Bernad D. Costa L. Serra A.T. Bronze M.R. Valero-Cases E. Pérez-Llamas F. Candela M.E. Arnao M.B. Barberán F.T. Villalba R.G. García-Conesa M.T. Frutos M.J. Saffron against neuro-cognitive disorders: an overview of its main bioactive compounds, their metabolic fate and potential mechanisms of neurological protection. Nutrients 2022 14 24 5368 10.3390/nu14245368 36558528
    [Google Scholar]
  20. Lambrianidou A. Koutsougianni F. Papapostolou I. Dimas K. Recent advances on the anticancer properties of saffron (Crocus sativus L.) and its major constituents. Molecules 2020 26 1 86 10.3390/molecules26010086 33375488
    [Google Scholar]
  21. Sani A. Tajik A. Seiiedi S.S. Khadem R. Tootooni H. Taherynejad M. Sabet Eqlidi N. Alavi dana S. Deravi N. A review of the anti-diabetic potential of saffron. Nutr. Metab. Insights 2022 15 11786388221095223 10.1177/11786388221095223 35911474
    [Google Scholar]
  22. Damayanti G Riyanto P. Literature review: the role of saffron (Crocus sativus L.) in cosmetic dermatology. Jurnal Kedokteran Diponegoro 2023 12
    [Google Scholar]
  23. Mzabri I. Addi M. cosmetics Traditional and Modern Uses of Saffron (Crocus sativus L.). Cosmetics 2019 6 63 1 11
    [Google Scholar]
  24. Sadat Rafiei S.K. Abolghasemi S. Frashidi M. Ebrahimi S. Gharei F. Razmkhah Z. Tavousi N. Mahmoudvand B. Faani M. Karimi N. Abdi A. Soleimanzadeh M. Ahmadpour Youshanlui M. Sadatmadani S.F. Alikhani R. Pishkari Y. Deravi N. Saffron and sleep quality: A systematic review of randomized controlled trials. Nutr. Metab. Insights 2023 16 11786388231160317 10.1177/11786388231160317 37484523
    [Google Scholar]
  25. Cerdá-Bernad D. Valero-Cases E. Pastor J.J. Frutos M.J. Saffron bioactives crocin, crocetin and safranal: effect on oxidative stress and mechanisms of action. Crit. Rev. Food Sci. Nutr. 2022 62 12 3232 3249 10.1080/10408398.2020.1864279 33356506
    [Google Scholar]
  26. Xiao W. Li S. Wang S. Ho C.T. Chemistry and bioactivity of Gardenia jasminoides. Yao Wu Shi Pin Fen Xi 2017 25 1 43 61 28911543
    [Google Scholar]
  27. Tang Z. Li L. Xia Z. Exploring anti-nonalcoholic fatty liver disease mechanism of Gardeniae fructus by network pharmacology, molecular docking, and experiment validation. ACS Omega 2022 7 29 25521 25531 10.1021/acsomega.2c02629 35910181
    [Google Scholar]
  28. Chen J. Tchivelekete G. Zhou X. Tang W. Liu F. Liu M. Zhao C. Shu X. Zeng Z. Anti‑inflammatory activities of Gardenia jasminoides extracts in retinal pigment epithelial cells and zebrafish embryos. Exp. Ther. Med. 2021 22 1 700 10.3892/etm.2021.10132 34007309
    [Google Scholar]
  29. Saravanakumar K. Park S. Sathiyaseelan A. Kim K.N. Cho S.H. Mariadoss A.V.A. Wang M.H. Metabolite profiling of methanolic extract of Gardenia jaminoides by LC-MS/MS and GC-MS and its anti-diabetic, and anti-oxidant activities. Pharmaceuticals 2021 14 2 102 10.3390/ph14020102 33525758
    [Google Scholar]
  30. Zhang H. Lai Q. Li Y. Liu Y. Yang M. Learning and memory improvement and neuroprotection of Gardenia jasminoides (Fructus gardenia) extract on ischemic brain injury rats. J. Ethnopharmacol. 2017 196 225 235 10.1016/j.jep.2016.11.042 27940085
    [Google Scholar]
  31. Singh J Singh A Singh A. Nyctanthes arbor-tristis: a comprehensive review. WJCMPR 2021 3 4 74 8 10.37022/wjcmpr.v3i4.181
    [Google Scholar]
  32. Mishra A.K. Upadhyay R. Chaurasia J.K. Tiwari K.N. Comparative antioxidant study in different flower extracts of Nyctanthes arbor-tristis (L.) (Oleaceae): an important medicinal plant. Rev. Bras. Bot. 2016 39 3 813 820 10.1007/s40415‑016‑0283‑x
    [Google Scholar]
  33. Uroos M. Abbas Z. Sattar S. Umer N. Shabbir A. Shafiq-ur-Rehman Sharif A. Nyctanthes arbor-tristis ameliorated FCA‐induced experimental arthritis: A comparative study among different extracts. Evid. Based Complement. Alternat. Med. 2017 2017 1 4634853 10.1155/2017/4634853 28676830
    [Google Scholar]
  34. Parekh S Arkatkar A Soni A Patel P Mishra K Nyctanthes arbor-tristis alkaloids activates p53 independent cell death receptor and necroptosis pathways in HepG2 cells. 3 Biotech. 2023 13 6 167 10.1007/s13205‑023‑03594‑z
    [Google Scholar]
  35. Ghasemnejad-Berenji M. Immunomodulatory and anti‐inflammatory potential of crocin in COVID‐19 treatment. J. Food Biochem. 2021 45 5 e13718 10.1111/jfbc.13718 33817822
    [Google Scholar]
  36. Bao X. Hu J. Zhao Y. Jia R. Zhang H. Xia L. Advances on the anti-tumor mechanisms of the carotenoid Crocin. PeerJ 2023 11 e15535 10.7717/peerj.15535 37404473
    [Google Scholar]
  37. Bastani S. Vahedian V. Rashidi M. Mir A. Mirzaei S. Alipourfard I. Pouremamali F. Nejabati H. kadkhoda J. Maroufi N.F. Akbarzadeh M. An evaluation on potential anti-oxidant and anti-inflammatory effects of Crocin. Biomed. Pharmacother. 2022 153 113297 10.1016/j.biopha.2022.113297 35738178
    [Google Scholar]
  38. Song Y. Wang Y. Zheng Y. Liu T. Zhang C. Crocins: A comprehensive review of structural characteristics, pharmacokinetics and therapeutic effects. Fitoterapia 2021 153 104969 10.1016/j.fitote.2021.104969 34147548
    [Google Scholar]
  39. Ali A. Yu L. Kousar S. Khalid W. Maqbool Z. Aziz A. Arshad M.S. Aadil R.M. Trif M. Riaz S. Shaukat H. Manzoor M.F. Qin H. Crocin: Functional characteristics, extraction, food applications and efficacy against brain related disorders. Front. Nutr. 2022 9 1009807 10.3389/fnut.2022.1009807 36583211
    [Google Scholar]
  40. Esmaealzadeh D. Moodi Ghalibaf A. Shariati Rad M. Rezaee R. Razavi B.M. Hosseinzadeh H. Pharmacological effects of Safranal: An updated review. Iran. J. Basic Med. Sci. 2023 26 10 1131 1143 37736506
    [Google Scholar]
  41. Mentis A.F.A. Dalamaga M. Lu C. Polissiou M.G. Saffron for “toning down” COVID-19-related cytokine storm: Hype or hope? A mini-review of current evidence. Metab. Open 2021 11 September 100111 10.1016/j.metop.2021.100111 34312610
    [Google Scholar]
  42. Afifah M.N. Hasanah A.N. Saffron (Crocus sativus L.): Kandungan dan Aktivitas Farmakologinya. Majalah Farmasetika 2020 5 3 116 123 10.24198/mfarmasetika.v5i3.26291
    [Google Scholar]
  43. El Midaoui A. Ghzaiel I. Vervandier-Fasseur D. Ksila M. Zarrouk A. Nury T. Khallouki F. El Hessni A. Ibrahimi S.O. Latruffe N. Couture R. Kharoubi O. Brahmi F. Hammami S. Masmoudi-Kouki O. Hammami M. Ghrairi T. Vejux A. Lizard G. Saffron (Crocus sativus L.): A source of nutrients for health and for the treatment of neuropsychiatric and age-related diseases. Nutrients 2022 14 3 597 10.3390/nu14030597 35276955
    [Google Scholar]
  44. José Bagur M. Alonso Salinas G. Jiménez-Monreal A. Chaouqi S. Llorens S. Martínez-Tomé M. Alonso G. Saffron: An old medicinal plant and a potential novel functional food. Molecules 2017 23 1 30 10.3390/molecules23010030 29295497
    [Google Scholar]
  45. Marx W. Lane M. Rocks T. Ruusunen A. Loughman A. Lopresti A. Marshall S. Berk M. Jacka F. Dean O.M. Effect of saffron supplementation on symptoms of depression and anxiety: a systematic review and meta-analysis. Nutr. Rev. 2019 77 8 557 571 10.1093/nutrit/nuz023 31135916
    [Google Scholar]
  46. Shafiee M. Arekhi S. Omranzadeh A. Sahebkar A. Saffron in the treatment of depression, anxiety and other mental disorders: Current evidence and potential mechanisms of action. J. Affect. Disord. 2018 227 330 337 10.1016/j.jad.2017.11.020 29136602
    [Google Scholar]
  47. Bian Y. Zhao C. Lee S.M.Y. Neuroprotective potency of saffron against neuropsychiatric diseases, neurodegenerative diseases, and other brain disorders: from bench to bedside. Front. Pharmacol. 2020 11 579052 10.3389/fphar.2020.579052 33117172
    [Google Scholar]
  48. Naim N. Bouymajane A. Oulad El Majdoub Y. Ezrari S. Lahlali R. Tahiri A. Ennahli S. Laganà Vinci R. Cacciola F. Mondello L. Madani I. Flavonoid composition and antibacterial properties of Crocus sativus L. petal extracts. Molecules 2022 28 1 186 10.3390/molecules28010186 36615378
    [Google Scholar]
  49. Rigi H. Mohtashami L. Asnaashari M. Emami S.A. Tayarani-Najaran Z. Dermoprotective effects of saffron: A mini review. Curr. Pharm. Des. 2021 27 46 4693 4698 10.2174/1381612827666210920150855 34544335
    [Google Scholar]
  50. Zeka K. Ruparelia K.C. Sansone C. Macchiarelli G. Continenza M.A. Arroo R.R.J. New hydrogels enriched with antioxidants from saffron crocus can find applications in wound treatment and/or beautification. Skin Pharmacol. Physiol. 2018 31 2 95 98 10.1159/000486135 29393263
    [Google Scholar]
  51. Aktar N. Khan H.M.S. Ashraf S. Mohammad I.S. Ali A. Skin depigmentation activity of Crocus sativus extract cream. Trop. J. Pharm. Res. 2014 13 11 1803 1808 10.4314/tjpr.v13i11.5
    [Google Scholar]
  52. Khadfy Z. Atifi H. Mamouni R. Jadouali S.M. Chartier A. Nehmé R. Karra Y. Tahiri A. Nutraceutical and cosmetic applications of bioactive compounds of Saffron (Crocus Sativus L.) stigmas and its by-products. S. Afr. J. Bot. 2023 163 250 261 10.1016/j.sajb.2023.10.058
    [Google Scholar]
  53. Xiong J. Grace M.H. Kobayashi H. Lila M.A. Evaluation of saffron extract bioactivities relevant to skin resilience. J. Herb. Med. 2023 37 February 100629 10.1016/j.hermed.2023.100629
    [Google Scholar]
  54. Nanda S. Madan K. The role of Safranal and saffron stigma extracts in oxidative stress, diseases and photoaging: A systematic review. Heliyon 2021 7 2 e06117 10.1016/j.heliyon.2021.e06117 33615006
    [Google Scholar]
  55. Fagot D. Pham D.M. Laboureau J. Planel E. Guerin L. Nègre C. Donovan M. Bernard B.A. Crocin, a natural molecule with potentially beneficial effects against skin ageing. Int. J. Cosmet. Sci. 2018 40 4 388 400 10.1111/ics.12472 29893408
    [Google Scholar]
  56. Hafiza S Silitonga S Sofiah E Akmal O. Saffron petal of Mask Kuma. Medan Stimsukma Journal. 2022 756 9
    [Google Scholar]
  57. Moshiri M. Vahabzadeh M. Hosseinzadeh H. Clinical applications of saffron (Crocus sativus) and its constituents: a review. Drug Res. 2015 65 6 287 295 24848002
    [Google Scholar]
  58. Rzepka Z. Buszman E. Beberok A. Wrześniok D. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis. Postepy Hig. Med. Dosw. 2016 70 0 695 708 10.5604/17322693.1208033 27356601
    [Google Scholar]
  59. Rahiman N. Akaberi M. Sahebkar A. Emami S.A. Tayarani-Najaran Z. Protective effects of saffron and its active components against oxidative stress and apoptosis in endothelial cells. Microvasc. Res. 2018 118 July 82 89 10.1016/j.mvr.2018.03.003 29524452
    [Google Scholar]
  60. Banimohammad M. Farrokhi M. Varshoei B. Ayatollahi S.A. Effects of saffron oral gavage on protection of skin flaps against tissue necrosis and oxidative stress in rats. Koomesh 2019 21 347 353
    [Google Scholar]
  61. Habibi Z. Hoormand M. Banimohammad M. Ajami M. Amin G. Amin M. Pazoki-Toroudi H. The novel role of Crocus sativus L. in enhancing skin flap survival by affecting apoptosis independent of mTOR: A data-virtualized study. Aesthetic Plast. Surg. 2022 46 6 3047 3062 10.1007/s00266‑022‑03048‑6 36044060
    [Google Scholar]
  62. Afrooghe A. Damavandi A.R. Ahmadi E. Jafari R.M. Dehpour A.R. The current state of knowledge on how to improve skin flap survival: A review. J. Plast. Reconstr. Aesthet. Surg. 2023 82 48 57 10.1016/j.bjps.2023.04.021 37149909
    [Google Scholar]
  63. Gigliobianco M.R. Cortese M. Peregrina D.V. Villa C. Lupidi G. Pruccoli L. Angeloni C. Tarozzi A. Censi R. Di Martino P. Development of new extracts of Crocus sativus L. by-product from two different italian regions as new potential active ingredient in cosmetic formulations. Cosmetics 2021 8 2 51 10.3390/cosmetics8020051
    [Google Scholar]
  64. Xiao L. Sun R. Han Y. Xia L. Lin K. Fu W. Zhong K. Ye Y. NAMPT‑NAD + is involved in the senescence‑delaying effects of saffron in aging mice. Exp. Ther. Med. 2024 27 3 123 10.3892/etm.2024.12411 38410190
    [Google Scholar]
  65. Naeimifar A. Ahmad Nasrollahi S. Samadi A. Talari R. Sajad Ale-nabi S. Massoud Hossini A. Firooz A. Preparation and evaluation of anti‐wrinkle cream containing saffron extract and avocado oil. J. Cosmet. Dermatol. 2020 19 9 2366 2373 10.1111/jocd.13284 31957954
    [Google Scholar]
  66. De Tollenaere M. Chapuis E. Martinez J. Paulus C. Dupont J. Don Simoni E. Robe P. Sennelier-Portet B. Auriol D. Scandolera A. Reynaud R. Gardenia jasminoides extract, with a melatonin-like activity, protects against digital stress and reverses signs of aging. Int. J. Mol. Sci. 2023 24 5 4948 10.3390/ijms24054948 36902379
    [Google Scholar]
  67. Zhang S. Duan E. Fighting against Skin Aging. Cell Transplant. 2018 27 5 729 738 10.1177/0963689717725755 29692196
    [Google Scholar]
  68. Hooda R. Madke B. Choudhary A. Photoaging: Reversal of the oxidative stress through dietary changes and plant-based products. Cureus 2023 15 4 e37321 10.7759/cureus.37321 37182009
    [Google Scholar]
  69. Kim J.C. Park T.J. Kang H.Y. Skin-aging pigmentation: Who is the real enemy? Cells 2022 11 16 2541 10.3390/cells11162541 36010618
    [Google Scholar]
  70. D’Orazio J. Jarrett S. Amaro-Ortiz A. Scott T. UV radiation and the skin. Int. J. Mol. Sci. 2013 14 6 12222 12248 10.3390/ijms140612222 23749111
    [Google Scholar]
  71. Mazumder A.G. Sharma P. Patial V. Singh D. Crocin attenuates kindling development and associated cognitive impairments in mice via inhibiting reactive oxygen species‐mediated NF‐κB activation. Basic Clin. Pharmacol. Toxicol. 2017 120 5 426 433 10.1111/bcpt.12694 27800651
    [Google Scholar]
  72. Ahmed S. Hasan M.M. Heydari M. Rauf A. Bawazeer S. Abu-Izneid T. Rebezov M. Shariati M.A. Daglia M. Rengasamy K.R.R. Therapeutic potentials of crocin in medication of neurological disorders. Food Chem. Toxicol. 2020 145 111739 10.1016/j.fct.2020.111739 32916219
    [Google Scholar]
  73. Azami S. Shahriari Z. Asgharzade S. Farkhondeh T. Sadeghi M. Ahmadi F. Vahedi M.M. Forouzanfar F. Therapeutic potential of saffron (Crocus sativus L.) in ischemia stroke. Evid. Based Complement. Alternat. Med. 2021 2021 1 8 10.1155/2021/6643950 33747107
    [Google Scholar]
  74. Mohammadzadeh L Rahbardar MG Razavi BM Hosseinzadeh H Crocin protects malathion-induced striatal biochemical deficits by inhibiting apoptosis and increasing α-synuclein in Rats' Striatum. J Mol Neurosci. 2021 72 5 983 993
    [Google Scholar]
  75. Omidkhoda S.F. Mehri S. Heidari S. Hosseinzadeh H. Protective effects of crocin against hepatic damages in D-galactose aging model in rats. Iran. J. Pharm. Res. 2020 19 3 440 450 33680043
    [Google Scholar]
  76. Liguori I. Russo G. Curcio F. Bulli G. Aran L. Della-Morte D. Gargiulo G. Testa G. Cacciatore F. Bonaduce D. Abete P. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018 13 757 772 10.2147/CIA.S158513 29731617
    [Google Scholar]
  77. Chaudhuri J. Bains Y. Guha S. Kahn A. Hall D. Bose N. Gugliucci A. Kapahi P. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab. 2018 28 3 337 352 10.1016/j.cmet.2018.08.014 30184484
    [Google Scholar]
  78. Park J.H. Lee K.Y. Park B. Yoon J. Suppression of Th2 chemokines by crocin via blocking of ERK-MAPK/NF-κB/STAT1 signalling pathways in TNF-α/IFN-γ-stimulated human epidermal keratinocytes. Exp Dermatol. 2015 24 8 634 6
    [Google Scholar]
  79. Ohba T. Ishisaka M. Tsujii S. Tsuruma K. Shimazawa M. Kubo K. Umigai N. Iwawaki T. Hara H. Crocetin protects ultraviolet A-induced oxidative stress and cell death in skin in vitro and in vivo. Eur. J. Pharmacol. 2016 789 244 253 10.1016/j.ejphar.2016.07.036 27452919
    [Google Scholar]
  80. Naik A.A. Gadgoli C.H. Naik A.B. Formulation containing phytosomes of carotenoids from Nyctanthes arbor-tristis and Tagetes patula protect D-galactose induced skin aging in mice. CCMP 2023 3 1 100070
    [Google Scholar]
  81. Chen X. Yang C. Jiang G. Research progress on skin photoaging and oxidative stress. Postepy Dermatol. Alergol. 2021 38 6 931 936 10.5114/ada.2021.112275 35125996
    [Google Scholar]
  82. Houshang Mohamadpour A. Ayati Z. Parizadeh M.R. Rajbai O. Hosseinzadeh H. Safety evaluation of Crocin (a constituent of saffron) tablets in healthy volunteers. Iran J Basic Med Sci 2013 16
    [Google Scholar]
  83. Jalali-Heravi M. Parastar H. Ebrahimi-Najafabadi H. Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography–mass spectrometry analysis. J. Chromatogr. A 2009 1216 33 6088 6097 10.1016/j.chroma.2009.06.067 19595355
    [Google Scholar]
  84. Mohajeri S.A. Sepahi S. Ghorani Azam A. Antidepressant and antianxiety properties of saffron. Woodhead Publishing Series in Food Science, Technology and Nutrition. Koocheki A. Khajeh-Hosseini M.B.T.S. Woodhead Publishing 2020 431 444
    [Google Scholar]
  85. Rezaee R. Hosseinzadeh H. Safranal: from an aromatic natural product to a rewarding pharmacological agent. Iran. J. Basic Med. Sci. 2013 16 1 12 26 23638289
    [Google Scholar]
  86. Boskabady M.H. Byrami G. Feizpour A. The effect of safranal, a constituent of Crocus sativus (saffron), on tracheal responsiveness, serum levels of cytokines, total NO and nitrite in sensitized guinea pigs. Pharmacol. Rep. 2014 66 1 56 61 10.1016/j.pharep.2013.08.004 24905307
    [Google Scholar]
  87. Hazman Ö. Bozkurt M.F. Anti-inflammatory and antioxidative activities of safranal in the reduction of renal dysfunction and damage that occur in diabetic nephropathy. Inflammation 2015 38 4 1537 1545 10.1007/s10753‑015‑0128‑y 25667012
    [Google Scholar]
  88. Imenshahidi M. Razavi B.M. Faal A. Gholampoor A. Mousavi S.M. Hosseinzadeh H. The effect of chronic administration of safranal on systolic blood pressure in rats. Iran. J. Pharm. Res. 2015 14 2 585 590 25901167
    [Google Scholar]
  89. Farahmand S.K. Samini F. Samini M. Samarghandian S. Safranal ameliorates antioxidant enzymes and suppresses lipid peroxidation and nitric oxide formation in aged male rat liver. Biogerontology 2013 14 1 63 71 10.1007/s10522‑012‑9409‑0 23179288
    [Google Scholar]
  90. Popović-Djordjević J.B. Kostić A.Ž. Kiralan M. Antioxidant activities of bioactive compounds and various extracts obtained from saffron. Saffron. 2021 0 41 97 10.1016/B978‑0‑12‑821219‑6.00002‑6
    [Google Scholar]
  91. Golmohammadzadeh S. Imani F. Hosseinzadeh H. Jaafari M.R. Preparation, characterization and evaluation of sun protective and moisturizing effects of nanoliposomes containing safranal. Iran. J. Basic Med. Sci. 2011 14 6 521 533 23493792
    [Google Scholar]
  92. Khameneh B. Halimi V. Jaafari M.R. Golmohammadzadeh S. Safranal-loaded solid lipid nanoparticles: evaluation of sunscreen and moisturizing potential for topical applications. Iran. J. Basic Med. Sci. 2015 18 1 58 63 25810877
    [Google Scholar]
  93. Bernasqué A. Faure C. Rezvani H. Cario M. A new eco‐friendly and water‐resistant sunscreen agent: Lecithin‐based multilamellar liposomes. J. Cosmet. Dermatol. 2024 23 3 918 925 10.1111/jocd.16072 37947116
    [Google Scholar]
/content/journals/npj/10.2174/0122103155333158241210174935
Loading
/content/journals/npj/10.2174/0122103155333158241210174935
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: skin aging ; safranal ; Blue light ; ultraviolet ; crocin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test