Skip to content
2000
image of Pathway Targeting and Mechanistic Elucidation of Phyto-compounds Relevant in Triple-negative Breast Cancer (TNBC)

Abstract

Of the several forms of breast cancer, triple-negative breast cancer (TNBC) is the most aggressive, is not responsive to traditional human/hormonal epithelial growth factor receptor 2 (HER2)-targeted therapies because the corresponding receptor targets are absent, TNBC tends to be more invasive in form, metastasis, have an early recurrence rate and develop medication resistance. For TNBC, some of the most popular types of treatments are resection, chemotherapy, and radiation therapy. Several studies are being carried out for the development of novel treatment approaches for improved TNBC diagnosis. As our knowledge of the molecular mechanisms behind the development of cancer has grown, a vast array of anticancer drugs has been developed. The use of chemically produced pharmaceuticals has not significantly raised the overall survival rate over the previous few decades. As such, novel approaches and cutting-edge chemopreventive medications are needed to improve the efficacy of existing TNBC therapies. Naturally occurring compounds derived from plants called phytochemicals are valuable resources for the development of novel medications for TNBC treatment. These phytochemicals often function by modulating molecular pathways associated with the onset and propagation of TNBC. Some of the specific methods include boosting antioxidant status, deactivating carcinogens, stopping proliferation, inducing cell cycle arrest, promoting apoptosis, and immune system modulation. This review's main goal is to give a summary of the active components of natural products, together with details on their molecular targets, pharmacologic action, and current level of understanding. Several natural compounds that particularly target the pathways linked to TNBC in our study have been thoroughly described by us. We have done extensive research on many natural substances that could lead to the discovery of new targets for TNBC detection.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155329752241118115506
2025-01-03
2025-04-06
Loading full text...

Full text loading...

References

  1. Mehraj U. Ganai R.A. Macha M.A. Hamid A. Zargar M.A. Bhat A.A. Nasser M.W. Haris M. Batra S.K. Alshehri B. Al-Baradie R.S. Mir M.A. Wani N.A. The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: New challenges and therapeutic opportunities. Cell Oncol. (Dordr.) 2021 44 6 1209 1229 10.1007/s13402‑021‑00634‑9 34528143
    [Google Scholar]
  2. Reddy V.A. Sarin R. Panda D. Hanitha R.N.M. Jain J. Chatterjee S. Annapurneswari S. Saipillai M.Z. Gupta S. Khan E. Bhattacharya J. Bhandari T.P.S. Prasad S.V.S.S. Swain M. A Multi-centric retrospective study into the epidemiological distribution of breast cancer patients in India. J. Cancer Res. Ther. 2023 19 Suppl. 2 S869 S876 10.4103/jcrt.jcrt_1876_22 38384068
    [Google Scholar]
  3. Mehraj U. Wani N.A. Hamid A. Alkhanani M. Almilaibary A. Mir M.A. Adapalene inhibits the growth of triple-negative breast cancer cells by S-phase arrest and potentiates the antitumor efficacy of GDC-0941. Front. Pharmacol. 2022 13 958443 10.3389/fphar.2022.958443 36003501
    [Google Scholar]
  4. Qayoom H. Sofi S. Mir M.A. Targeting tumor microenvironment using tumor-infiltrating lymphocytes as therapeutics against tumorigenesis. Immunol. Res. 2023 71 4 588 599 10.1007/s12026‑023‑09376‑2 37004645
    [Google Scholar]
  5. Olsson M. Larsson P. Johansson J. Sah V.R. Parris T.Z. Cancer stem cells are prevalent in the basal-like 2 and mesenchymal triple-negative breast cancer subtypes in vitro. Front. Cell Dev. Biol. 2023 11 1237673 10.3389/fcell.2023.1237673 37771376
    [Google Scholar]
  6. Mir M.A. Qayoom H. Introduction to breast cancer. Therapeutic potential of cell cycle kinases in breast cancer. Springer 2023 1 22
    [Google Scholar]
  7. Arranz-Ledo M. Lastra E. Abella L. Ferreira R. Orozco M. Hernández L. Martínez N. Infante M. Durán M. Multigene germline testing usefulness instead of BRCA1/2 single screening in triple negative breast cancer cases. Pathol. Res. Pract. 2023 247 154514 10.1016/j.prp.2023.154514 37201465
    [Google Scholar]
  8. Hiroki H. Akahane K. Inukai T. Morio T. Takagi M. Synergistic effect of combined PI3 kinase inhibitor and PARP inhibitor treatment on BCR/ABL1-positive acute lymphoblastic leukemia cells. Int. J. Hematol. 2023 117 5 748 758 10.1007/s12185‑022‑03520‑8 36575328
    [Google Scholar]
  9. Subhan M.A. Parveen F. Shah H. Yalamarty S.S.K. Ataide J.A. Torchilin V.P. Recent advances with precision medicine treatment for breast cancer including triple-negative sub-type. Cancers (Basel) 2023 15 8 2204 10.3390/cancers15082204 37190133
    [Google Scholar]
  10. Mistry T. Nath A. Pal R. Ghosh S. Mahata S. Kumar Sahoo P. Sarkar S. Choudhury T. Nath P. Alam N. Nasare V.D. Emerging futuristic targeted therapeutics. Am. J. Clin. Oncol. 2024 47 3 132 148 10.1097/COC.0000000000001071 38145412
    [Google Scholar]
  11. Moraes D.F.C. Anticancer drugs from plants. Biotechnology and Production of Anti-Cancer Compounds 2017 121 142 10.1007/978‑3‑319‑53880‑8_5
    [Google Scholar]
  12. Poo C.L. Dewadas H.D. Ng F.L. Foo C.N. Lim Y.M. Effect of traditional Chinese medicine on musculoskeletal symptoms in breast cancer: A systematic review and meta-analysis. J. Pain Symptom Manage. 2021 62 1 159 173 10.1016/j.jpainsymman.2020.11.024 33278502
    [Google Scholar]
  13. Qadir S.U. Raja V. Herbal medicine: Old practice and modern perspectives. Phytomedicine. Elsevier 2021 149 180 10.1016/B978‑0‑12‑824109‑7.00001‑7
    [Google Scholar]
  14. Nwozo O.S. Antioxidant, phytochemical, and therapeutic properties of medicinal plants. RE:view 2023 26 1 359 388
    [Google Scholar]
  15. Sohel M. Aktar S. Biswas P. Amin M.A. Hossain M.A. Ahmed N. Mim M.I.H. Islam F. Mamun A.A. Exploring the anti‐cancer potential of dietary phytochemicals for the patients with breast cancer: A comprehensive review. Cancer Med. 2023 12 13 14556 14583 10.1002/cam4.5984 37132286
    [Google Scholar]
  16. Pondé N.F. Zardavas D. Piccart M. Progress in adjuvant systemic therapy for breast cancer. Nat. Rev. Clin. Oncol. 2019 16 1 27 44 10.1038/s41571‑018‑0089‑9 30206303
    [Google Scholar]
  17. Tringale K.R. Berger E.R. Sevilimedu V. Wen H.Y. Gillespie E.F. Mueller B.A. McCormick B. Xu A.J. Cuaron J.J. Cahlon O. Khan A.J. Powell S.N. Morrow M. Heerdt A.S. Braunstein L.Z. Breast conservation among older patients with early‐stage breast cancer: Locoregional recurrence following adjuvant radiation or hormonal therapy. Cancer 2021 127 11 1749 1757 10.1002/cncr.33422 33496354
    [Google Scholar]
  18. El-Readi M.Z. Al-Abd A.M. Althubiti M.A. Almaimani R.A. Al-Amoodi H.S. Ashour M.L. Wink M. Eid S.Y. Multiple molecular mechanisms to overcome multidrug resistance in cancer by natural secondary metabolites. Front. Pharmacol. 2021 12 658513 10.3389/fphar.2021.658513 34093189
    [Google Scholar]
  19. Hussein A. Hussein K. Babkair H. Badawy M. Anti-cancer medicins (classification and mechanisms of action). Egypt. Dent. J. 2024 70 1 147 164 10.21608/edj.2023.234480.2708
    [Google Scholar]
  20. Howard A. Martin C. Davis P. CHEMOTHERAPY AND HORMONAL THERAPY Overview I. Principles of cancer chemotherapy (Wellstein, 2018) A. Cancer chemotherapy remains an integral component of systemic therapy in both hematologic and solid tumors. Core Curriculum for Oncology Nursing-E-Book 2023 257
    [Google Scholar]
  21. Vasan N. Baselga J. Hyman D.M. A view on drug resistance in cancer. Nature 2019 575 7782 299 309 10.1038/s41586‑019‑1730‑1 31723286
    [Google Scholar]
  22. Guestini F. McNamara K.M. Sasano H. The use of chemosensitizers to enhance the response to conventional therapy in triple-negative breast cancer patients. Future Medicine 2017 127 131
    [Google Scholar]
  23. El-Seedi H.R. Yosri N. Khalifa S.A.M. Guo Z. Musharraf S.G. Xiao J. Saeed A. Du M. Khatib A. Abdel-Daim M.M. Efferth T. Göransson U. Verpoorte R. Exploring natural products-based cancer therapeutics derived from egyptian flora. J. Ethnopharmacol. 2021 269 113626 10.1016/j.jep.2020.113626 33248183
    [Google Scholar]
  24. Bhat B.A. Rashid Mir W. Alkhanani M. Almilaibary A. Mir M.A. Network pharmacology and experimental validation for deciphering the action mechanism of Fritillaria cirrhosa D. Don constituents in suppressing breast carcinoma. J. Biomol. Struct. Dyn. 2023 ••• 1 21 10.1080/07391102.2023.2274966 37948293
    [Google Scholar]
  25. Munir A. Ishrat Fatima Zelle Humma Evaluation of therapeutic potential of natural resources against breast cancer. Pakistan Journal of Biochemistry and Biotechnology 2022 3 2 89 101 10.52700/pjbb.v3i2.69
    [Google Scholar]
  26. Asemi Z. Yousefi B. Farnood P.R. Pazhooh R.D. Targeting signaling pathway by curcumin in osteosarcoma. Curr. Mol. Pharmacol. 2023 16 1 71 82 10.2174/1874467215666220408104341 35400349
    [Google Scholar]
  27. Ashrafizadeh M. Ahmadi Z. Mohamamdinejad R. Yaribeygi H. Serban M.C. Orafai H.M. Sahebkar A. Curcumin therapeutic modulation of the wnt signaling pathway. Curr. Pharm. Biotechnol. 2020 21 11 1006 1015 10.2174/1389201021666200305115101 32133961
    [Google Scholar]
  28. Farghadani R. Naidu R. Curcumin: Modulator of key molecular signaling pathways in hormone-independent breast cancer Cancers (Basel) 2021 13 14 3427
    [Google Scholar]
  29. Vinod B.S. Antony J. Nair H.H. Puliyappadamba V.T. Saikia M. Shyam Narayanan S. Bevin A. John Anto R. Mechanistic evaluation of the signaling events regulating curcumin-mediated chemosensitization of breast cancer cells to 5-fluorouracil. Cell Death Dis. 2013 4 2 e505 e505 10.1038/cddis.2013.26 23429291
    [Google Scholar]
  30. Mechanism of anti-cancer activity of curcumin on androgen-dependent and androgen-independent prostate cancer Nutrients 2020 12 3 679
    [Google Scholar]
  31. Moghtaderi H. Sepehri H. Attari F. Combination of arabinogalactan and curcumin induces apoptosis in breast cancer cells in vitro and inhibits tumor growth via overexpression of p53 level in vivo. Biomed. Pharmacother. 2017 88 582 594 10.1016/j.biopha.2017.01.072 28152473
    [Google Scholar]
  32. Ko J.H. Sethi G. Um J.Y. Shanmugam M.K. Arfuso F. Kumar A.P. Bishayee A. Ahn K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci. 2017 18 12 2589 10.3390/ijms18122589 29194365
    [Google Scholar]
  33. Kohandel Z. Farkhondeh T. Aschner M. Pourbagher-Shahri A.M. Samarghandian S. STAT3 pathway as a molecular target for resveratrol in breast cancer treatment. Cancer Cell Int. 2021 21 1 468 10.1186/s12935‑021‑02179‑1 34488773
    [Google Scholar]
  34. Wieczorek M. Ginter T. Brand P. Heinzel T. Krämer O.H. Acetylation modulates the STAT signaling code. Cytokine Growth Factor Rev. 2012 23 6 293 305 10.1016/j.cytogfr.2012.06.005 22795479
    [Google Scholar]
  35. Lee H. Zhang P. Herrmann A. Yang C. Xin H. Wang Z. Hoon D.S.B. Forman S.J. Jove R. Riggs A.D. Yu H. Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation. Proc. Natl. Acad. Sci. USA 2012 109 20 7765 7769 10.1073/pnas.1205132109 22547799
    [Google Scholar]
  36. Fu Y. Chang H. Peng X. Bai Q. Yi L. Zhou Y. Zhu J. Mi M. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway. PLoS One 2014 9 7 e102535 10.1371/journal.pone.0102535 25068516
    [Google Scholar]
  37. Almatroodi S.A. Almatroudi A. Khan A.A. Alhumaydhi F.A. Alsahli M.A. Rahmani A.H. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules 2020 25 14 3146 10.3390/molecules25143146 32660101
    [Google Scholar]
  38. Abd El-Rahman S.S. Shehab G. Nashaat H. Epigallocatechin-3-Gallate: The prospective targeting of cancer stem cells and preventing metastasis of chemically-induced mammary cancer in rats. Am. J. Med. Sci. 2017 354 1 54 63 10.1016/j.amjms.2017.03.001 28755734
    [Google Scholar]
  39. Wei W. Tweardy D.J. Zhang M. Zhang X. Landua J. Petrovic I. Bu W. Roarty K. Hilsenbeck S.G. Rosen J.M. Lewis M.T. STAT3 signaling is activated preferentially in tumor-initiating cells in claudin-low models of human breast cancer. Stem Cells 2014 32 10 2571 2582 10.1002/stem.1752 24891218
    [Google Scholar]
  40. Lin Y. Shi R. Wang X. Shen H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets 2008 8 7 634 646 10.2174/156800908786241050 18991571
    [Google Scholar]
  41. Ganai S.A. Sheikh F.A. Baba Z.A. Mir M.A. Mantoo M.A. Yatoo M.A. Anticancer activity of the plant flavonoid luteolin against preclinical models of various cancers and insights on different signalling mechanisms modulated. Phytother. Res. 2021 35 7 3509 3532 10.1002/ptr.7044 33580629
    [Google Scholar]
  42. Zhu M. Sun Y. Su Y. Guan W. Wang Y. Han J. Wang S. Yang B. Wang Q. Kuang H. Luteolin: A promising multifunctional natural flavonoid for human diseases. Phytother. Res. 2024 38 7 3417 3443 10.1002/ptr.8217 38666435
    [Google Scholar]
  43. Reipas K.M. Law J.H. Couto N. Islam S. Li Y. Li H. Cherkasov A. Jung K. Cheema A.S. Jones S.J.M. Hassell J.A. Dunn S.E. Luteolin is a novel p90 ribosomal S6 kinase (RSK) inhibitor that suppresses Notch4 signaling by blocking the activation of Y-box binding protein-1 (YB-1). Oncotarget 2013 4 2 329 345 10.18632/oncotarget.834 23593654
    [Google Scholar]
  44. Sun D.W. Zhang H.D. Mao L. Mao C.F. Chen W. Cui M. Ma R. Cao H.X. Jing C.W. Wang Z. Wu J.Z. Tang J.H. Luteolin inhibits breast cancer development and progression in vitro and in vivo by suppressing notch signaling and regulating MiRNAs. Cell. Physiol. Biochem. 2015 37 5 1693 1711 10.1159/000438535 26545287
    [Google Scholar]
  45. Esmaeili M.A. Synergistic inhibition of drug resistant breast cancer cells growth by the combination of luteolin and tamoxifen involves Nrf2 downregulation. JCPR 2015 7 9 291 296
    [Google Scholar]
  46. Mir W.R. Bhat B.A. Rather M.A. Muzamil S. Almilaibary A. Alkhanani M. Mir M.A. Molecular docking analysis and evaluation of the antimicrobial properties of the constituents of Geranium wallichianum D. Don ex Sweet from Kashmir Himalaya. Sci. Rep. 2022 12 1 12547 10.1038/s41598‑022‑16102‑9 35869098
    [Google Scholar]
  47. Nguyen L.T. Lee Y.H. Sharma A.R. Park J.B. Jagga S. Sharma G. Lee S.S. Nam J.S. Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity. Korean J. Physiol. Pharmacol. 2017 21 2 205 213 10.4196/kjpp.2017.21.2.205 28280414
    [Google Scholar]
  48. He L. Hou X. Fan F. Wu H. Quercetin stimulates mitochondrial apoptosis dependent on activation of endoplasmic reticulum stress in hepatic stellate cells. Pharm. Biol. 2016 54 12 3237 3243 10.1080/13880209.2016.1223143 27572285
    [Google Scholar]
  49. Choi E.J. Bae S.M. Ahn W.S. Antiproliferative effects of quercetin through cell cycle arrest and apoptosis in human breast cancer MDA-MB-453 cells. Arch. Pharm. Res. 2008 31 10 1281 1285 10.1007/s12272‑001‑2107‑0 18958418
    [Google Scholar]
  50. Mir W.R. Bhat B.A. Kumar A. Dhiman R. Alkhanani M. Almilaibary A. Dar M.Y. Ganie S.A. Mir M.A. Network pharmacology combined with molecular docking and in vitro verification reveals the therapeutic potential of Delphinium roylei munz constituents on breast carcinoma. Front. Pharmacol. 2023 14 1135898 10.3389/fphar.2023.1135898 37724182
    [Google Scholar]
  51. Bhat B.A. Mir W.R. Sheikh B.A. Rather M.A. Dar T.H. Mir M.A. In vitro and in silico evaluation of antimicrobial properties of Delphinium cashmerianum L., a medicinal herb growing in Kashmir, India. J. Ethnopharmacol. 2022 291 115046 10.1016/j.jep.2022.115046 35167935
    [Google Scholar]
  52. Perk A.A. Shatynska-Mytsyk I. Gerçek Y.C. Boztaş K. Yazgan M. Fayyaz S. Farooqi A.A. Rutin mediated targeting of signaling machinery in cancer cells. Cancer Cell Int. 2014 14 1 124 10.1186/s12935‑014‑0124‑6 25493075
    [Google Scholar]
  53. Chen H. Anti-tumor effect of rutin on human neuroblastoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis ScientificWorldJournal 2013 2013
    [Google Scholar]
  54. Rasheed S. Rehman K. Shahid M. Suhail S. Akash M.S.H. Therapeutic potentials of genistein: New insights and perspectives. J. Food Biochem. 2022 46 9 e14228 10.1111/jfbc.14228 35579327
    [Google Scholar]
  55. Pan H. Zhou W. He W. Liu X. Ding Q. Ling L. Zha X. Wang S. Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-κB activity via the Notch-1 pathway. Int. J. Mol. Med. 2012 30 2 337 343 10.3892/ijmm.2012.990 22580499
    [Google Scholar]
  56. Fang Y. Zhang Q. Wang X. Yang X. Wang X. Huang Z. Jiao Y. Wang J. Quantitative phosphoproteomics reveals genistein as a modulator of cell cycle and DNA damage response pathways in triple-negative breast cancer cells. Int. J. Oncol. 2016 48 3 1016 1028 10.3892/ijo.2016.3327 26783066
    [Google Scholar]
  57. Kabil N. Bayraktar R. Kahraman N. Mokhlis H.A. Calin G.A. Lopez-Berestein G. Ozpolat B. Thymoquinone inhibits cell proliferation, migration, and invasion by regulating the elongation factor 2 kinase (eEF-2K) signaling axis in triple-negative breast cancer. Breast Cancer Res. Treat. 2018 171 3 593 605 10.1007/s10549‑018‑4847‑2 29971628
    [Google Scholar]
  58. Wei C. Zou H. Xiao T. Liu X. Wang Q. Cheng J. Fu S. Peng J. Xie X. Fu J. TQFL12, a novel synthetic derivative of TQ, inhibits triple‐negative breast cancer metastasis and invasion through activating AMPK/ACC pathway. J. Cell. Mol. Med. 2021 25 21 10101 10110 10.1111/jcmm.16945 34609056
    [Google Scholar]
  59. Ji H. Zhang K. Pan G. Li C. Li C. Hu X. Yang L. Cui H. Deoxyelephantopin induces apoptosis and enhances chemosensitivity of colon cancer via miR-205/bcl2 Axis. Int. J. Mol. Sci. 2022 23 9 5051 10.3390/ijms23095051 35563442
    [Google Scholar]
  60. Li N. Guo W. Li Y. Zuo H. Zhang H. Wang Z. Zhao Y. Yang F. Ren G. Zhang S. Construction and anti-tumor activities of disulfide-linked docetaxel-dihydroartemisinin nanoconjugates. Colloids Surf. B Biointerfaces 2020 191 111018 10.1016/j.colsurfb.2020.111018 32304917
    [Google Scholar]
  61. He W. Du Y. Wang T. Wang J. Cheng L. Li X. Dimeric artesunate–phosphatidylcholine-based liposomes for irinotecan delivery as a combination therapy approach. Mol. Pharm. 2021 18 10 3862 3870 10.1021/acs.molpharmaceut.1c00500 34470216
    [Google Scholar]
  62. Riganti C. Doublier S. Viarisio D. Miraglia E. Pescarmona G. Ghigo D. Bosia A. Artemisinin induces doxorubicin resistance in human colon cancer cells via calcium‐dependent activation of HIF‐1α and P‐glycoprotein overexpression. Br. J. Pharmacol. 2009 156 7 1054 1066 10.1111/j.1476‑5381.2009.00117.x 19298255
    [Google Scholar]
  63. Ateba S.B. Mvondo M.A. Ngeu S.T. Tchoumtchoua J. Awounfack C.F. Njamen D. Krenn L. Natural terpenoids against female breast cancer: A 5-year recent research. Curr. Med. Chem. 2018 25 27 3162 3213 10.2174/0929867325666180214110932 29446727
    [Google Scholar]
  64. Abu Samaan T.M. Samec M. Liskova A. Kubatka P. Büsselberg D. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules 2019 9 12 789 10.3390/biom9120789 31783552
    [Google Scholar]
  65. Jiang W. Chen M. Xiao C. Yang W. Qin Q. Tan Q. Liang Z. Liao X. Mao A. Wei C. Triptolide suppresses growth of breast cancer by targeting HMGB1 in vitro and in vivo. Biol. Pharm. Bull. 2019 42 6 892 899 10.1248/bpb.b18‑00818 30956264
    [Google Scholar]
  66. Landgraf M. Lahr C.A. Kaur I. Shafiee A. Sanchez-Herrero A. Janowicz P.W. Ravichandran A. Howard C.B. Cifuentes-Rius A. McGovern J.A. Voelcker N.H. Hutmacher D.W. Targeted camptothecin delivery via silicon nanoparticles reduces breast cancer metastasis. Biomaterials 2020 240 119791 10.1016/j.biomaterials.2020.119791 32109589
    [Google Scholar]
  67. Pham E. Yin M. Peters C.G. Lee C.R. Brown D. Xu P. Man S. Jayaraman L. Rohde E. Chow A. Lazarus D. Eliasof S. Foster F.S. Kerbel R.S. Preclinical efficacy of bevacizumab with CRLX101, an investigational nanoparticle–drug conjugate, in treatment of metastatic triple-negative breast cancer. Cancer Res. 2016 76 15 4493 4503 10.1158/0008‑5472.CAN‑15‑3435 27325647
    [Google Scholar]
  68. Anders C. Deal A.M. Abramson V. Liu M.C. Storniolo A.M. Carpenter J.T. Puhalla S. Nanda R. Melhem-Bertrandt A. Lin N.U. Kelly Marcom P. Van Poznak C. Stearns V. Melisko M. Smith J.K. Karginova O. Parker J. Berg J. Winer E.P. Peterman A. Prat A. Perou C.M. Wolff A.C. Carey L.A. TBCRC 018: Phase II study of iniparib in combination with irinotecan to treat progressive triple negative breast cancer brain metastases. Breast Cancer Res. Treat. 2014 146 3 557 566 10.1007/s10549‑014‑3039‑y 25001612
    [Google Scholar]
  69. Valabrega G. Berrino G. Milani A. Aglietta M. Montemurro F. A retrospective analysis of the activity and safety of oral Etoposide in heavily pretreated metastatic breast cancer patients. Breast J. 2015 21 3 241 245 10.1111/tbj.12398 25772707
    [Google Scholar]
  70. Wu Y.H. Hong C.W. Wang Y.C. Huang W.J. Yeh Y.L. Wang B.J. Wang Y.J. Chiu H.W. A novel histone deacetylase inhibitor TMU-35435 enhances etoposide cytotoxicity through the proteasomal degradation of DNA-PKcs in triple-negative breast cancer. Cancer Lett. 2017 400 79 88 10.1016/j.canlet.2017.04.023 28450160
    [Google Scholar]
  71. Deng D. Shah K. TRAIL of hope meeting resistance in cancer. Trends Cancer 2020 6 12 989 1001 10.1016/j.trecan.2020.06.006 32718904
    [Google Scholar]
  72. Yao M. Fan X. Yuan B. Takagi N. Liu S. Han X. Ren J. Liu J. Berberine inhibits NLRP3 Inflammasome pathway in human triple-negative breast cancer MDA-MB-231 cell. BMC Complement. Altern. Med. 2019 19 1 216 10.1186/s12906‑019‑2615‑4 31412862
    [Google Scholar]
  73. Refaat A. Abdelhamed S. Yagita H. Inoue H. Yokoyama S. Hayakawa Y. Saiki I. Berberine enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast cancer. Oncol. Lett. 2013 6 3 840 844 10.3892/ol.2013.1434 24137422
    [Google Scholar]
  74. Rather R.A. Bhagat M. Cancer chemoprevention and piperine: molecular mechanisms and therapeutic opportunities. Front. Cell Dev. Biol. 2018 6 10 10.3389/fcell.2018.00010 29497610
    [Google Scholar]
  75. Lee S.T. Welch K.D. Panter K.E. Gardner D.R. Garrossian M. Chang C.W.T. Cyclopamine: From cyclops lambs to cancer treatment. J. Agric. Food Chem. 2014 62 30 7355 7362 10.1021/jf5005622 24754790
    [Google Scholar]
  76. Liu R. Yu Y. Wang Q. Zhao Q. Yao Y. Sun M. Zhuang J. Sun C. Qi Y. Interactions between hedgehog signaling pathway and the complex tumor microenvironment in breast cancer: Current knowledge and therapeutic promises. Cell Commun. Signal. 2024 22 1 432 10.1186/s12964‑024‑01812‑6 39252010
    [Google Scholar]
  77. Bhat B.A. Mir W.R. Sheikh B.A. Alkanani M. Mir M.A. Metabolite fingerprinting of phytoconstituents from Fritillaria cirrhosa D. Don and molecular docking analysis of bioactive peonidin with microbial drug target proteins. Sci. Rep. 2022 12 1 7296 10.1038/s41598‑022‑10796‑7 35508512
    [Google Scholar]
  78. Taher M.A. Vinca alkaloid-the second most used alkaloid for cancer treatment-A review. Inter. J. Physiol. Nutr. Phys. Educ 2017 2 723 727
    [Google Scholar]
  79. Banyal A. Vinca alkaloids as a potential cancer therapeutics: Recent update and future challenges 3 Biotech 2023 13 6 211 10.1007/s13205‑023‑03636‑6
    [Google Scholar]
  80. Zhang Y. Yang S.H. Guo X.L. New insights into Vinca alkaloids resistance mechanism and circumvention in lung cancer. Biomed. Pharmacother. 2017 96 659 666 10.1016/j.biopha.2017.10.041 29035832
    [Google Scholar]
  81. Martino E. Casamassima G. Castiglione S. Cellupica E. Pantalone S. Papagni F. Rui M. Siciliano A.M. Collina S. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg. Med. Chem. Lett. 2018 28 17 2816 2826 10.1016/j.bmcl.2018.06.044 30122223
    [Google Scholar]
  82. Varghese E. Samuel S. Abotaleb M. Cheema S. Mamtani R. Büsselberg D. The “Yin and Yang” of natural compounds in anticancer therapy of triple-negative breast cancers. Cancers (Basel) 2018 10 10 346 10.3390/cancers10100346 30248941
    [Google Scholar]
  83. Tuli H.S. Mittal S. Loka M. Aggarwal V. Aggarwal D. Masurkar A. Kaur G. Varol M. Sak K. Kumar M. Sethi G. Bishayee A. Deguelin targets multiple oncogenic signaling pathways to combat human malignancies. Pharmacol. Res. 2021 166 105487 10.1016/j.phrs.2021.105487 33581287
    [Google Scholar]
  84. Robles A.J. Cai S. Cichewicz R.H. Mooberry S.L. Selective activity of deguelin identifies therapeutic targets for androgen receptor-positive breast cancer. Breast Cancer Res. Treat. 2016 157 3 475 488 10.1007/s10549‑016‑3841‑9 27255535
    [Google Scholar]
  85. Yang M. Teng W. Qu Y. Wang H. Yuan Q. Sulforaphene inhibits triple negative breast cancer through activating tumor suppressor Egr1. Breast Cancer Res. Treat. 2016 158 2 277 286 10.1007/s10549‑016‑3888‑7 27377973
    [Google Scholar]
  86. Yang F. Wang F. Liu Y. Wang S. Li X. Huang Y. Xia Y. Cao C. Sulforaphane induces autophagy by inhibition of HDAC6-mediated PTEN activation in triple negative breast cancer cells. Life Sci. 2018 213 149 157 10.1016/j.lfs.2018.10.034 30352240
    [Google Scholar]
  87. Burnett J.P. Lim G. Li Y. Shah R.B. Lim R. Paholak H.J. McDermott S.P. Sun L. Tsume Y. Bai S. Wicha M.S. Sun D. Zhang T. Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells. Cancer Lett. 2017 394 52 64 10.1016/j.canlet.2017.02.023 28254410
    [Google Scholar]
  88. Sandoval T.A. Urueña C.P. Llano M. Gómez-Cadena A. Hernández J.F. Sequeda L.G. Loaiza A.E. Barreto A. Li S. Fiorentino S. Standardized extract from Caesalpinia spinosa is cytotoxic over cancer stem cells and enhance anticancer activity of doxorubicin. Am. J. Chin. Med. 2016 44 8 1693 1717 10.1142/S0192415X16500956 27852125
    [Google Scholar]
  89. Urueña C. Sandoval T.A. Lasso P. Tawil M. Barreto A. Torregrosa L. Fiorentino S. Evaluation of chemotherapy and P2Et extract combination in ex-vivo derived tumor mammospheres from breast cancer patients. Sci. Rep. 2020 10 1 19639 10.1038/s41598‑020‑76619‑9 33184339
    [Google Scholar]
  90. Kronski E. Fiori M.E. Barbieri O. Astigiano S. Mirisola V. Killian P.H. Bruno A. Pagani A. Rovera F. Pfeffer U. Sommerhoff C.P. Noonan D.M. Nerlich A.G. Fontana L. Bachmeier B.E. miR181b is induced by the chemopreventive polyphenol curcumin and inhibits breast cancer metastasis via down‐regulation of the inflammatory cytokines CXCL1 and ‐2. Mol. Oncol. 2014 8 3 581 595 10.1016/j.molonc.2014.01.005 24484937
    [Google Scholar]
  91. Falah R.R. Talib W.H. Shbailat S.J. Combination of metformin and curcumin targets breast cancer in mice by angiogenesis inhibition, immune system modulation and induction of p53 independent apoptosis. Ther. Adv. Med. Oncol. 2017 9 4 235 252 10.1177/1758834016687482 28491145
    [Google Scholar]
  92. Sun Y. Zhou Q.M. Lu Y.Y. Zhang H. Chen Q.L. Zhao M. Su S.B. Resveratrol inhibits the migration and metastasis of MDA-MB-231 human breast cancer by reversing TGF-β1-induced epithelial-mesenchymal transition. Molecules 2019 24 6 1131 10.3390/molecules24061131 30901941
    [Google Scholar]
  93. Yang M.D. Sun Y. Zhou W.J. Xie X.Z. Zhou Q.M. Lu Y.Y. Su S.B. Resveratrol enhances inhibition effects of cisplatin on cell migration and invasion and tumor growth in breast cancer MDA-MB-231 cell models in vivo and in vitro. Molecules 2021 26 8 2204 10.3390/molecules26082204 33921192
    [Google Scholar]
  94. Narayanan S. Mony U. Vijaykumar D.K. Koyakutty M. Paul-Prasanth B. Menon D. Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells. Nanomedicine 2015 11 6 1399 1406 10.1016/j.nano.2015.03.015 25888278
    [Google Scholar]
  95. Giró-Perafita A. Palomeras S. Lum D.H. Blancafort A. Viñas G. Oliveras G. Pérez-Bueno F. Sarrats A. Welm A.L. Puig T. Preclinical evaluation of fatty acid synthase and EGFR inhibition in triple-negative breast cancer. Clin. Cancer Res. 2016 22 18 4687 4697 10.1158/1078‑0432.CCR‑15‑3133 27106068
    [Google Scholar]
  96. Woo C.C. Hsu A. Kumar A.P. Sethi G. Tan K.H.B. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: The role of p38 MAPK and ROS. PLoS One 2013 8 10 e75356 10.1371/journal.pone.0075356 24098377
    [Google Scholar]
  97. Cao Y. Feng Y.H. Gao L.W. Li X.Y. Jin Q.X. Wang Y.Y. Xu Y.Y. Jin F. Lu S.L. Wei M.J. Artemisinin enhances the anti-tumor immune response in 4T1 breast cancer cells in vitro and in vivo. Int. Immunopharmacol. 2019 70 110 116 10.1016/j.intimp.2019.01.041 30798159
    [Google Scholar]
  98. Nosrati H. Barzegari P. Danafar H. Kheiri Manjili H. Biotin-functionalized copolymeric PEG-PCL micelles for in vivo tumour-targeted delivery of artemisinin. Artif. Cells Nanomed. Biotechnol. 2019 47 1 104 114 10.1080/21691401.2018.1543199 30663422
    [Google Scholar]
  99. Bello E. Taraboletti G. Colella G. Zucchetti M. Forestieri D. Licandro S.A. Berndt A. Richter P. D’Incalci M. Cavalletti E. Giavazzi R. Camboni G. Damia G. The tyrosine kinase inhibitor E-3810 combined with paclitaxel inhibits the growth of advanced-stage triple-negative breast cancer xenografts. Mol. Cancer Ther. 2013 12 2 131 140 10.1158/1535‑7163.MCT‑12‑0275‑T 23270924
    [Google Scholar]
  100. Cardillo T.M. Sharkey R.M. Rossi D.L. Arrojo R. Mostafa A.A. Goldenberg D.M. Synthetic lethality exploitation by an anti–trop-2-SN-38 antibody–drug conjugate, IMMU-132, plus PARP inhibitors in BRCA1/2–wild-type triple-negative breast cancer. Clin. Cancer Res. 2017 23 13 3405 3415 10.1158/1078‑0432.CCR‑16‑2401 28069724
    [Google Scholar]
  101. Pusuluri A. Krishnan V. Wu D. Shields C.W. IV Wang L.W. Mitragotri S. Role of synergy and immunostimulation in design of chemotherapy combinations: An analysis of doxorubicin and camptothecin. Bioeng. Transl. Med. 2019 4 2 e10129 10.1002/btm2.10129 31249879
    [Google Scholar]
  102. Kim S. Lee J. You D. Jeong Y. Jeon M. Yu J. Kim S.W. Nam S.J. Lee J.E. Berberine suppresses cell motility through downregulation of TGF-β1 in triple negative breast cancer cells. Cell. Physiol. Biochem. 2018 45 2 795 807 10.1159/000487171 29414799
    [Google Scholar]
  103. Xu X. Yi H. Wu J. Kuang T. Zhang J. Li Q. Du H. Xu T. Jiang G. Fan G. Therapeutic effect of berberine on metabolic diseases: Both pharmacological data and clinical evidence. Biomed. Pharmacother. 2021 133 110984 10.1016/j.biopha.2020.110984 33186794
    [Google Scholar]
  104. Mansouri K. Rasoulpoor S. Daneshkhah A. Abolfathi S. Salari N. Mohammadi M. Rasoulpoor S. Shabani S. Clinical effects of curcumin in enhancing cancer therapy: A systematic review. BMC Cancer 2020 20 1 791 10.1186/s12885‑020‑07256‑8 32838749
    [Google Scholar]
  105. Paller C.J. Rudek M.A. Zhou X.C. Wagner W.D. Hudson T.S. Anders N. Hammers H.J. Dowling D. King S. Antonarakis E.S. Drake C.G. Eisenberger M.A. Denmeade S.R. Rosner G.L. Carducci M.A. A phase I study of muscadine grape skin extract in men with biochemically recurrent prostate cancer: Safety, tolerability, and dose determination. Prostate 2015 75 14 1518 1525 10.1002/pros.23024 26012728
    [Google Scholar]
  106. Zhou X. Seto S.W. Chang D. Kiat H. Razmovski-Naumovski V. Chan K. Bensoussan A. Synergistic effects of Chinese herbal medicine: A comprehensive review of methodology and current research. Front. Pharmacol. 2016 7 201 10.3389/fphar.2016.00201 27462269
    [Google Scholar]
  107. Patra S. Chemotherapeutic efficacy of curcumin and resveratrol against cancer: Chemoprevention, chemoprotection, drug synergism and clinical pharmacokinetics Semin Cancer Biol 2021 73 310 320 10.1016/j.semcancer.2020.10.010
    [Google Scholar]
  108. Tang X. Bi H. Feng J. Cao J. Effect of curcumin on multidrug resistance in resistant human gastric carcinoma cell line SGC7901/VCR. Acta Pharmacol. Sin. 2005 26 8 1009 1016 10.1111/j.1745‑7254.2005.00149.x 16038636
    [Google Scholar]
  109. Cassidy A. Minihane A.M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am. J. Clin. Nutr. 2017 105 1 10 22 10.3945/ajcn.116.136051 27881391
    [Google Scholar]
  110. Liskova A. Koklesova L. Samec M. Smejkal K. Samuel S.M. Varghese E. Abotaleb M. Biringer K. Kudela E. Danko J. Shakibaei M. Kwon T.K. Büsselberg D. Kubatka P. Flavonoids in cancer metastasis. Cancers (Basel) 2020 12 6 1498 10.3390/cancers12061498 32521759
    [Google Scholar]
  111. Haq B.U. Qayoom H. Sofi S. Jan N. Shabir A. Ahmad I. Ahmad F. Almilaibary A. Mir M.A. Targeting p53 misfolding conundrum by stabilizing agents and their analogs in breast cancer therapy: A comprehensive computational analysis. Front. Pharmacol. 2024 14 1333447 10.3389/fphar.2023.1333447 38269278
    [Google Scholar]
  112. Mir M.A. Sofi S. Ishfaq P.M. CDK Dysregulation in breast cancer: A bioinformatics analysis 2023 10.1007/978‑981‑19‑8911‑7_8
    [Google Scholar]
  113. Qayoom H. Alkhanani M. Almilaibary A. Alsagaby S.A. Mir M.A. Mechanistic elucidation of Juglanthraquinone C targeting breast Cancer: A network pharmacology-based investigation. Saudi J. Biol. Sci. 2023 30 7 103705 10.1016/j.sjbs.2023.103705 37425621
    [Google Scholar]
  114. Moar K. Yadav S. Pant A. Deepika Maurya P.K. Anti-tumor Effects of Polyphenols via Targeting Cancer Driving Signaling Pathways: A Review. Indian J. Clin. Biochem. 2024 39 4 470 488 10.1007/s12291‑024‑01222‑y 39346722
    [Google Scholar]
/content/journals/npj/10.2174/0122103155329752241118115506
Loading
/content/journals/npj/10.2174/0122103155329752241118115506
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test