Skip to content
2000
image of Advancements in Plant-based Antibiotics and their Nano Formulations: A Comprehensive Review

Abstract

Antibiotic resistance is a growing global health crisis, threatening the efficacy of conventional antibiotics and leading to increased mortality rates, prolonged hospital stays, and higher medical costs. The World Health Organization emphasizes the urgent need for new antibiotics as multidrug-resistant bacteria spread, rendering many treatments ineffective. This crisis drives the exploration of alternative antibiotic sources, particularly medicinal plants known for their bioactive compounds with potent antimicrobial properties. Unlike synthetic antibiotics, plant-derived compounds often have multiple mechanisms of action, reducing the likelihood of resistance development and offering a rich pool of structurally diverse molecules for optimization. However, plant extracts face limitations like low water solubility, resulting in reduced bioavailability. Recent advancements in nanotechnology have revolutionized drug delivery systems, offering significant benefits in formulating and delivering antibiotics. Nanocarriers, such as lipid-based, polymeric, and metallic nanoparticles, improve the stability, bioavailability, and controlled release of encapsulated drugs. Incorporating plant-derived antibiotics into nanocarriers addresses issues like poor solubility, rapid degradation, and limited targeting associated with traditional therapies. This review aims to provide a comprehensive overview of advancements in plant-based antibiotics and their nano formulations. It explores the extraction and isolation of bioactive compounds from medicinal plants, discusses the mechanisms underlying their antibacterial activities, and examines various nanocarrier systems used to enhance their efficacy. Additionally, it highlights recent research findings, addresses current challenges, and proposes future directions for developing plant-based antibiotic nanoformulations. The review underscores the potential of integrating phytochemicals and nanotechnology to combat antibiotic-resistant bacteria, paving the way for innovative and effective therapeutic strategies.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812352676241201153243
2024-12-12
2025-01-27
Loading full text...

Full text loading...

References

  1. Mozirandi W. Tagwireyi D. Mukanganyama S. Evaluation of antimicrobial activity of chondrillasterol isolated from Vernonia adoensis (Asteraceae). BMC Complement. Altern. Med. 2019 19 1 249 10.1186/s12906‑019‑2657‑7 31492140
    [Google Scholar]
  2. Mickymaray S. One-step synthesis of silver nanoparticles using Saudi Arabian desert seasonal plant Sisymbrium irio and antibacterial activity against multidrug-resistant bacterial strains. Biomolecules 2019 9 11 662 10.3390/biom9110662 31661912
    [Google Scholar]
  3. Kannaiyan M. Manuel V.N. Raja V. Thambidurai P. Mickymaray S. Nooruddin T. Antimicrobial activity of the ethanolic and aqueous extracts of Salacia chinensis Linn. against human pathogens. Asian Pac. J. Trop. Dis. 2012 2 S416 S420 10.1016/S2222‑1808(12)60194‑7
    [Google Scholar]
  4. Kannaiyan M. Meseret Abebe G. Kanimozhi C. Thambidurai P. Ashokapuram Selvam S. Vinodhini R. Suresh M. Prevalence of extended-spectrum beta-lactamase producing enterobacteriaceae members isolated from clinically suspected patients. Asian J. Pharm. Clin. Res. 2018 11 5 364 10.22159/ajpcr.2018.v11i5.19363
    [Google Scholar]
  5. Vijayakumar R. Aboody M. AlFonaisan M. Turaiki W. Mickymaray S. Mariappan P. Alsagaby S. Sandle T. Determination of minimum inhibitory concentrations of common biocides to multidrug-resistant gram-negative bacteria. Appl. Med. Res 2016 2 3 56 10.5455/amr.20161012082036
    [Google Scholar]
  6. Mickymaray S. Alturaiki W. Antifungal efficacy of marine macroalgae against fungal isolates from bronchial asthmatic cases. Molecules 2018 23 11 3032 10.3390/molecules23113032 30463364
    [Google Scholar]
  7. Fotso G.W. Mogue Kamdem L. Dube M. Fobofou S.A. Ndjie Ebene A. Arnold N. Tchaleu Ngadjui B. Antimicrobial secondary metabolites from the stem barks and leaves of Monotes kerstingii Gilg (Dipterocarpaceae). Fitoterapia 2019 137 104239 10.1016/j.fitote.2019.104239 31201886
    [Google Scholar]
  8. Houlihan A.J. Conlin P. Chee-Sanford J.C. Water-soluble exudates from seeds of Kochia scoparia exhibit antifungal activity against Colletotrichum graminicola. PLoS One 2019 14 6 e0218104 10.1371/journal.pone.0218104 31216294
    [Google Scholar]
  9. Mickymaray S. Al Aboody M.S. Rath P.K. Annamalai P. Nooruddin T. Screening and antibacterial efficacy of selected Indian medicinal plants. Asian Pac. J. Trop. Biomed. 2016 6 3 185 191 10.1016/j.apjtb.2015.12.005
    [Google Scholar]
  10. Casciaro B. Calcaterra A. Cappiello F. Mori M. Loffredo M. Ghirga F. Mangoni M. Botta B. Quaglio D. Nigritanine as a new potential antimicrobial alkaloid for the treatment of staphylococcus aureus-induced infections. Toxins 2019 11 9 511 10.3390/toxins11090511 31480508
    [Google Scholar]
  11. Phan A. Netzel G. Chhim P. Netzel M. Sultanbawa Y. Phytochemical characteristics and antimicrobial activity of Australian grown garlic (Allium sativum L.) cultivars. Foods 2019 8 9 358 10.3390/foods8090358 31450776
    [Google Scholar]
  12. Toiu A. Vlase L. Vodnar D.C. Gheldiu A.M. Oniga I. Solidago graminifolia L. Salisb. (Asteraceae) as a valuable source of bioactive polyphenols: HPLC profile, in vitro antioxidant and antimicrobial potential. Molecules 2019 24 14 2666 10.3390/molecules24142666 31340530
    [Google Scholar]
  13. Değirmenci H. Erkurt H. Relationship between volatile components, antimicrobial and antioxidant properties of the essential oil, hydrosol and extracts of Citrus aurantium L. flowers. J. Infect. Public Health 2019 10.1016/j.jiph.2019.08.006 31296479
    [Google Scholar]
  14. Gómez-Rivera A. González-Cortazar M. Herrera-Ruíz M. Zamilpa A. Rodríguez-López V. Sessein and isosessein with anti-inflammatory, antibacterial and antioxidant activity isolated from Salvia sessei Benth. J. Ethnopharmacol. 2018 217 212 219 10.1016/j.jep.2018.02.012 29458147
    [Google Scholar]
  15. Sukalingam K. Ganesan K. Ponnusamy K. Evaluation of antidiabetic activity of polyherbal formulations on type 2 diabetic patients: A single blinded randomized study. Int J Integ Medl Sci. 2015 2 10.16965/ijims.2015.103
    [Google Scholar]
  16. Sukalingam K. Ganesan K. Xu B. Trianthema portulacastrum L. (giant pigweed): Phytochemistry and pharmacological properties. Phytochem. Rev. 2017 16 3 461 478 10.1007/s11101‑017‑9493‑5
    [Google Scholar]
  17. Karalija E. Parić A. Dahija S. Bešta-Gajević R. Čavar Zeljković S. Phenolic compounds and bioactive properties of Verbascum glabratum subsp. bosnense (K. Malý) Murb., an endemic plant species. Nat. Prod. Res. 2018 10.1080/14786419.2018.1486197 30580595
    [Google Scholar]
  18. Dewapriya P. Khalil Z.G. Prasad P. Salim A.A. Cruz-Morales P. Marcellin E. Capon R.J. Talaropeptides A-D: Structure and biosynthesis of extensively N-methylated linear peptides from an Australian marine tunicate-derived Talaromyces sp. Front Chem. 2018 6 394 10.3389/fchem.2018.00394 30234104
    [Google Scholar]
  19. Nath D. Banerjee P. Shaw M. Mukhopadhyay M.K. Bottle gourd (Lagenaria siceraria). Fruit and Vegetable Phytochemicals: Chemistry and Human Health. John Wiley & Sons, Ltd Hoboken, NJ, USA 2nd ed 2018 Vol. II 909 920 10.1002/9781119158042.ch53
    [Google Scholar]
  20. Prasannabalaji N. Muralitharan G. Sivanandan R.N. Kumaran S. Pugazhvendan S.R. Antibacterial activities of some Indian traditional plant extracts. Asian Pac. J. Trop. Dis. 2012 2 S291 S295 10.1016/S2222‑1808(12)60168‑6
    [Google Scholar]
  21. Mabona U. Viljoen A. Shikanga E. Marston A. Van Vuuren S. Antimicrobial activity of southern African medicinal plants with dermatological relevance: From an ethnopharmacological screening approach, to combination studies and the isolation of a bioactive compound. J. Ethnopharmacol. 2013 148 1 45 55 10.1016/j.jep.2013.03.056 23545456
    [Google Scholar]
  22. Benevides Bahiense J. Marques F.M. Figueira M.M. Vargas T.S. Kondratyuk T.P. Endringer D.C. Scherer R. Fronza M. Potential anti-inflammatory, antioxidant and antimicrobial activities of Sambucus australis. Pharm. Biol. 2017 55 1 991 997 10.1080/13880209.2017.1285324 28166708
    [Google Scholar]
  23. Akhalwaya S. van Vuuren S. Patel M. An in vitro investigation of indigenous South African medicinal plants used to treat oral infections. J. Ethnopharmacol. 2018 210 359 371 10.1016/j.jep.2017.09.002 28888760
    [Google Scholar]
  24. Lim S.S. Selvaraj A. Ng Z.Y. Palanisamy M. Mickmaray S. Cheong P.C.H. Lim R.L.H. Isolation of actinomycetes with antibacterial activity against multi-drug resistant bacteria. Malays. J. Microbiol. 2018 ••• 10.21161/mjm.151117
    [Google Scholar]
  25. Ke Y. Al Aboody M.S. Alturaiki W. Alsagaby S.A. Alfaiz F.A. Veeraraghavan V.P. Mickymaray S. Photosynthesized gold nanoparticles from Catharanthus roseus induces caspase-mediated apoptosis in cervical cancer cells (HeLa). Artif. Cells Nanomed. Biotechnol. 2019 47 1 1938 1946 10.1080/21691401.2019.1614017 31099261
    [Google Scholar]
  26. Muhaisen H.M.H. Ab-Mous M.M. Ddeeb F.A. Rtemi A.A. Taba O.M. Parveen M. Antimicrobial agents from selected medicinal plants in Libya. Chin. J. Integr. Med. 2016 22 3 177 184 10.1007/s11655‑015‑2172‑8 25910704
    [Google Scholar]
  27. Mubarack H. Doss A. Vijayasanthi M. Venkataswamy R. Antimicrobial drug susceptibility of Staphylococcus aureus from subclinical bovine mastitis in Coimbatore, Tamilnadu, South India. Vet. World 2012 5 6 352 10.5455/vetworld.2012.352‑355
    [Google Scholar]
  28. Okwu M.U. Olley M. Akpoka A.O. Izevbuwa O.E. Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: A brief review. AIMS Microbiol. 2019 5 2 117 137 10.3934/microbiol.2019.2.117 31384707
    [Google Scholar]
  29. Obeidat M. Shatnawi M. Al-alawi M. Al-Zu`bi E. Al-Dmoor H. Al-Qudah M. El-Qudah J. Otri I. Antimicrobial activity of crude extracts of some plant leaves. Res. J. Microbiol. 2012 7 1 59 67 10.3923/jm.2012.59.67
    [Google Scholar]
  30. Aristolochia indica Linn. SpringerReference. Springer Berlin, Germany 2016
    [Google Scholar]
  31. Vinodhini R. Moorthy K. Suresh M. Incidence and virulence traits of Candida dubliniensis isolated from clinically suspected patients. Asian J. Pharm. Clin. Res. 2016 9 6 77 10.22159/ajpcr.2016.v9i6.13567
    [Google Scholar]
  32. Zuo G.Y. Zhang X.J. Yang C.X. Han J. Wang G.C. Bian Z.Q. Evaluation of traditional Chinese medicinal plants for anti-MRSA activity with reference to the treatment record of infectious diseases. Molecules 2012 17 3 2955 2967 10.3390/molecules17032955 22406900
    [Google Scholar]
  33. Singh A. Bajpai V. Kumar S. Kumar B. Srivastava M. Arya K.R. Sharma K.R. Distribution and discrimination study of bioactive compounds from Berberis species using HPLC-ESI-QTOF-MS/MS with principle component analysis. Nat. Prod. Commun. 2016 11 12 1934578X1601101209 10.1177/1934578X1601101209 30508339
    [Google Scholar]
  34. Kariu T. Nakao R. Ikeda T. Nakashima K. Potempa J. Imamura T. Inhibition of gingipains and Porphyromonas gingivalis growth and biofilm formation by prenyl flavonoids. J. Periodontal Res. 2017 52 1 89 96 10.1111/jre.12372 26957413
    [Google Scholar]
  35. Spathodea campanulata Beauv. SpringerReference. Springer Berlin, Germany 2016
    [Google Scholar]
  36. Dos Santos E. Pereira M. Da Silva C. Souza-Neta L. Geris R. Martins D. Santana A. Barbosa L. Silva H. Freitas G. Figueiredo M. De Oliveira F. Batista R. Antibacterial activity of the alkaloid-enriched extract from Prosopis juliflora pods and its influence on in vitro ruminal digestion. Int. J. Mol. Sci. 2013 14 4 8496 8516 10.3390/ijms14048496 23595000
    [Google Scholar]
  37. Kumar G. Maheswaran R. Sharmila Banu G. Antihyperlipidemic effect of Solanum trilobatum L. leaves extract on streptozotocin induced diabetic rats. Asian J Biomed Pharm Sci. 2013 3 51 57
    [Google Scholar]
  38. Semalty M. Semalty A. Badola A. Joshi G. Rawat M.S.M. Semecarpus anacardium Linn.: A review. Pharmacogn. Rev. 2010 4 7 88 94 10.4103/0973‑7847.65328 22228947
    [Google Scholar]
  39. Rawat S Jugran AK Bahukhandi A Bahuguna A Bhatt ID Rawal RS Dhar U Anti-oxidant and anti-microbial properties of some ethno-therapeutically important medicinal plants of Indian Himalayan region. 3 Biotech 2016 6 2 154 2016
    [Google Scholar]
  40. Gujjeti R.P. Namthabad S. Mamidala E. HIV-1 reverse transcriptase inhibitory activity of Aerva lanata plant extracts. BMC Infect. Dis. 2014 14 S3 P12 10.1186/1471‑2334‑14‑S3‑P12
    [Google Scholar]
  41. Mohotti S. Rajendran S. Muhammad T. Strömstedt A.A. Adhikari A. Burman R. de Silva E.D. Göransson U. Hettiarachchi C.M. Gunasekera S. Screening for bioactive secondary metabolites in Sri Lankan medicinal plants by microfractionation and targeted isolation of antimicrobial flavonoids from Derris scandens. J. Ethnopharmacol. 2020 246 112158 10.1016/j.jep.2019.112158 31421182
    [Google Scholar]
  42. Gupta C. Biological activities of neem (Azadirachta indica) and its components. J. Med. Plants Res. 2017 11 8 134 141
    [Google Scholar]
  43. Zhou Y. Li X. Luo W. Zhu J. Zhao J. Wang M. Sang L. Chang B. Wang B. Allicin in digestive system cancer: From biological effects to clinical treatment. Front. Pharmacol. 2022 13 903259 10.3389/fphar.2022.903259 35770084
    [Google Scholar]
  44. Hussain Y. Alam W. Ullah H. Dacrema M. Daglia M. Khan H. Arciola C.R. Antimicrobial potential of curcumin: Therapeutic potential and challenges to clinical applications. Antibiotics 2022 11 3 322 10.3390/antibiotics11030322 35326785
    [Google Scholar]
  45. Wei S. Tian Q. Husien H.M. Tao Y. Liu X. Liu M. Bo R. Li J. The synergy of tea tree oil nano-emulsion and antibiotics against multidrug-resistant bacteria. J. Appl. Microbiol. 2023 134 7 lxad131 10.1093/jambio/lxad131 37401131
    [Google Scholar]
  46. Wang X. Shen Y. Thakur K. Han J. Zhang J.G. Hu F. Wei Z.J. Antibacterial activity and mechanism of ginger essential oil against Escherichia coli and Staphylococcus aureus. Molecules 2020 25 17 3955 10.3390/molecules25173955 32872604
    [Google Scholar]
  47. Sudeep H.V. Gouthamchandra K. Ramanaiah I. Raj A. Naveen P. Shyamprasad K. A standardized extract of Echinacea purpurea containing higher chicoric acid content enhances immune function in murine macrophages and cyclophosphamide-induced immunosuppression mice. Pharm. Biol. 2023 61 1 1211 1221 10.1080/13880209.2023.2244000 37585723
    [Google Scholar]
  48. Vassiliou E. Awoleye O. Davis A. Mishra S. Anti-inflammatory and antimicrobial properties of thyme oil and its main constituents. Int. J. Mol. Sci. 2023 24 8 6936 10.3390/ijms24086936 37108100
    [Google Scholar]
  49. Yin L. Dai Y. Chen H. He X. Ouyang P. Huang X. Sun X. Ai Y. Lai S. Zhu L. Xu Z. Cinnamaldehyde resist salmonella typhimurium adhesion by inhibiting Type I fimbriae. Molecules 2022 27 22 7753 10.3390/molecules27227753 36431853
    [Google Scholar]
  50. Kernou O.N. Azzouz Z. Madani K. Rijo P. Application of rosmarinic acid with its derivatives in the treatment of microbial pathogens. Molecules 2023 28 10 4243 10.3390/molecules28104243 37241981
    [Google Scholar]
  51. Romero-Montero A. Melgoza-Ramírez L.J. Ruíz-Aguirre J.A. Chávez-Santoscoy A. Magaña J.J. Cortés H. Leyva-Gómez G. Del Prado-Audelo M.L. Essential-oils-loaded biopolymeric nanoparticles as strategies for microbial and biofilm control: A current status. Int. J. Mol. Sci. 2023 25 1 82 10.3390/ijms25010082 38203252
    [Google Scholar]
  52. Sousa Silveira Z. Macêdo N.S. Sampaio dos Santos J.F. Sampaio de Freitas T. Rodrigues dos Santos Barbosa C. Júnior D.L.S. Muniz D.F. Castro de Oliveira L.C. Júnior J.P.S. Cunha F.A.B. Melo Coutinho H.D. Balbino V.Q. Martins N. Evaluation of the antibacterial activity and efflux pump reversal of thymol and carvacrol against Staphylococcus aureus and their toxicity in drosophila melanogaster. Molecules 2020 25 9 2103 10.3390/molecules25092103 32365898
    [Google Scholar]
  53. Amor G. Sabbah M. Caputo L. Idbella M. De Feo V. Porta R. Fechtali T. Mauriello G. Basil essential oil: Composition, antimicrobial properties, and microencapsulation to produce active chitosan films for food packaging. Foods 2021 10 1 121 10.3390/foods10010121 33430030
    [Google Scholar]
  54. Qun T. Zhou T. Hao J. Wang C. Zhang K. Xu J. Wang X. Zhou W. Antibacterial activities of anthraquinones: Structure–activity relationships and action mechanisms. RSC Med. Chem. 2023 14 8 1446 1471 10.1039/D3MD00116D 37593578
    [Google Scholar]
  55. Galgano M. Capozza P. Pellegrini F. Cordisco M. Sposato A. Sblano S. Camero M. Lanave G. Fracchiolla G. Corrente M. Cirone F. Trotta A. Tempesta M. Buonavoglia D. Pratelli A. Antimicrobial activity of essential oils evaluated in vitro against Escherichia coli and Staphylococcus aureus. Antibiotics 2022 11 7 979 10.3390/antibiotics11070979 35884233
    [Google Scholar]
  56. Mickymaray S. Al Aboody M.S. In vitro antioxidant and bactericidal efficacy of 15 common spices: Novel therapeutics for urinary tract infections? Medicina 2019 55 6 289 10.3390/medicina55060289 31248181
    [Google Scholar]
  57. Banothu V. Neelagiri C. Adepally U. Lingam J. Bommareddy K. Phytochemical screening and evaluation of in vitro antioxidant and antimicrobial activities of the indigenous medicinal plant Albizia odoratissima. Pharm. Biol. 2017 55 1 1155 1161 10.1080/13880209.2017.1291694 28219296
    [Google Scholar]
  58. Sahu M.C. Padhy R.N. In vitro antibacterial potency of Butea monosperma Lam. against 12 clinically isolated multidrug resistant bacteria. Asian Pac. J. Trop. Dis. 2013 3 3 217 226 10.1016/S2222‑1808(13)60044‑4
    [Google Scholar]
  59. Wikaningtyas P. Sukandar E.Y. The antibacterial activity of selected plants towards resistant bacteria isolated from clinical specimens. Asian Pac. J. Trop. Biomed. 2016 6 1 16 19 10.1016/j.apjtb.2015.08.003
    [Google Scholar]
  60. Mwinga J.L. Asong J.A. Amoo S.O. Nkadimeng S.M. McGaw L.J. Aremu A.O. Otang-Mbeng W. In vitro antimicrobial effects of Hypoxis hemerocallidea against six pathogens with dermatological relevance and its phytochemical characterization and cytotoxicity evaluation. J. Ethnopharmacol. 2019 242 112048 10.1016/j.jep.2019.112048 31265885
    [Google Scholar]
  61. Armas J. Quiroz J. Roman R. Sanchez J. Pacheco M. Valdivia L. Rivera E. Asmat R. Anampa A. Antibacterial activities of essential oils from three medicinal plants in combination with EDTA against methicillin-resistant Staphylococcus aureus. Br. Microbiol. Res. J. 2016 17 4 1 10 10.9734/BMRJ/2016/29666
    [Google Scholar]
  62. Ferhat M. Erol E. Beladjila K.A. Çetintaş Y. Duru M.E. Öztürk M. Kabouche A. Kabouche Z. Antioxidant, anticholinesterase and antibacterial activities of Stachys guyoniana and Mentha aquatica. Pharm. Biol. 2017 55 1 324 329 10.1080/13880209.2016.1238488 27927090
    [Google Scholar]
  63. Guan C.P. Luo H.X. Fang H.E. Zhou X.Z. Global transcriptome changes of biofilm-forming Staphylococcus epidermidis responding to total alkaloids of Sophorea alopecuroides. Pol. J. Microbiol. 2018 67 2 223 226 10.21307/pjm‑2018‑024 30015461
    [Google Scholar]
  64. Zhou J.X. Braun M.S. Wetterauer P. Wetterauer B. Wink M. Antioxidant, cytotoxic, and antimicrobial activities of Glycyrrhiza glabra L., Paeonia lactiflora Pall., and Eriobotrya japonica (Thunb.) Lindl. extracts. Medicines 2019 6 2 43 10.3390/medicines6020043 30935079
    [Google Scholar]
  65. Arefin M.K. Rahman M.M. Uddin M.Z. Hassan M.A. Angiosperm flora of Satchari National Park, Habiganj, Bangladesh. Bangladesh J. Plant Taxon. 1970 18 2 117 140 10.3329/bjpt.v18i2.9298
    [Google Scholar]
  66. Koona S. Budida S. Antibacterial potential of the extracts of the leaves of Azadirachta indica Linn. Not. Sci. Biol. 2011 3 1 65 69 10.15835/nsb315470
    [Google Scholar]
  67. Durairaj B. Dorai A. Antiplatelet activity of white and pink Nelumbo nucifera Gaertn flowers. Braz. J. Pharm. Sci. 2010 46 3 579 583 10.1590/S1984‑82502010000300023
    [Google Scholar]
  68. Bhattacharjee I. Chatterjee S.K. Chandra G. Isolation and identification of antibacterial components in seed extracts of Argemone mexicana L. (Papaveraceae). Asian Pac. J. Trop. Med. 2010 3 7 547 551 10.1016/S1995‑7645(10)60132‑0
    [Google Scholar]
  69. Jayachandran M. Zhang T. Ganesan K. Xu B. Chung S.S.M. Isoquercetin ameliorates hyperglycemia and regulates key enzymes of glucose metabolism via insulin signaling pathway in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 2018 829 112 120 10.1016/j.ejphar.2018.04.015 29665363
    [Google Scholar]
  70. Chatterjee S.K. Bhattacharjee I. Chandra G. Isolation and identification of bioactive antibacterial components in leaf extracts of Vangueria spinosa (Rubiaceae). Asian Pac. J. Trop. Med. 2011 4 1 35 40 10.1016/S1995‑7645(11)60028‑X 21771412
    [Google Scholar]
  71. Gaziano R. Campione E. Iacovelli F. Marino D. Pica F. Di Francesco P. Aquaro S. Menichini F. Falconi M. Bianchi L. Antifungal activity of Cardiospermum halicacabum L. (Sapindaceae) against Trichophyton rubrum occurs through molecular interaction with fungal Hsp90. Drug Des. Devel. Ther. 2018 12 2185 2193 10.2147/DDDT.S155610 30034223
    [Google Scholar]
  72. Nefzi A. Ben Abdallah R.A. Antifungal activity of aqueous and organic extracts from Withania somnifera L. against Fusarium oxysporum f. sp. radicis-lycopersici. J. Microb. Biochem. Technol. 2016 8 3 10.4172/1948‑5948.1000277
    [Google Scholar]
  73. Chahal S.S. Matthews H.R. Bradbury E.M. Acetylation of histone H4 and its role in chromatin structure and function. Nature 1980 287 5777 76 79 10.1038/287076a0 7412879
    [Google Scholar]
  74. Venkataswamy R. Doss A. Sukumar M. Mubarack H.M. Preliminary phytochemical screening and antimicrobial studies of Lantana indica roxb. Indian J. Pharm. Sci. 2010 72 2 229 231 10.4103/0250‑474X.65020 20838528
    [Google Scholar]
  75. Pandian M.R. Banu G.S. Kumar G. A study of the antimicrobial activity of Alangium salviifolium. Indian J. Pharmacol. 2006 38 3 203 10.4103/0253‑7613.25810
    [Google Scholar]
  76. Arulmozhi P. Vijayakumar S. Kumar T. Phytochemical analysis and antimicrobial activity of some medicinal plants against selected pathogenic microorganisms. Microb. Pathog. 2018 123 219 226 10.1016/j.micpath.2018.07.009 30009969
    [Google Scholar]
  77. Kahaliw W. Aseffa A. Abebe M. Teferi M. Engidawork E. Evaluation of the antimycobacterial activity of crude extracts and solvent fractions of selected Ethiopian medicinal plants. BMC Complement. Altern. Med. 2017 17 1 143 10.1186/s12906‑017‑1563‑0 28274226
    [Google Scholar]
  78. Ginovyan M. Petrosyan M. Trchounian A. Antimicrobial activity of some plant materials used in Armenian traditional medicine. BMC Complement. Altern. Med. 2017 17 1 50 10.1186/s12906‑017‑1573‑y 28095835
    [Google Scholar]
  79. Asgarpanah J. Hashemi S.J. Hashemi E. Askari K. In vitro antifungal activity of some traditional Persian medicinal plants on pathogenic fungi. Chin. J. Integr. Med. 2017 23 6 433 437 10.1007/s11655‑015‑2181‑7 26129901
    [Google Scholar]
  80. Sharma A. Flores-Vallejo R.C. Cardoso-Taketa A. Villarreal M.L. Antibacterial activities of medicinal plants used in Mexican traditional medicine. J. Ethnopharmacol. 2017 208 264 329 10.1016/j.jep.2016.04.045 27155134
    [Google Scholar]
  81. Shahat A.A. Mahmoud E.A. Al-Mishari A.A. Alsaid M.S. Antimicrobial activities of some Saudi Arabian herbal plants. Afr. J. Tradit. Complement. Altern. Med. 2017 14 2 161 165 10.21010/ajtcam.v14i2.17 28573232
    [Google Scholar]
  82. Cioch M. Satora P. Skotniczny M. Semik-Szczurak D. Tarko T. Characterisation of antimicrobial properties of extracts of selected medicinal plants. Pol. J. Microbiol. 2017 66 4 463 472 10.5604/01.3001.0010.7002 29319517
    [Google Scholar]
  83. Voukeng I.K. Beng V.P. Kuete V. Antibacterial activity of six medicinal Cameroonian plants against Gram-positive and Gram-negative multidrug resistant phenotypes. BMC Complement. Altern. Med. 2016 16 1 388 10.1186/s12906‑016‑1371‑y 27724917
    [Google Scholar]
  84. Meers P. Neville M. Malinin V. Scotto A.W. Sardaryan G. Kurumunda R. Mackinson C. James G. Fisher S. Perkins W.R. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J. Antimicrob. Chemother. 2008 61 4 859 868 10.1093/jac/dkn059 18305202
    [Google Scholar]
  85. Dong D. Thomas N. Thierry B. Vreugde S. Prestidge C.A. Wormald P.J. Distribution and inhibition of liposomes on Staphylococcus aureus and Pseudomonas aeruginosa biofilm. PLoS One 2015 10 6 e0131806 10.1371/journal.pone.0131806 26125555
    [Google Scholar]
  86. Messiaen A.S. Forier K. Nelis H. Braeckmans K. Coenye T. Transport of nanoparticles and tobramycin-loaded liposomes in Burkholderia cepacia complex biofilms. PLoS One 2013 8 11 e79220 10.1371/journal.pone.0079220 24244452
    [Google Scholar]
  87. Baker P. Hill P.J. Snarr B.D. Alnabelseya N. Pestrak M.J. Lee M.J. Jennings L.K. Tam J. Melnyk R.A. Parsek M.R. Sheppard D.C. Wozniak D.J. Howell P.L. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci. Adv. 2016 2 5 e1501632 10.1126/sciadv.1501632 27386527
    [Google Scholar]
  88. Pestrak M.J. Baker P. Dellos-Nolan S. Hill P.J. Passos da Silva D. Silver H. Lacdao I. Raju D. Parsek M.R. Wozniak D.J. Howell P.L. Treatment with the Pseudomonas aeruginosa glycoside hydrolase PslG combats wound infection by improving antibiotic efficacy and host innate immune activity. Antimicrob. Agents Chemother. 2019 63 6 e00234-19 10.1128/AAC.00234‑19 30988141
    [Google Scholar]
  89. Thorn C.R. Raju D. Lacdao I. Gilbert S. Sivarajah P. Howell P.L. Prestidge C.A. Thomas N. Protective liquid crystal nanoparticles for targeted delivery of PslG: A biofilm dispersing enzyme. ACS Infect. Dis. 2021 7 8 2102 2115 10.1021/acsinfecdis.1c00014 33908759
    [Google Scholar]
  90. Trucillo P Campardelli R Scognamiglio M Reverchon E Control of liposome diameter at micrometric and nanometric level using a supercritical assisted technique. J CO2 Util 2019 32 119 127 10.1016/j.jcou.2019.03.010
    [Google Scholar]
  91. Trucillo P. Campardelli R. Reverchon E. A versatile supercritical assisted process for the one-shot production of liposomes. J. Supercrit. Fluids 2019 146 136 143 10.1016/j.supflu.2019.01.015
    [Google Scholar]
  92. Obuobi S. Julin K. Fredheim E.G.A. Johannessen M. Škalko-Basnet N. Liposomal delivery of antibiotic loaded nucleic acid nanogels with enhanced drug loading and synergistic anti-inflammatory activity against S. aureus intracellular infections. J. Control. Release 2020 324 620 632 10.1016/j.jconrel.2020.06.002 32525012
    [Google Scholar]
  93. Laouini A. Jaafar-Maalej C. Limayem-Blouza I. Sfar S. Charcosset C. Fessi H. Preparation, characterization and applications of liposomes: State of the art. J. Colloid Sci. Biotechnol. 2012 1 2 147 168 10.1166/jcsb.2012.1020
    [Google Scholar]
  94. Jahn A. Vreeland W.N. DeVoe D.L. Locascio L.E. Gaitan M. Microfluidic directed formation of liposomes of controlled size. Langmuir 2007 23 11 6289 6293 10.1021/la070051a 17451256
    [Google Scholar]
  95. Pons M. Foradada M. Estelrich J. Liposomes obtained by the ethanol injection method. Int. J. Pharm. 1993 95 1-3 51 56 10.1016/0378‑5173(93)90389‑W
    [Google Scholar]
  96. Lesoin L. Crampon C. Boutin O. Badens E. Development of a continuous dense gas process for the production of liposomes. J. Supercrit. Fluids 2011 60 51 62 10.1016/j.supflu.2011.04.018
    [Google Scholar]
  97. Meure L.A. Foster N.R. Dehghani F. Conventional and dense gas techniques for the production of liposomes: A review. AAPS PharmSciTech 2008 9 3 798 809 10.1208/s12249‑008‑9097‑x 18597175
    [Google Scholar]
  98. Madden T.D. Harrigan P.R. Tai L.C.L. Bally M.B. Mayer L.D. Redelmeier T.E. Loughrey H.C. Tilcock C.P.S. Reinish L.W. Cullis P.R. The accumulation of drugs within large unilamellar vesicles exhibiting a proton gradient: A survey. Chem. Phys. Lipids 1990 53 1 37 46 10.1016/0009‑3084(90)90131‑A 1972352
    [Google Scholar]
  99. Egbaria K. Weiner N. Liposomes as a topical drug delivery system. Adv. Drug Deliv. Rev. 1990 5 3 287 300 10.1016/0169‑409X(90)90021‑J
    [Google Scholar]
  100. Rahman U Sahar A Ishaq A Aadil RM Zahoor T Ahmad MH Advanced meat preservation methods: A mini review. J. Food Saf. 2018 38 3 e12467 10.1111/jfs.12467
    [Google Scholar]
  101. Cheng J. Teply B. Sherifi I. Sung J. Luther G. Gu F. Levynissenbaum E. Radovicmoreno A. Langer R. Farokhzad O. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 2007 28 5 869 876 10.1016/j.biomaterials.2006.09.047 17055572
    [Google Scholar]
  102. Vinogradov S.V. Nanogels in the race for drug delivery. Nanomedicine (Lond.) 2010 5 2 165 168 10.2217/nnm.09.103 20148627
    [Google Scholar]
  103. Kabanov A.V. Vinogradov S.V. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angew. Chem. Int. Ed. 2009 48 30 5418 5429 10.1002/anie.200900441 19562807
    [Google Scholar]
  104. Gao D. Xu H. Philbert M.A. Kopelman R. Bioeliminable nanohydrogels for drug delivery. Nano Lett. 2008 8 10 3320 3324 10.1021/nl8017274 18788823
    [Google Scholar]
  105. Simonson A.W. Lawanprasert A. Goralski T.D.P. Keiler K.C. Medina S.H. Bioresponsive peptide-polysaccharide nanogels — A versatile delivery system to augment the utility of bioactive cargo. Nanomedicine 2019 17 391 400 10.1016/j.nano.2018.10.008 30399437
    [Google Scholar]
  106. Burger K.N.J. Staffhorst R.W.H.M. de Vijlder H.C. Velinova M.J. Bomans P.H. Frederik P.M. de Kruijff B. Nanocapsules: Lipid-coated aggregates of cisplatin with high cytotoxicity. Nat. Med. 2002 8 1 81 84 10.1038/nm0102‑81 11786911
    [Google Scholar]
  107. Gu J. Clegg J.R. Heersema L.A. Peppas N.A. Smyth H.D.C. Optimization of cationic nanogel PEGylation to achieve mammalian cytocompatibility with limited loss of gram-negative bactericidal activity. Biomacromolecules 2020 21 4 1528 1538 10.1021/acs.biomac.0c00081 32207917
    [Google Scholar]
  108. Zu G. Steinmüller M. Keskin D. van der Mei H.C. Mergel O. van Rijn P. Antimicrobial nanogels with nanoinjection capabilities for delivery of the hydrophobic antibacterial agent triclosan. ACS Appl. Polym. Mater. 2020 2 12 5779 5789 10.1021/acsapm.0c01031 33345194
    [Google Scholar]
  109. Imperi F. Leoni L. Visca P. Antivirulence activity of azithromycin in Pseudomonas aeruginosa. Front. Microbiol. 2014 5 178 10.3389/fmicb.2014.00178 24795709
    [Google Scholar]
  110. Nagino K. Kobayashi H. Influence of macrolides on mucoid alginate biosynthetic enzyme from Pseudomonas aeruginosa. Clin. Microbiol. Infect. 1997 3 4 432 439 10.1111/j.1469‑0691.1997.tb00279.x 11864153
    [Google Scholar]
  111. Favre-Bonté S. Köhler T. Van Delden C. Biofilm formation by Pseudomonas aeruginosa: Role of the C4-HSL cell-to-cell signal and inhibition by azithromycin. J. Antimicrob. Chemother. 2003 52 4 598 604 10.1093/jac/dkg397 12951348
    [Google Scholar]
  112. Gillis R.J. Iglewski B.H. Azithromycin retards Pseudomonas aeruginosa biofilm formation. J. Clin. Microbiol. 2004 42 12 5842 5845 10.1128/JCM.42.12.5842‑5845.2004 15583321
    [Google Scholar]
  113. Togami K. Chono S. Morimoto K. Subcellular distribution of azithromycin and clarithromycin in rat alveolar macrophages (NR8383) in vitro. Biol. Pharm. Bull. 2013 36 9 1494 1499 10.1248/bpb.b13‑00423 23995662
    [Google Scholar]
  114. Kłodzińska S.N. Wan F. Jumaa H. Sternberg C. Rades T. Nielsen H.M. Utilizing nanoparticles for improving anti-biofilm effects of azithromycin: A head-to-head comparison of modified hyaluronic acid nanogels and coated poly (lactic-co-glycolic acid) nanoparticles. J. Colloid Interface Sci. 2019 555 595 606 10.1016/j.jcis.2019.08.006 31404843
    [Google Scholar]
  115. Kumar P. Kizhakkedathu J. Straus S. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 2018 8 1 4 10.3390/biom8010004 29351202
    [Google Scholar]
  116. Deslouches B. Di Y.P. Antimicrobial peptides with selective antitumor mechanisms: Prospect for anticancer applications. Oncotarget 2017 8 28 46635 46651 10.18632/oncotarget.16743 28422728
    [Google Scholar]
  117. Melicherčík P. Nešuta O. Čeřovský V. Antimicrobial peptides for topical treatment of osteomyelitis and implant-related infections: Study in the spongy bone. Pharmaceuticals 2018 11 1 20 10.3390/ph11010020 29462909
    [Google Scholar]
  118. McCracken E. Monaghan M. Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin. Dermatol. 2018 36 1 14 20 10.1016/j.clindermatol.2017.09.004 29241747
    [Google Scholar]
  119. Mehmood Y. Farooq U. Yousaf H. Riaz H. Mahmood R.K. Nawaz A. Abid Z. Gondal M. Malik N.S. Barkat K. Khalid I. Antiviral activity of green silver nanoparticles produced using aqueous buds extract of Syzygium aromaticum. Pak. J. Pharm. Sci. 2020 33 2(Supplementary) 839 845 32863260
    [Google Scholar]
  120. Meléndez-Villanueva M.A. Morán-Santibañez K. Martínez-Sanmiguel J.J. Rangel-López R. Garza-Navarro M.A. Rodríguez-Padilla C. Zarate-Triviño D.G. Trejo-Ávila L.M. Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract. Viruses 2019 11 12 1111 10.3390/v11121111 31801280
    [Google Scholar]
  121. Mishra M.P. Padhy R.N. Antibacterial activity of green silver nanoparticles synthesized from Anogeissus acuminata against multidrug resistant urinary tract infecting bacteria in vitro and host-toxicity testing. J. Appl. Biomed. 2018 16 2 120 125 10.1016/j.jab.2017.11.003
    [Google Scholar]
  122. Mishra A. Kaushik N.K. Sardar M. Sahal D. Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloids Surf. B Biointerfaces 2013 111 713 718 10.1016/j.colsurfb.2013.06.036 23916962
    [Google Scholar]
  123. Moghaddam S. Negahdari R. Sharifi S. Maleki Dizaj S. Torab A. Rezaei Y. Preparation and assessment of physicochemical possessions, solubility, and antimicrobial properties of dental prosthesis glass ionomer cement containing curcumin nanocrystals. J. Nanomater. 2022 1 9 10.1155/2022/12291
    [Google Scholar]
  124. Li C. Zhu C.X. Zhang N. Sui S.H. Zhao J.B. Free vibration of self-powered nanoribbons subjected to thermal-mechanical-electrical fields based on a nonlocal strain gradient theory. Appl. Math. Model. 2022 110 583 602 10.1016/j.apm.2022.05.044
    [Google Scholar]
  125. Shen J.P. Wang P.Y. Li C. Wang Y.Y. New observations on transverse dynamics of microtubules based on nonlocal strain gradient theory. Compos. Struct. 2019 225 111036 10.1016/j.compstruct.2019.111036
    [Google Scholar]
  126. Li C. Liu J.J. Cheng M. Fan X.L. Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces. Compos., Part B Eng. 2017 116 153 169 10.1016/j.compositesb.2017.01.071
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812352676241201153243
Loading
/content/journals/nanoasi/10.2174/0122106812352676241201153243
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: phytochemicals ; Antibiotic resistance ; bioactive ; medicinal ; compounds ; nanotechnology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test