Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Purpose

This study aimed to characterize commercial nanofiltration membranes (NF90 and NP010) by determining their membrane parameters and estimating osmotic pressure using the virial equation.

Methods

A comparison has been conducted using the Van't Hoff equation for both dilute and concentrated mixtures. Membrane parameters (σ, Ps, and ks) have been experimentally obtained, and osmotic pressure has been calculated using the virial equation, with results compared to the Van't Hoff equation. Various solutes, including lactose, Al3+, Mg2+, Na+, and Cl-, have been tested at different concentrations to investigate the membrane behavior.

Results

The virial equation has shown better agreement with experimentally measured fluxes than the Van't Hoff equation. With an increase in solute concentration, σ has decreased, while Ps and ks have increased. Higher cation valency has increased rejection rates, with lactose exhibiting the highest rejection. The rejection rates have followed the order of > > . The order of σ values has been as follows: > > . While the order of Ps and ks values has been Cl->Na+>Mg2+>Al3+>lactose.

Conclusion

The virial equation has proven to be more effective in estimating osmotic pressure. The findings have provided valuable insights into membrane behavior under varying conditions, optimizing the application of NF membranes across various industries.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812345894241119090151
2024-12-06
2025-07-07
Loading full text...

Full text loading...

References

  1. BeraS.P. GodhaniyaM. KothariC. Emerging and advanced membrane technology for wastewater treatment: A review.J. Basic Microbiol.2022623-424525910.1002/jobm.20210025934496068
    [Google Scholar]
  2. TeowY.H. SumJ.Y MohammadA.W Principles of nanofiltration membrane processes.Osmosis Engineering.Elsevier2021539510.1016/B978‑0‑12‑821016‑1.00014‑0
    [Google Scholar]
  3. JiaT.Z. RongM-Y. ChenC-T. YongW.F. LauS.K. ZhouR-F. ChenM. SunS-P. Recent advances in nanofiltration-based hybrid processes.Desalination202356511685210.1016/j.desal.2023.116852
    [Google Scholar]
  4. SuhalimN.S. KasimN. MahmoudiE. ShamsudinI.J. MohammadA.W. Mohamed ZukiF. JamariN.L.A. Rejection mechanism of ionic solute removal by nanofiltration membranes: An overview.Nanomaterials202212343710.3390/nano1203043735159781
    [Google Scholar]
  5. CaoY. ChenG. WanY. LuoJ. Nanofiltration membrane for bio‐separation: Process‐oriented materials innovation.Eng. Life Sci.202121640541610.1002/elsc.20200010034140851
    [Google Scholar]
  6. García DoménechN. Purcell-MiltonF. Gun’koY.K. Recent progress and future prospects in development of advanced materials for nanofiltration.Mater. Today Commun.20202310088810.1016/j.mtcomm.2019.100888
    [Google Scholar]
  7. GhorbaniA. BayatiB. PoerioT. ArgurioP. KikhavaniT. NamdariM. FerreiraL.M. Application of NF polymeric membranes for removal of multicomponent heat-stable salts (HSS) Ions from Methyl Diethanolamine (MDEA) solutions.Molecules20202521491110.3390/molecules2521491133114174
    [Google Scholar]
  8. ZhaoY. LaiG.S. LiC. WangR. Acid-resistant polyamine hollow fiber nanofiltration membrane for selective separation of heavy metals and phosphorus.Chem. Eng. J.202345313982510.1016/j.cej.2022.139825
    [Google Scholar]
  9. NathK. DaveH.K. PatelT.M. Revisiting the recent applications of nanofiltration in food processing industries: Progress and prognosis.Trends Food Sci. Technol.201873122410.1016/j.tifs.2018.01.001
    [Google Scholar]
  10. MohammadA.W. TeowY.H. AngW.L. ChungY.T. Oatley-RadcliffeD.L. HilalN. Nanofiltration membranes review: Recent advances and future prospects.Desalination201535622625410.1016/j.desal.2014.10.043
    [Google Scholar]
  11. Abdel-FatahM.A. Nanofiltration systems and applications in wastewater treatment: Review article.Ain Shams Eng. J.2018943077309210.1016/j.asej.2018.08.001
    [Google Scholar]
  12. DuY. PramanikB.K. ZhangY. DuméeL. JegatheesanV. Recent advances in the theory and application of nanofiltration: A review.Curr. Pollut. Rep.202281518010.1007/s40726‑021‑00208‑1
    [Google Scholar]
  13. WangR. LinS. Pore model for nanofiltration: History, theoretical framework, key predictions, limitations, and prospects.J. Membr. Sci.202162011880910.1016/j.memsci.2020.118809
    [Google Scholar]
  14. MänttäriM. PihlajamäkiA. NyströmM. Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH.J. Membr. Sci.20062801-231132010.1016/j.memsci.2006.01.034
    [Google Scholar]
  15. Alvarado-MoralesM. KuglarzM. TsapekosP. AngelidakiI. Municipal biopulp as substrate for lactic acid production focusing on downstream processing.J. Environ. Chem. Eng.20219210513610.1016/j.jece.2021.105136
    [Google Scholar]
  16. SuárezA. RieraF.A. Using the Spiegler–Kedem model to predict solute rejection in the treatment of industrial UHT condensates by reverse osmosis.Desalination Water. Treat.20165751241762418610.1080/19443994.2016.1140083
    [Google Scholar]
  17. LópezJ. YaroshchukA. ReigM. GibertO. CortinaJ.L. An engineering model for solute transport in semi-aromatic polymeric nanofiltration membranes: Extension of solution-electro-diffusion model to complex mixtures.J. Environ. Chem. Eng.20219410526210.1016/j.jece.2021.105262
    [Google Scholar]
  18. AhmedF.N. Modified spiegler-kedem model to predict the rejection and flux of nanofiltration processes at high nacl concentrations.CanadaUniversity of Ottawa2013
    [Google Scholar]
  19. ZouhriN. IgouzalM. LarifM. HafsiM. TakyM. ElmidaouiA. Prediction of salt rejection by nanofiltration and reverse osmosis membranes using Spiegler-Kedem model and an optimisation procedure.Desalination Water. Treat.2018120415010.5004/dwt.2018.21410
    [Google Scholar]
  20. MnifA. BejaouiI. MouelhiM. Hexavalent chromium removal from model water and car shock absorber factory effluent by nanofiltration and reverse osmosis membrane.Int. J. Anal Chem.20172017741570810.1155/2017/7415708
    [Google Scholar]
  21. HidalgoA.M. GómezM. MurciaM.D. GómezE. LeónG. SánchezA. Removal of anilinic compounds using the NF-97 membrane: Application of the solution-diffusion and SKK models.Sep. Sci. Technol.201651142429243910.1080/01496395.2016.1209521
    [Google Scholar]
  22. PatilP.P. GujarJ.G. ChavanS.M. Rejection behaviour of manganese ions from synthetic wastewater by nanofiltration membrane.J. Indian Assoc. Environ. Manage2022422114
    [Google Scholar]
  23. Villena-MartínezE.M. Alvizuri-TintayaP.A. Lora-GarcíaJ. Torregrosa-LópezJ.I. Lo-Iacono-FerreiraV.G. Reverse osmosis modeling study of lead and arsenic removal from drinking water in tarija and La paz, Bolivia.Processes2022109188910.3390/pr10091889
    [Google Scholar]
  24. WuF. FengL. ZhangL. Rejection prediction of isopropylantipyrine and antipyrine by nanofiltration membranes based on the Spiegler–Kedem–Katchalsky model.Desalination2015362111710.1016/j.desal.2015.01.046
    [Google Scholar]
  25. ThibaultK. ZhuH. SzymczykA. LiG. The averaged potential gradient approach to model the rejection of electrolyte solutions using nanofiltration: Model development and assessment for highly concentrated feed solutions.Separ. Purif. Tech.201515312613710.1016/j.seppur.2015.08.041
    [Google Scholar]
  26. GaikwadM.S. BalomajumderC. Simultaneous electrosorptive removal of chromium(VI) and fluoride ions by capacitive deionization (CDI): Multicomponent isotherm modeling and kinetic study.Separ. Purif. Tech.201718627228110.1016/j.seppur.2017.06.017
    [Google Scholar]
  27. GaikwadM.S. BalomajumderC. Simultaneous rejection of chromium(VI) and fluoride [Cr(VI) and F] by nanofiltration: Membranes characterizations and estimations of membrane transport parameters by CFSK model.J. Environ. Chem. Eng.201751455310.1016/j.jece.2016.11.018
    [Google Scholar]
  28. GhorbaniA. BayatiB. KikhavaniT. Modelling ion transport in an amine solution through a nanofiltration membrane.Braz. J. Chem. Eng.20193641667167710.1590/0104‑6632.20190364s20190068
    [Google Scholar]
  29. HadiS. MohammedA.A. Al-JubouriS.M. AbdM.F. MajdiH.S. AlsalhyQ.F. RashidK.T. IbrahimS.S. SalihI.K. FigoliA. Experimental and theoretical analysis of lead Pb2+ and Cd2+ Retention from a single salt using a hollow fiber pes membrane.Membranes202010713610.3390/membranes1007013632629753
    [Google Scholar]
  30. RajendranR.M. GargS. BajpaiS. Modelling of arsenic (III) removal from aqueous solution using film theory combined Spiegler-Kedem model: pilot-scale study.Environ. Sci. Pollut. Res. Int.20212811138861389910.1007/s11356‑020‑11613‑233205270
    [Google Scholar]
  31. GuerraH. TadesseB. AlbijanicB. DyerL. Nanofiltration for treatment of Western Australian bore water for mineral processing operations: A pilot scale study.J. Water Process Eng.20235210348410.1016/j.jwpe.2023.103484
    [Google Scholar]
  32. JarzyńskaM. StarygaE. KluzaF. SpiessW.E.L. GóralD. Diffusion characteristics in ethyl alcohol and glucose solutions using Kedem‐Katchalsky equations.Chem. Eng. Technol.202043224825210.1002/ceat.201900416
    [Google Scholar]
  33. LópezJ. ReigM. LiconE. ValderramaC. GibertO. CortinaJ.L. Evaluating the integration of nanofiltration membranes in advanced water reclamation schemes using synthetic solutions: From phosphorous removal to phosphorous circularity.Separ. Purif. Tech.202229012091410.1016/j.seppur.2022.120914
    [Google Scholar]
  34. FengX. PengD. ZhuJ. WangY. ZhangY. Recent advances of loose nanofiltration membranes for dye/salt separation.Separ. Purif. Tech.202228512022810.1016/j.seppur.2021.120228
    [Google Scholar]
  35. LiuJ. ChenL. XieF. On bending, buckling and vibration of graphene nanosheets based on the nonlocal theory.Int. J. Smart. Struct Sys2016172257274
    [Google Scholar]
  36. XinyueW. QiuyangL. ChengLi. On the out-of-plane vibration of rotating circular nanoplates.TNUAA202239123
    [Google Scholar]
  37. LipowskyR. Remodeling of membrane shape and topology by curvature elasticity and membrane tension.Adv. Biol.202261210102010.1002/adbi.20210102034859961
    [Google Scholar]
  38. SteinT. Ein-EliY. Challenges and perspectives of metal‐based proton exchange membrane’s bipolar plates: Exploring durability and longevity.Energy Technol. (Weinheim)202086200000710.1002/ente.202000007
    [Google Scholar]
  39. LiC. LiuJ.J. ChengM. FanX.L. Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces.Compos., Part B Eng.201711615316910.1016/j.compositesb.2017.01.071
    [Google Scholar]
  40. PazireshS. BouyerD. TocciE. Modeling membrane formation.Polymeric Membrane Formation by Phase Inversion.Elsevier202434539410.1016/B978‑0‑323‑95628‑4.00008‑2
    [Google Scholar]
  41. GarciaJ.U.M. Understanding membrane formation in nonsolvent-induced phase separation.Santa BarbaraUniversity of California2020
    [Google Scholar]
  42. HeiranianM. FanH. WangL. LuX. ElimelechM. Mechanisms and models for water transport in reverse osmosis membranes: History, critical assessment, and recent developments.Chem. Soc. Rev.202352248455848010.1039/D3CS00395G37889082
    [Google Scholar]
  43. PiccardP.J. BorgesP. CleurenB. HooyberghsJ. BuekenhoudtA. Organic solvent nanofiltration and data-driven approaches.Separations202310951610.3390/separations10090516
    [Google Scholar]
  44. ThackerW.E. Modeling of activated carbon and coal gasification char adsorbents in single-solute and bisolute systems.University of Illinois at Urbana-Champaign1981
    [Google Scholar]
  45. PrausnitzJ. LichtenthalerR. de AzevedoE. Intermolecular forces, corresponding states and osmotic systems.Molecular Thermodynamics of Fluid-Phase EquilibriaUniverity of Houston3rd ed199957
    [Google Scholar]
  46. Al-SaadiA. MousaH. Vakili-NezhaadG.R. GujarathiA.M. Experimental investigation of the effect of ion concentration and its valence on reflection coefficient and solute permeability of NF membranes.Desalination Water. Treat.202121227628510.5004/dwt.2021.26642
    [Google Scholar]
  47. NasirA.M. AdamM.R. Mohamad KamalS.N.E.A. JaafarJ. OthmanM.H.D. IsmailA.F. AzizF. YusofN. BiladM.R. MohamudR. A RahmanM. Wan SallehW.N. A review of the potential of conventional and advanced membrane technology in the removal of pathogens from wastewater.Separ. Purif. Tech.202228612045410.1016/j.seppur.2022.12045435035270
    [Google Scholar]
  48. YadavD. HazarikaS. IngoleP.G. Recent development in nanofiltration (NF) membranes and their diversified applications.Emerg. Mater.2022551311132810.1007/s42247‑021‑00302‑6
    [Google Scholar]
  49. ShiG.M. FengY. LiB. ThamH.M. LaiJ-Y. ChungT-S. Recent progress of organic solvent nanofiltration membranes.Prog. Polym. Sci.202112310147010.1016/j.progpolymsci.2021.101470
    [Google Scholar]
  50. ChakrabartyT. GiriA.K. SarkarS. Nanofiltration membrane technologies.Advancement in Polymer-Based Membranes for Water Remediation.Elsevier202212115710.1016/B978‑0‑323‑88514‑0.00012‑7
    [Google Scholar]
  51. Cerceau AlvesY.P. Fernandes AntunesF.A. Silverio da SilvaS. ForteM.B.S. From by- to bioproducts: Selection of a nanofiltration membrane for biotechnological xylitol purification and process optimization.Food Bioprod. Process.2021125799010.1016/j.fbp.2020.10.005
    [Google Scholar]
  52. SongX. GanB. QiS. GuoH. TangC.Y. ZhouY. GaoC. Intrinsic nanoscale structure of thin film composite polyamide membranes: Connectivity, defects, and structure–property correlation.Environ. Sci. Technol.20205463559356910.1021/acs.est.9b0589232101410
    [Google Scholar]
  53. SujonS.A. Passive Permeate-Side-Heated Solar Membrane Distillation: Tubular and Multistage Planar Systems with Hydrophobic and Hydrophilic Membranes.Florida Atlantic University2021
    [Google Scholar]
  54. LiaoZ. ZhuJ. LiX. Van der BruggenB. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review.Separ. Purif. Tech.202126611856710.1016/j.seppur.2021.118567
    [Google Scholar]
  55. ArtemiA. Forward Osmosis for the concentration of liquid streams in the food industry: Insights into concentration polarisation and critical flux.University of Surrey2021
    [Google Scholar]
  56. JunB.M. ChoJ. JangA. ChonK. WesterhoffP. YoonY. RhoH. Charge characteristics (surface charge vs. zeta potential) of membrane surfaces to assess the salt rejection behavior of nanofiltration membranes.Separ. Purif. Tech.202024711702610.1016/j.seppur.2020.117026
    [Google Scholar]
  57. KimaniE.M. PranićM. PoradaS. KempermanA.J.B. RyzhkovI.I. van der MeerW.G.J. BiesheuvelP.M. The influence of feedwater pH on membrane charge ionization and ion rejection by reverse osmosis: An experimental and theoretical study.J. Membr. Sci.202266012080010.1016/j.memsci.2022.120800
    [Google Scholar]
  58. WangK. WangX. JanuszewskiB. LiuY. LiD. FuR. ElimelechM. HuangX. Tailored design of nanofiltration membranes for water treatment based on synthesis–property–performance relationships.Chem. Soc. Rev.202251267271910.1039/D0CS01599G34932047
    [Google Scholar]
  59. Abdel-KarimA. LeaperS. SkuseC. ZaragozaG. GrytaM. GorgojoP. Membrane cleaning and pretreatments in membrane distillation – A review.Chem. Eng. J.202142212969610.1016/j.cej.2021.129696
    [Google Scholar]
  60. JosephT.M. Al-HazmiH.E. ŚniatałaB. EsmaeiliA. HabibzadehS. Nanoparticles and nanofiltration for wastewater treatment: From polluted to fresh water.Environ. Res.2023238Pt 111711410.1016/j.envres.2023.11711437716387
    [Google Scholar]
  61. YadavD. KarkiS. IngoleP.G. Nanofiltration (NF) membrane processing in the food industry.Food Eng. Rev.202214457959510.1007/s12393‑022‑09320‑4
    [Google Scholar]
  62. ReigM. VecinoX. CortinaJ.L. Use of membrane technologies in dairy industry: An overview.Foods20211011276810.3390/foods1011276834829049
    [Google Scholar]
  63. LiuL. ChenZ. ZhangJ. ShanD. WuY. BaiL. WangB. Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: A review.J. Water Process Eng.20214210212210.1016/j.jwpe.2021.102122
    [Google Scholar]
  64. GogoiM. GoswamiR. HazarikaS. Membrane-based treatment of wastewater generated in pharmaceutical and textile industries for a sustainable environment.Advanced Materials from Recycled Waste.Elsevier20238710910.1016/B978‑0‑323‑85604‑1.00007‑X
    [Google Scholar]
  65. YadavD. KarkiS. IngoleP.G. Current advances and opportunities in the development of nanofiltration (NF) membranes in the area of wastewater treatment, water desalination, biotechnological and pharmaceutical applications.J. Environ. Chem. Eng.202210410810910.1016/j.jece.2022.108109
    [Google Scholar]
  66. HarishV. TewariD. GaurM. YadavA.B. SwaroopS. BechelanyM. BarhoumA. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications.Nanomaterials202212345710.3390/nano1203045735159802
    [Google Scholar]
  67. LeeJ. ShinY. BooC. HongS. Performance, limitation, and opportunities of acid-resistant nanofiltration membranes for industrial wastewater treatment.J. Membr. Sci.202366612114210.1016/j.memsci.2022.121142
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812345894241119090151
Loading
/content/journals/nanoasi/10.2174/0122106812345894241119090151
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test