Skip to content
2000
image of Advanced Modeling and Comparative Analysis of Nanofiltration Membrane Parameters: NF90 vs. NP010

Abstract

Purpose

This study aimed to characterize commercial nanofiltration membranes (NF90 and NP010) by determining their membrane parameters and estimating osmotic pressure using the virial equation.

Method

A comparison has been conducted using the Van't Hoff equation for both dilute and concentrated mixtures. Membrane parameters (σ, Ps, and ks) have been experimentally obtained, and osmotic pressure has been calculated using the virial equation, with results compared to the Van't Hoff equation. Various solutes, including lactose, Al3+, Mg2+, Na+, and Cl-, have been tested at different concentrations to investigate the membrane behavior.

Result

The virial equation has shown better agreement with experimentally measured fluxes than the Van't Hoff equation. With an increase in solute concentration, σ has decreased, while Ps and ks have increased. Higher cation valency has increased rejection rates, with lactose exhibiting the highest rejection. The rejection rates have followed the order of The order of σ values has been as follows:. While the order of Ps and ks values has been Cl->Na+>Mg2+>Al3+>lactose.

Conclusion

The virial equation has proven to be more effective in estimating osmotic pressure. The findings have provided valuable insights into membrane behavior under varying conditions, optimizing the application of NF membranes across various industries.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812345894241119090151
2024-12-06
2025-01-26
Loading full text...

Full text loading...

References

  1. Bera S.P. Godhaniya M. Kothari C. Emerging and advanced membrane technology for wastewater treatment: A review. J. Basic Microbiol. 2022 62 3-4 245 259 10.1002/jobm.202100259 34496068
    [Google Scholar]
  2. Teow Y.H. Sum J.Y Mohammad A.W Principles of nanofiltration membrane processes. Osmosis Engineering. Elsevier 2021 53 95 10.1016/B978‑0‑12‑821016‑1.00014‑0
    [Google Scholar]
  3. Jia T.Z. Rong M-Y. Chen C-T. Yong W.F. Lau S.K. Zhou R-F. Chen M. Sun S-P. Recent advances in nanofiltration-based hybrid processes. Desalination 2023 565 116852 10.1016/j.desal.2023.116852
    [Google Scholar]
  4. Suhalim N.S. Kasim N. Mahmoudi E. Shamsudin I.J. Mohammad A.W. Mohamed Zuki F. Jamari N.L.A. Rejection mechanism of ionic solute removal by nanofiltration membranes: An overview. Nanomaterials 2022 12 3 437 10.3390/nano12030437 35159781
    [Google Scholar]
  5. Cao Y. Chen G. Wan Y. Luo J. Nanofiltration membrane for bio‐separation: Process‐oriented materials innovation. Eng. Life Sci. 2021 21 6 405 416 10.1002/elsc.202000100 34140851
    [Google Scholar]
  6. García Doménech N. Purcell-Milton F. Gun’ko Y.K. Recent progress and future prospects in development of advanced materials for nanofiltration. Mater. Today Commun. 2020 23 100888 10.1016/j.mtcomm.2019.100888
    [Google Scholar]
  7. Ghorbani A. Bayati B. Poerio T. Argurio P. Kikhavani T. Namdari M. Ferreira L.M. Application of NF polymeric membranes for removal of multicomponent heat-stable salts (HSS) Ions from Methyl Diethanolamine (MDEA) solutions. Molecules 2020 25 21 4911 10.3390/molecules25214911 33114174
    [Google Scholar]
  8. Zhao Y. Lai G.S. Li C. Wang R. Acid-resistant polyamine hollow fiber nanofiltration membrane for selective separation of heavy metals and phosphorus. Chem. Eng. J. 2023 453 139825 10.1016/j.cej.2022.139825
    [Google Scholar]
  9. Nath K. Dave H.K. Patel T.M. Revisiting the recent applications of nanofiltration in food processing industries: Progress and prognosis. Trends Food Sci. Technol. 2018 73 12 24 10.1016/j.tifs.2018.01.001
    [Google Scholar]
  10. Mohammad A.W. Teow Y.H. Ang W.L. Chung Y.T. Oatley-Radcliffe D.L. Hilal N. Nanofiltration membranes review: Recent advances and future prospects. Desalination 2015 356 226 254 10.1016/j.desal.2014.10.043
    [Google Scholar]
  11. Abdel-Fatah M.A. Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Eng. J. 2018 9 4 3077 3092 10.1016/j.asej.2018.08.001
    [Google Scholar]
  12. Du Y. Pramanik B.K. Zhang Y. Dumée L. Jegatheesan V. Recent advances in the theory and application of nanofiltration: A review. Curr. Pollut. Rep. 2022 8 1 51 80 10.1007/s40726‑021‑00208‑1
    [Google Scholar]
  13. Wang R. Lin S. Pore model for nanofiltration: History, theoretical framework, key predictions, limitations, and prospects. J. Membr. Sci. 2021 620 118809 10.1016/j.memsci.2020.118809
    [Google Scholar]
  14. Mänttäri M. Pihlajamäki A. Nyström M. Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH. J. Membr. Sci. 2006 280 1-2 311 320 10.1016/j.memsci.2006.01.034
    [Google Scholar]
  15. Alvarado-Morales M. Kuglarz M. Tsapekos P. Angelidaki I. Municipal biopulp as substrate for lactic acid production focusing on downstream processing. J. Environ. Chem. Eng. 2021 9 2 105136 10.1016/j.jece.2021.105136
    [Google Scholar]
  16. Suárez A. Riera F.A. Using the Spiegler–Kedem model to predict solute rejection in the treatment of industrial UHT condensates by reverse osmosis. Desalination Water. Treat. 2016 57 51 24176 24186 10.1080/19443994.2016.1140083
    [Google Scholar]
  17. López J. Yaroshchuk A. Reig M. Gibert O. Cortina J.L. An engineering model for solute transport in semi-aromatic polymeric nanofiltration membranes: Extension of solution-electro-diffusion model to complex mixtures. J. Environ. Chem. Eng. 2021 9 4 105262 10.1016/j.jece.2021.105262
    [Google Scholar]
  18. Ahmed F.N. Modified spiegler-kedem model to predict the rejection and flux of nanofiltration processes at high nacl concentrations. Canada University of Ottawa 2013
    [Google Scholar]
  19. Zouhri N. Igouzal M. Larif M. Hafsi M. Taky M. Elmidaoui A. Prediction of salt rejection by nanofiltration and reverse osmosis membranes using Spiegler-Kedem model and an optimisation procedure. Desalination Water. Treat. 2018 120 41 50 10.5004/dwt.2018.21410
    [Google Scholar]
  20. Mnif A. Bejaoui I. Mouelhi M. Hexavalent chromium removal from model water and car shock absorber factory effluent by nanofiltration and reverse osmosis membrane. Int. J. Anal Chem. 2017 2017 7415708 10.1155/2017/7415708
    [Google Scholar]
  21. Hidalgo A.M. Gómez M. Murcia M.D. Gómez E. León G. Sánchez A. Removal of anilinic compounds using the NF-97 membrane: Application of the solution-diffusion and SKK models. Sep. Sci. Technol. 2016 51 14 2429 2439 10.1080/01496395.2016.1209521
    [Google Scholar]
  22. Patil P.P. Gujar J.G. Chavan S.M. Rejection behaviour of manganese ions from synthetic wastewater by nanofiltration membrane. J. Indian Assoc. Environ. Manage 2022 42 2 1 14
    [Google Scholar]
  23. Villena-Martínez E.M. Alvizuri-Tintaya P.A. Lora-García J. Torregrosa-López J.I. Lo-Iacono-Ferreira V.G. Reverse osmosis modeling study of lead and arsenic removal from drinking water in tarija and La paz, Bolivia. Processes 2022 10 9 1889 10.3390/pr10091889
    [Google Scholar]
  24. Wu F. Feng L. Zhang L. Rejection prediction of isopropylantipyrine and antipyrine by nanofiltration membranes based on the Spiegler–Kedem–Katchalsky model. Desalination 2015 362 11 17 10.1016/j.desal.2015.01.046
    [Google Scholar]
  25. Thibault K. Zhu H. Szymczyk A. Li G. The averaged potential gradient approach to model the rejection of electrolyte solutions using nanofiltration: Model development and assessment for highly concentrated feed solutions. Separ. Purif. Tech. 2015 153 126 137 10.1016/j.seppur.2015.08.041
    [Google Scholar]
  26. Gaikwad M.S. Balomajumder C. Simultaneous electrosorptive removal of chromium(VI) and fluoride ions by capacitive deionization (CDI): Multicomponent isotherm modeling and kinetic study. Separ. Purif. Tech. 2017 186 272 281 10.1016/j.seppur.2017.06.017
    [Google Scholar]
  27. Gaikwad M.S. Balomajumder C. Simultaneous rejection of chromium(VI) and fluoride [Cr(VI) and F] by nanofiltration: Membranes characterizations and estimations of membrane transport parameters by CFSK model. J. Environ. Chem. Eng. 2017 5 1 45 53 10.1016/j.jece.2016.11.018
    [Google Scholar]
  28. Ghorbani A. Bayati B. Kikhavani T. Modelling ion transport in an amine solution through a nanofiltration membrane. Braz. J. Chem. Eng. 2019 36 4 1667 1677 10.1590/0104‑6632.20190364s20190068
    [Google Scholar]
  29. Hadi S. Mohammed A.A. Al-Jubouri S.M. Abd M.F. Majdi H.S. Alsalhy Q.F. Rashid K.T. Ibrahim S.S. Salih I.K. Figoli A. Experimental and theoretical analysis of lead Pb2+ and Cd2+ Retention from a single salt using a hollow fiber pes membrane. Membranes 2020 10 7 136 10.3390/membranes10070136 32629753
    [Google Scholar]
  30. Rajendran R.M. Garg S. Bajpai S. Modelling of arsenic (III) removal from aqueous solution using film theory combined Spiegler-Kedem model: pilot-scale study. Environ. Sci. Pollut. Res. Int. 2021 28 11 13886 13899 10.1007/s11356‑020‑11613‑2 33205270
    [Google Scholar]
  31. Guerra H. Tadesse B. Albijanic B. Dyer L. Nanofiltration for treatment of Western Australian bore water for mineral processing operations: A pilot scale study. J. Water Process Eng. 2023 52 103484 10.1016/j.jwpe.2023.103484
    [Google Scholar]
  32. Jarzyńska M. Staryga E. Kluza F. Spiess W.E.L. Góral D. Diffusion characteristics in ethyl alcohol and glucose solutions using Kedem‐Katchalsky equations. Chem. Eng. Technol. 2020 43 2 248 252 10.1002/ceat.201900416
    [Google Scholar]
  33. López J. Reig M. Licon E. Valderrama C. Gibert O. Cortina J.L. Evaluating the integration of nanofiltration membranes in advanced water reclamation schemes using synthetic solutions: From phosphorous removal to phosphorous circularity. Separ. Purif. Tech. 2022 290 120914 10.1016/j.seppur.2022.120914
    [Google Scholar]
  34. Feng X. Peng D. Zhu J. Wang Y. Zhang Y. Recent advances of loose nanofiltration membranes for dye/salt separation. Separ. Purif. Tech. 2022 285 120228 10.1016/j.seppur.2021.120228
    [Google Scholar]
  35. Liu J. Chen L. Xie F. On bending, buckling and vibration of graphene nanosheets based on the nonlocal theory. Int. J. Smart. Struct Sys 2016 17 2 257 274
    [Google Scholar]
  36. Xinyue W. Qiuyang L. Cheng Li. On the out-of-plane vibration of rotating circular nanoplates. TNUAA 2022 39 1 23
    [Google Scholar]
  37. Lipowsky R. Remodeling of membrane shape and topology by curvature elasticity and membrane tension. Adv. Biol. 2022 6 1 2101020 10.1002/adbi.202101020 34859961
    [Google Scholar]
  38. Stein T. Ein-Eli Y. Challenges and perspectives of metal‐based proton exchange membrane’s bipolar plates: Exploring durability and longevity. Energy Technol. (Weinheim) 2020 8 6 2000007 10.1002/ente.202000007
    [Google Scholar]
  39. Li C. Liu J.J. Cheng M. Fan X.L. Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces. Compos., Part B Eng. 2017 116 153 169 10.1016/j.compositesb.2017.01.071
    [Google Scholar]
  40. Paziresh S. Bouyer D. Tocci E. Modeling membrane formation. Polymeric Membrane Formation by Phase Inversion. Elsevier 2024 345 394 10.1016/B978‑0‑323‑95628‑4.00008‑2
    [Google Scholar]
  41. Garcia J.U.M. Understanding membrane formation in nonsolvent-induced phase separation. Santa Barbara University of California 2020
    [Google Scholar]
  42. Heiranian M. Fan H. Wang L. Lu X. Elimelech M. Mechanisms and models for water transport in reverse osmosis membranes: History, critical assessment, and recent developments. Chem. Soc. Rev. 2023 52 24 8455 8480 10.1039/D3CS00395G 37889082
    [Google Scholar]
  43. Piccard P.J. Borges P. Cleuren B. Hooyberghs J. Buekenhoudt A. Organic solvent nanofiltration and data-driven approaches. Separations 2023 10 9 516 10.3390/separations10090516
    [Google Scholar]
  44. Thacker W.E. Modeling of activated carbon and coal gasification char adsorbents in single-solute and bisolute systems. University of Illinois at Urbana-Champaign 1981
    [Google Scholar]
  45. Prausnitz J. Lichtenthaler R. de Azevedo E. Intermolecular forces, corresponding states and osmotic systems. Molecular Thermodynamics of Fluid-Phase Equilibria Univerity of Houston 3rd ed 1999 57
    [Google Scholar]
  46. Al-Saadi A. Mousa H. Vakili-Nezhaad G.R. Gujarathi A.M. Experimental investigation of the effect of ion concentration and its valence on reflection coefficient and solute permeability of NF membranes. Desalination Water. Treat. 2021 212 276 285 10.5004/dwt.2021.26642
    [Google Scholar]
  47. Nasir A.M. Adam M.R. Mohamad Kamal S.N.E.A. Jaafar J. Othman M.H.D. Ismail A.F. Aziz F. Yusof N. Bilad M.R. Mohamud R. A Rahman M. Wan Salleh W.N. A review of the potential of conventional and advanced membrane technology in the removal of pathogens from wastewater. Separ. Purif. Tech. 2022 286 120454 10.1016/j.seppur.2022.120454 35035270
    [Google Scholar]
  48. Yadav D. Hazarika S. Ingole P.G. Recent development in nanofiltration (NF) membranes and their diversified applications. Emerg. Mater. 2022 5 5 1311 1328 10.1007/s42247‑021‑00302‑6
    [Google Scholar]
  49. Shi G.M. Feng Y. Li B. Tham H.M. Lai J-Y. Chung T-S. Recent progress of organic solvent nanofiltration membranes. Prog. Polym. Sci. 2021 123 101470 10.1016/j.progpolymsci.2021.101470
    [Google Scholar]
  50. Chakrabarty T. Giri A.K. Sarkar S. Nanofiltration membrane technologies. Advancement in Polymer-Based Membranes for Water Remediation. Elsevier 2022 121 157 10.1016/B978‑0‑323‑88514‑0.00012‑7
    [Google Scholar]
  51. Cerceau Alves Y.P. Fernandes Antunes F.A. Silverio da Silva S. Forte M.B.S. From by- to bioproducts: Selection of a nanofiltration membrane for biotechnological xylitol purification and process optimization. Food Bioprod. Process. 2021 125 79 90 10.1016/j.fbp.2020.10.005
    [Google Scholar]
  52. Song X. Gan B. Qi S. Guo H. Tang C.Y. Zhou Y. Gao C. Intrinsic nanoscale structure of thin film composite polyamide membranes: Connectivity, defects, and structure–property correlation. Environ. Sci. Technol. 2020 54 6 3559 3569 10.1021/acs.est.9b05892 32101410
    [Google Scholar]
  53. Sujon S.A. Passive Permeate-Side-Heated Solar Membrane Distillation: Tubular and Multistage Planar Systems with Hydrophobic and Hydrophilic Membranes. Florida Atlantic University 2021
    [Google Scholar]
  54. Liao Z. Zhu J. Li X. Van der Bruggen B. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review. Separ. Purif. Tech. 2021 266 118567 10.1016/j.seppur.2021.118567
    [Google Scholar]
  55. Artemi A. Forward Osmosis for the concentration of liquid streams in the food industry: Insights into concentration polarisation and critical flux. University of Surrey 2021
    [Google Scholar]
  56. Jun B.M. Cho J. Jang A. Chon K. Westerhoff P. Yoon Y. Rho H. Charge characteristics (surface charge vs. zeta potential) of membrane surfaces to assess the salt rejection behavior of nanofiltration membranes. Separ. Purif. Tech. 2020 247 117026 10.1016/j.seppur.2020.117026
    [Google Scholar]
  57. Kimani E.M. Pranić M. Porada S. Kemperman A.J.B. Ryzhkov I.I. van der Meer W.G.J. Biesheuvel P.M. The influence of feedwater pH on membrane charge ionization and ion rejection by reverse osmosis: An experimental and theoretical study. J. Membr. Sci. 2022 660 120800 10.1016/j.memsci.2022.120800
    [Google Scholar]
  58. Wang K. Wang X. Januszewski B. Liu Y. Li D. Fu R. Elimelech M. Huang X. Tailored design of nanofiltration membranes for water treatment based on synthesis–property–performance relationships. Chem. Soc. Rev. 2022 51 2 672 719 10.1039/D0CS01599G 34932047
    [Google Scholar]
  59. Abdel-Karim A. Leaper S. Skuse C. Zaragoza G. Gryta M. Gorgojo P. Membrane cleaning and pretreatments in membrane distillation – A review. Chem. Eng. J. 2021 422 129696 10.1016/j.cej.2021.129696
    [Google Scholar]
  60. Joseph T.M. Al-Hazmi H.E. Śniatała B. Esmaeili A. Habibzadeh S. Nanoparticles and nanofiltration for wastewater treatment: From polluted to fresh water. Environ. Res. 2023 238 Pt 1 117114 10.1016/j.envres.2023.117114 37716387
    [Google Scholar]
  61. Yadav D. Karki S. Ingole P.G. Nanofiltration (NF) membrane processing in the food industry. Food Eng. Rev. 2022 14 4 579 595 10.1007/s12393‑022‑09320‑4
    [Google Scholar]
  62. Reig M. Vecino X. Cortina J.L. Use of membrane technologies in dairy industry: An overview. Foods 2021 10 11 2768 10.3390/foods10112768 34829049
    [Google Scholar]
  63. Liu L. Chen Z. Zhang J. Shan D. Wu Y. Bai L. Wang B. Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: A review. J. Water Process Eng. 2021 42 102122 10.1016/j.jwpe.2021.102122
    [Google Scholar]
  64. Gogoi M. Goswami R. Hazarika S. Membrane-based treatment of wastewater generated in pharmaceutical and textile industries for a sustainable environment. Advanced Materials from Recycled Waste. Elsevier 2023 87 109 10.1016/B978‑0‑323‑85604‑1.00007‑X
    [Google Scholar]
  65. Yadav D. Karki S. Ingole P.G. Current advances and opportunities in the development of nanofiltration (NF) membranes in the area of wastewater treatment, water desalination, biotechnological and pharmaceutical applications. J. Environ. Chem. Eng. 2022 10 4 108109 10.1016/j.jece.2022.108109
    [Google Scholar]
  66. Harish V. Tewari D. Gaur M. Yadav A.B. Swaroop S. Bechelany M. Barhoum A. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials 2022 12 3 457 10.3390/nano12030457 35159802
    [Google Scholar]
  67. Lee J. Shin Y. Boo C. Hong S. Performance, limitation, and opportunities of acid-resistant nanofiltration membranes for industrial wastewater treatment. J. Membr. Sci. 2023 666 121142 10.1016/j.memsci.2022.121142
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812345894241119090151
Loading
/content/journals/nanoasi/10.2174/0122106812345894241119090151
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test