Skip to content
2000
image of Navigating the Nano Abyss: Understanding the Ecological Ramifications of Nanoparticle Pollution on Aquatic Organisms

Abstract

Increased environmental occurrences of nanoparticles are reported to be hazardous to aquatic life. The uptake of nano pollutants poses a significant impact on fish behaviour, reproductive function, endocrine system, and immune response, among other physiological factors. The review article highlighted various factors that are involved in nanotoxicity and also listed out the effects and mechanisms of nanoparticle on aquatic system. The behaviour and toxicity of nanoparticles on oxidative stress, DNA damage, and histology abnormalities are recorded from various literature. Additionally, the knowledge gaps on the effect of nanoparticles that could alter the neurological and immunological systems of aquatic creatures, influencing the release of cytokines and neurotransmitters are summarized. Various developmental defects and physiological disorders in fish are caused by mitochondrial malfunction, membrane damage, and DNA changes. Haematological, biochemical, and histological characteristics in the exposed microenvironment affect the natural growth and development of aquatic organisms. Overall, this review highlights the critical information on the toxicity of the nano exudate on the aquatic species and records of their ecotoxicological assessment of aquatic ecosystem.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812325515241121053008
2024-11-29
2025-01-27
Loading full text...

Full text loading...

References

  1. Borrelle S.B. Ringma J. Law K.L. Monnahan C.C. Lebreton L. McGivern A. Murphy E. Jambeck J. Leonard G.H. Hilleary M.A. Eriksen M. Possingham H.P. De Frond H. Gerber L.R. Polidoro B. Tahir A. Bernard M. Mallos N. Barnes M. Rochman C.M. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 2020 369 6510 1515 1518 10.1126/science.aba3656 32943526
    [Google Scholar]
  2. Alsina J.M. Jongedijk C.E. van Sebille E. Laboratory measurements of the wave-induced motion of plastic particles: influence of wave period, plastic size and plastic density. J. Geophys. Res. C: Oceans 2020 125 12 e2020JC016294
    [Google Scholar]
  3. Sousa J.C.G. Ribeiro A.R. Barbosa M.O. Pereira M.F.R. Silva A.M.T. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 2018 344 146 162 10.1016/j.jhazmat.2017.09.058 29032095
    [Google Scholar]
  4. Petosa A.R. Jaisi D.P. Quevedo I.R. Elimelech M. Tufenkji N. Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol. 2010 44 17 6532 6549 10.1021/es100598h 20687602
    [Google Scholar]
  5. Klaine S.J. Alvarez P.J.J. Batley G.E. Fernandes T.F. Handy R.D. Lyon D.Y. Mahendra S. McLaughlin M.J. Lead J.R. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008 27 9 1825 1851 10.1897/08‑090.1 19086204
    [Google Scholar]
  6. Popov A. TiO2 Nanoparticles as UV Protectors in Skin. Academic dissertation, University of Oulu, 2008.
    [Google Scholar]
  7. Montalvo-Quiros S. Luque-Garcia J.L. Combination of bioanalytical approaches and quantitative proteomics for the elucidation of the toxicity mechanisms associated to TiO2 nanoparticles exposure in human keratinocytes. Food Chem. Toxicol. 2019 127 197 205 10.1016/j.fct.2019.03.036 30910687
    [Google Scholar]
  8. Opršal J. Knotek P. Zickler G.A. Sigg L. Schirmer K. Pouzar M. Geppert M. Cytotoxicity, Accumulation and Translocation of Silver and Silver Sulfide Nanoparticles in contact with Rainbow Trout Intestinal Cells. Aquat. Toxicol. 2021 237 105869 10.1016/j.aquatox.2021.105869 34082272
    [Google Scholar]
  9. Osborne O.J. Lin S. Chang C.H. Ji Z. Yu X. Wang X. Lin S. Xia T. Nel A.E. Organ-Specific and Size-Dependent Ag Nanoparticle Toxicity in Gills and Intestines of Adult Zebrafish. ACS Nano 2015 9 10 9573 9584 10.1021/acsnano.5b04583 26327297
    [Google Scholar]
  10. Rodríguez-Hernández A.G. Vazquez-Duhalt R. Huerta-Saquero A. Nanoparticle-plasma Membrane Interactions: Thermodynamics, Toxicity and Cellular Response. Curr. Med. Chem. 2020 27 20 3330 3345 10.2174/0929867325666181112090648 30417768
    [Google Scholar]
  11. Xiang D. Zheng C. Zheng Y. Li X. Yin J. O’ Conner M. Marappan M. Miao Y. Xiang B. Duan W. Shigdar S. Zhao X. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int. J. Nanomedicine 2013 8 4103 4113 10.2147/IJN.S53622 24204140
    [Google Scholar]
  12. Xiang Q.Q. Wang D. Zhang J.L. Ding C.Z. Luo X. Tao J. Ling J. Shea D. Chen L.Q. Effect of silver nanoparticles on gill membranes of common carp: Modification of fatty acid profile, lipid peroxidation and membrane fluidity. Environ. Pollut. 2020 256 113504 10.1016/j.envpol.2019.113504 31706775
    [Google Scholar]
  13. Kim K.T. Zaikova T. Hutchison J.E. Tanguay R.L. Gold nanoparticles disrupt zebrafish eye development and pigmentation. Toxicol. Sci. 2013 133 2 275 288 10.1093/toxsci/kft081 23549158
    [Google Scholar]
  14. Choi O. Hu Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 2008 42 12 4583 4588 10.1021/es703238h
    [Google Scholar]
  15. Sharma V.K. Filip J. Zboril R. Varma R.S. Natural inorganic nanoparticles – formation, fate, and toxicity in the environment. Chem. Soc. Rev. 2015 44 23 8410 8423 10.1039/C5CS00236B 26435358
    [Google Scholar]
  16. Steer M. Cole M. Thompson R.C. Lindeque P.K. Microplastic ingestion in fish larvae in the western English Channel. Environ. Pollut. 2017 226 250 259 10.1016/j.envpol.2017.03.062 28408185
    [Google Scholar]
  17. Canesi L. Gallo G. Gavioli M. Pruzzo C. Bacteria–hemocyte interactions and phagocytosis in marine bivalves. Microsc. Res. Tech. 2002 57 6 469 476 10.1002/jemt.10100 12112429
    [Google Scholar]
  18. Tan C. Wang W.X. Influences of TiO2 nanoparticles on dietary metal uptake in Daphnia magna. Environ. Pollut. 2017 231 Pt 1 311 318 10.1016/j.envpol.2017.08.024 28810200
    [Google Scholar]
  19. Khan S.B. Faisal M. Rahman M.M. Jamal A. Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Sci. Total Environ. 2011 409 15 2987 2992 10.1016/j.scitotenv.2011.04.019 21570707
    [Google Scholar]
  20. Yang X. Pan H. Wang P. Zhao F.J. Particle-specific toxicity and bioavailability of Cerium Oxide (CeO) Nanoparticles to Arabidopsis Thaliana. J. Hazard. Mater. 2017 322 Pt A 292 300
    [Google Scholar]
  21. Kleiven M. Rosseland B.O. Teien H.C. Joner E.J. Helen Oughton D. Route of exposure has a major impact on uptake of silver nanoparticles in Atlantic salmon ( Salmo salar ). Environ. Toxicol. Chem. 2018 37 11 2895 2903 10.1002/etc.4251 30125984
    [Google Scholar]
  22. Moore M.N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int. 2006 32 8 967 976 10.1016/j.envint.2006.06.014 16859745
    [Google Scholar]
  23. Iara da C. Souza Vitor A.S. Mendes, Ian D. Duarte, Livia D. Rocha, Vinicius C. Azevedo, Silvia T. Matsumoto, Michael Elliott, Daniel A. Wunderlin, Magdalena V. Monferran, Marisa N. Fernandes, Nanoparticle Transport and Sequestration: Intracellular Titanium Dioxide Nanoparticles in a Neotropical Fish. Sci. Total Environ. 2019 658 798 808
    [Google Scholar]
  24. Bianchini A. Grosell M. Gregory S.M. Wood C.M. Acute silver toxicity in aquatic animals is a function of sodium uptake rate. Environ. Sci. Technol. 2002 36 8 1763 1766 10.1021/es011028t 11993875
    [Google Scholar]
  25. Gaiser B.K. Biswas A. Rosenkranz P. Jepson M.A. Lead J.R. Stone V. Tyler C.R. Fernandes T.F. Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna. J. Environ. Monit. 2011 13 5 1227 1235 10.1039/c1em10060b 21499624
    [Google Scholar]
  26. Federici G. Shaw B. Handy R. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat. Toxicol. 2007 84 4 415 430 10.1016/j.aquatox.2007.07.009 17727975
    [Google Scholar]
  27. Johnston B.D. Scown T.M. Moger J. Cumberland S.A. Baalousha M. Linge K. van Aerle R. Jarvis K. Lead J.R. Tyler C.R. Bioavailability of nanoscale metal oxides TiO(2), CeO(2), and ZnO to fish. Environ. Sci. Technol. 2010 44 3 1144 1151 10.1021/es901971a 20050652
    [Google Scholar]
  28. Rogers S. Rice K.M. Manne N.D.P.K. Shokuhfar T. He K. Selvaraj V. Blough E.R. Cerium oxide nanoparticle aggregates affect stress response and function in Caenorhabditis elegans. SAGE Open Med. 2015 3 2050312115575387 10.1177/2050312115575387 26770770
    [Google Scholar]
  29. Garaud M. Trapp J. Devin S. Cossu-Leguille C. Pain-Devin S. Felten V. Giamberini L. Multibiomarker assessment of cerium dioxide nanoparticle (nCeO2) sublethal effects on two freshwater invertebrates, Dreissena polymorpha and Gammarus roeseli. Aquat. Toxicol. 2015 158 63 74 10.1016/j.aquatox.2014.11.004 25461746
    [Google Scholar]
  30. Gaiser B.K. Fernandes T.F. Jepson M. Lead J.R. Tyler C.R. Stone V. Assessing exposure, uptake and toxicity of silver and cerium dioxide nanoparticles from contaminated environments. Environ. Heal. 2009 8 S1 2
    [Google Scholar]
  31. Wu W. Mitra N. Yan E.C.Y. Zhou S. Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH. ACS Nano 2010 4 8 4831 4839 10.1021/nn1008319 20731458
    [Google Scholar]
  32. Xu J. Zhang Q. Li X. Zhan S. Wang L. Chen D. The effects of copper oxide nanoparticles on dorsoventral patterning, convergent extension, and neural and cardiac development of zebrafish. Aquat. Toxicol. 2017 188 130 137 10.1016/j.aquatox.2017.05.002 28521150
    [Google Scholar]
  33. Duan J. Yu Y. Li Y. Yu Y. Sun Z. Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model. Biomaterials 2013 34 23 5853 5862 10.1016/j.biomaterials.2013.04.032 23663927
    [Google Scholar]
  34. Ramsden C.S. Henry T.B. Handy R.D. Sub-lethal effects of titanium dioxide nanoparticles on the physiology and reproduction of zebrafish. Aquat. Toxicol. 2013 126 404 413 10.1016/j.aquatox.2012.08.021 23084046
    [Google Scholar]
  35. Graver D. Volcanic Ash: Chemical Composition. Environmental Impact, and Health Risks 2015
    [Google Scholar]
  36. Lee J.W. Choi H. Hwang U.K. Kang J.C. Kang Y.J. Kim K.I. Kim J.H. Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. Environ. Toxicol. Pharmacol. 2019 68 101 108 10.1016/j.etap.2019.03.010 30884452
    [Google Scholar]
  37. Fadia P. Tyagi S. Bhagat S. Nair A. Panchal P. Dave H. Dang S. Singh S. Calcium carbonate nano- and microparticles: synthesis methods and biological applications. 3 Biotech 2021 11 11 457
    [Google Scholar]
  38. Matsunaga T. Okamura Y. Molecular Mechanism of Bacterial Magnetite Formation and Its Application. Mat. Res. Soc. Symp. Proc. 2002 724 Available from: https://apps.dtic.mil/sti/tr/pdf/ADP014394.pdf(accessed on 23-10-2024)
    [Google Scholar]
  39. Lin K.C. Applications of biogenic silica nanostructures from diatoms. ASU Electronic Theses and Dissertations, Arizona State University, 2014.
    [Google Scholar]
  40. Ahmed I. The effect of aluminum oxide nanoparticles addition with jojoba methyl ester-diesel fuel blend on a diesel engine performance. Fuel 2018 224 147 166 10.1016/j.fuel.2018.03.076
    [Google Scholar]
  41. Narayanan K.B. Sakthivel N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv. Colloid Interface Sci. 2011 169 2 59 79 10.1016/j.cis.2011.08.004 21981929
    [Google Scholar]
  42. Chaudhary R.P. Synthesis And Characterization Of Platinum And Carbon Nanoparticle In Benzene By Electric Plasma Discharge In Ultrasonic Cavitation. Master Thesis, The University of Texas at Arlington,2010.
    [Google Scholar]
  43. Siddiqui M.H. Al-Whaibi M.H. Mohammad F. Nanotechnology and Plant Sciences: Nanoparticles and Their Impact on Plants. Springer 2015 10.1007/978‑3‑319‑14502‑0
    [Google Scholar]
  44. Tishkova V. Combustion Nanoparticles from Aviation and Shipping. LAP Lambert Academic Publishing 2010
    [Google Scholar]
  45. Huang J.N. Wen B. Xu L. Ma H.C. Li X.X. Gao J.Z. Chen Z.Z. Micro/nano-plastics cause neurobehavioral toxicity in discus fish (Symphysodon aequifasciatus): Insight from brain-gut-microbiota axis. J. Hazard. Mater. 2022 421 126830 10.1016/j.jhazmat.2021.126830 34396975
    [Google Scholar]
  46. Alkaladi A. Afifi M. Ali H. Saddick S. Hormonal and molecular alterations induced by sub-lethal toxicity of zinc oxide nanoparticles on Oreochromis niloticus. Saudi J. Biol. Sci. 2020 27 5 1296 1301 10.1016/j.sjbs.2020.01.010 32346338
    [Google Scholar]
  47. Micevych P.E. Kelly M.J. Membrane estrogen receptor regulation of hypothalamic function. Neuroendocrinology 2012 96 2 103 110 10.1159/000338400 22538318
    [Google Scholar]
  48. Tallec K. Paul-Pont I. Boulais M. Le Goïc N. González-Fernández C. Le Grand F. Bideau A. Quéré C. Cassone A.L. Lambert C. Soudant P. Huvet A. Nanopolystyrene beads affect motility and reproductive success of oyster spermatozoa ( Crassostrea gigas ). Nanotoxicology 2020 14 8 1039 1057 10.1080/17435390.2020.1808104 32813582
    [Google Scholar]
  49. Mawed S.A. Marini C. Alagawany M. Farag M.R. Reda R.M. El-Saadony M.T. Elhady W.M. Magi G.E. Di Cerbo A. El-Nagar W.G. Zinc Oxide Nanoparticles (ZnO-NPs) Suppress Fertility by Activating Autophagy, Apoptosis, and Oxidative Stress in the Developing Oocytes of Female Zebrafish. Antioxidants 2022 11 8 1567 10.3390/antiox11081567 36009286
    [Google Scholar]
  50. Wang Q. Li Y. Chen Y. Tian L. Gao D. Liao H. Kong C. Chen X. Junaid M. Wang J. Toxic effects of polystyrene nanoplastics and polybrominated diphenyl ethers to zebrafish (Danio rerio). Fish Shellfish Immunol. 2022 126 21 33 10.1016/j.fsi.2022.05.025 35597397
    [Google Scholar]
  51. Sarasamma S. Audira G. Siregar P. Malhotra N. Lai Y.H. Liang S.T. Chen J.R. Chen K.H.C. Hsiao C.D. Nanoplastics Cause Neurobehavioral Impairments, Reproductive and Oxidative Damages, and Biomarker Responses in Zebrafish: Throwing up Alarms of Wide Spread Health Risk of Exposure. Int. J. Mol. Sci. 2020 21 4 1410 10.3390/ijms21041410 32093039
    [Google Scholar]
  52. Sangkham S. Faikhaw O. Munkong N. Sakunkoo P. Arunlertaree C. Chavali M. Mousazadeh M. Tiwari A. A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health. Mar. Pollut. Bull. 2022 181 113832 10.1016/j.marpolbul.2022.113832 35716489
    [Google Scholar]
  53. Wang Z. Bi J. Wang H. Tan M. Assessment of Potential Toxicity of Onion-like Carbon Nanoparticles from Grilled Turbot L. Foods 2021 11 1 10.3390/foods11010095 35010221
    [Google Scholar]
  54. Lin X. Wang Y. Yang X. Watson P. Yang F. Liu H. Endocrine disrupting effect and reproductive toxicity of the separate exposure and co-exposure of nano-polystyrene and diethylstilbestrol to zebrafish. Sci. Total Environ. 2023 865 161100 10.1016/j.scitotenv.2022.161100 36566849
    [Google Scholar]
  55. Wang Q. Qin X. Geng L. Wang Y. Label-Free Electrochemical Aptasensor for Sensitive Detection of Malachite Green Based on Au Nanoparticle/Graphene Quantum Dots/Tungsten Disulfide Nanocomposites. Nanomaterials (Basel) 2019 9 2 229 10.3390/nano9020229 30744009
    [Google Scholar]
  56. Malafaia G. da Luz T.M. Araujo A.P.C. Ahmed M.A.I. Santos T. Barceló D. Novel methodology for identification and quantification of microplastics in biological samples. Environ. Pollut. 2022 292 118466 10.1016/j.envpol.2021.118466
    [Google Scholar]
  57. González-Doncel M. García-Mauriño J.E. Beltrán E.M. Fernández Torija C. Andreu-Sánchez O. Pablos M.V. Effects of life cycle exposure to polystyrene microplastics on medaka fish (Oryzias latipes). Environ. Pollut. 2022 311 120001 10.1016/j.envpol.2022.120001 35995287
    [Google Scholar]
  58. Ding J. Huang Y. Liu S. Zhang S. Zou H. Wang Z. Zhu W. Geng J. Toxicological effects of nano- and micro-polystyrene plastics on red tilapia: Are larger plastic particles more harmless? J. Hazard. Mater. 2020 396 122693 10.1016/j.jhazmat.2020.122693 32353735
    [Google Scholar]
  59. Lee W.S. Cho H.J. Kim E. Huh Y.H. Kim H.J. Kim B. Kang T. Lee J.S. Jeong J. Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos. Nanoscale 2019 11 7 3173 3185 10.1039/C8NR09321K 30534785
    [Google Scholar]
  60. Yi J. Ma Y. Ruan J. You S. Ma J. Yu H. Zhao J. Zhang K. Yang Q. Jin L. Zeng G. Sun D. The invisible Threat: Assessing the reproductive and transgenerational impacts of micro- and nanoplastics on fish. Environ. Int. 2024 183 108432 10.1016/j.envint.2024.108432 38219542
    [Google Scholar]
  61. Bhagat J. Zang L. Kaneco S. Nishimura N. Shimada Y. Combined exposure to nanoplastics and metal oxide nanoparticles inhibits efflux pumps and causes oxidative stress in zebrafish embryos. Sci. Total Environ. 2022 835 155436 10.1016/j.scitotenv.2022.155436 35461948
    [Google Scholar]
  62. Karami R. Mohsenifar A. Mesbah Namini S.M. Kamelipour N. Rahmani-Cherati T. Roodbar Shojaei T. Tabatabaei M. A novel nanobiosensor for the detection of paraoxon using chitosan-embedded organophosphorus hydrolase immobilized on Au nanoparticles. Prep. Biochem. Biotechnol. 2016 46 6 559 566 10.1080/10826068.2015.1084930 26503886
    [Google Scholar]
  63. Lin X. Ma X. He Y. Li S. Chen W. Li L. One‐pot Construction of Metal Nanoparticles Loaded COF Catalysts for Aqueous Hydrogenation Reactions. Chemistry 2024 30 11 e202303505 10.1002/chem.202303505 38143237
    [Google Scholar]
  64. Wang T. Wen X. Hu Y. Zhang X. Wang D. Yin S. Copper nanoparticles induced oxidation stress, cell apoptosis and immune response in the liver of juvenile Takifugu fasciatus. Fish Shellfish Immunol. 2019 84 648 655 10.1016/j.fsi.2018.10.053 30366095
    [Google Scholar]
  65. Colborn T. vom Saal F.S. Soto A.M. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ. Health Perspect. 1993 101 5 378 384 10.1289/ehp.93101378 8080506
    [Google Scholar]
  66. Crisp T. M. Clegg E.D. Cooper R.L. Wood W.P. Anderson D.G. Baetcke K.P. Hoffmann J.L. Morrow M.S. Rodier D.J. Schaeffer J.E. Touart L.W. Zeeman M.G. Patel Y.M. Environmental endocrine disruption: an effects assessment and analysis. Environ. Health Perspect. 1998 106 S1 11 56
    [Google Scholar]
  67. Meeker J.D. Rossano M.G. Protas B. Diamond M.P. Puscheck E. Daly D. Paneth N. Wirth J.J. Multiple metals predict prolactin and thyrotropin (TSH) levels in men. Environ. Res. 2009 109 7 869 873 10.1016/j.envres.2009.06.004 19595304
    [Google Scholar]
  68. Singh R.D. Koshta K. Tiwari R. Khan H. Sharma V. Srivastava V. Developmental Exposure to Endocrine Disrupting Chemicals and Its Impact on Cardio-Metabolic-Renal Health. Frontiers in Toxicology 2021 3 663372 10.3389/ftox.2021.663372 35295127
    [Google Scholar]
  69. Wang C. Zheng S. Zou X. Sun X. Zhang H. A Near-infrared Persistent Luminescence Imaging Technique for Tracking Nanoparticles in Zebrafish (Danio rerio). Bull. Environ. Contam. Toxicol. 2019 103 2 267 273 10.1007/s00128‑019‑02642‑w 31172221
    [Google Scholar]
  70. Wu G. Gao L. Zhang S. Du D. Xue Y. Effects of copper oxide nanoparticles on reproductive system of zebrafish. Ecotoxicol. Environ. Saf. 2023 263 115252 10.1016/j.ecoenv.2023.115252 37467561
    [Google Scholar]
  71. Spengler A. Impact of TiO2 nanoparticles on the aquatic environment:Investigation of cyanobacterial toxin adsorption and oxidative stress mediated nanotoxicity towards the submerged aquatic macrophyte Hydrilla verticillata Thesis, Technische Universität Berlin, 2019.
    [Google Scholar]
  72. Azimzada A. Transformations of silver nanoparticles in wastewater effluents: links to Ag bioavailability. Environ. Sci.: Nano 2017 4 1339 1349 10.1039/C7EN00093F
    [Google Scholar]
  73. Mahaye N. Stability of gold and cerium oxide nanoparticles in aqueous environments, and their effects on Pseudokirchneriella subcapitata and Salvinia minima. PhD Thesis, University of Pretoria, 2019.
    [Google Scholar]
  74. Fırat Ö. Erol R. Fırat Ö. Effects of Individual and Co-exposure of Copper Oxide Nanoparticles and Copper Sulphate on Nile Tilapia Oreochromis niloticus: Nanoparticles Enhance Pesticide Biochemical Toxicity. Acta Chim. Slov. 2022 69 1 81 90 35298018
    [Google Scholar]
  75. Cetinic K.A. The Effects of Silver Nanoparticles on Lower Trophic Levels in Aquatic Ecosystems. PhD thesis, Trent University, 2019.
    [Google Scholar]
  76. Doyle J.J. Ingestion, Depuration, and Potential Toxicity of Titanium Dioxide Nanoparticles in the Blue Mussel, Mytilus edulis, and the Eastern Oyster, Crassostrea virginica. Doctoral Dissertations, Digital commons, 2014.
    [Google Scholar]
  77. García-Gómez C. García S. Obrador A. Almendros P. González D. Fernández M.D. Effect of ageing of bare and coated nanoparticles of zinc oxide applied to soil on the Zn behaviour and toxicity to fish cells due to transfer from soil to water bodies. Sci. Total Environ. 2020 706 135713 10.1016/j.scitotenv.2019.135713 31791765
    [Google Scholar]
  78. Song L. Towards understanding the toxicity of copper nanoparticles in aquatic ecosystems. Phd thesis, Leiden University, 2015.
    [Google Scholar]
  79. Rippner D.A. Margenot A.J. Fakra S.C. Aguilera L.A. Li C. Sohng J. Dynarski K.A. Waterhouse H. McElroy N. Wade J. Hind S.R. Green P.G. Peak D. McElrone A.J. Chen N. Feng R. Scow K.M. Parikh S.J. Microbial response to copper oxide nanoparticles in soils is controlled by land use rather than copper fate. Environ. Sci. Nano 2021 8 12 3560 3576 10.1039/D1EN00656H
    [Google Scholar]
  80. Bergami E. Corsi I. Uptake Disposition and Toxicity of Polystyrene Nanoparticles in Sea Urchin Embryos (“Paracentrotus Lividus”); 2013.
    [Google Scholar]
  81. Khan G.B. Akhtar N. Khan M.F. Ullah Z. Tabassum S. Tedesse Z. Toxicological impact of Zinc Nano Particles on tilapia fish (Oreochromis mossambicus). Saudi J. Biol. Sci. 2022 29 2 1221 1226 10.1016/j.sjbs.2021.09.044 35197788
    [Google Scholar]
  82. Abdel-Latif H.M.R. Shukry M. El Euony O.I. Mohamed Soliman M. Noreldin A.E. Ghetas H.A. Dawood M.A.O. Khallaf M.A. Hazardous Effects of SiO Nanoparticles on Liver and Kidney Functions, Histopathology Characteristics, and Transcriptomic Responses in Nile Tilapia () Juveniles. Biology (Basel) 2021 10 3 10.3390/biology10030183 33801563
    [Google Scholar]
  83. Temiz Ö. Kargın F. Toxicological Impacts on Antioxidant Responses, Stress Protein, and Genotoxicity Parameters of Aluminum Oxide Nanoparticles in the Liver of Oreochromis niloticus. Biol. Trace Elem. Res. 2022 200 3 1339 1346 10.1007/s12011‑021‑02723‑0 34021468
    [Google Scholar]
  84. Correia A.T. Rebelo D. Marques J. Nunes B. Effects of the chronic exposure to cerium dioxide nanoparticles in Oncorhynchus mykiss: Assessment of oxidative stress, neurotoxicity and histological alterations. Environ. Toxicol. Pharmacol. 2019 68 27 36 10.1016/j.etap.2019.02.012 30870693
    [Google Scholar]
  85. Stern S.T. Adiseshaiah P.P. Crist R.M. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part. Fibre Toxicol. 2012 9 1 20 10.1186/1743‑8977‑9‑20 22697169
    [Google Scholar]
  86. Chen G.H. Song C.C. Zhao T. Hogstrand C. Wei X.L. Lv W.H. Song Y.F. Luo Z. Mitochondria-Dependent Oxidative Stress Mediates ZnO Nanoparticle (ZnO NP)-Induced Mitophagy and Lipotoxicity in Freshwater Teleost Fish. Environ. Sci. Technol. 2022 56 4 2407 2420 10.1021/acs.est.1c07198 35107266
    [Google Scholar]
  87. Lee Y.L. Shih Y.S. Chen Z.Y. Cheng F.Y. Lu J.Y. Wu Y.H. Wang Y.J. Toxic Effects and Mechanisms of Silver and Zinc Oxide Nanoparticles on Zebrafish Embryos in Aquatic Ecosystems. Nanomaterials (Basel) 2022 12 4 717 10.3390/nano12040717 35215043
    [Google Scholar]
  88. Marano F. Hussain S. Rodrigues-Lima F. Baeza-Squiban A. Boland S. Nanoparticles: molecular targets and cell signalling. Arch. Toxicol. 2011 85 7 733 741 10.1007/s00204‑010‑0546‑4 20502881
    [Google Scholar]
  89. Napolitano G. Fasciolo G. Muscari Tomajoli M.T. Venditti P. Changes in the Mitochondria in the Aging Process—Can α-Tocopherol Affect Them? Int. J. Mol. Sci. 2023 24 15 12453 10.3390/ijms241512453 37569829
    [Google Scholar]
  90. Rai P.K. Sonne C. Brown R.J.C. Younis S.A. Kim K.H. Adsorption of environmental contaminants on micro- and nano-scale plastic polymers and the influence of weathering processes on their adsorptive attributes. J. Hazard. Mater. 2022 427 127903 10.1016/j.jhazmat.2021.127903 34895806
    [Google Scholar]
  91. Napolitano G. Fasciolo G. Venditti P. Mitochondrial Management of Reactive Oxygen Species. Antioxidants 2021 10 11 1824 10.3390/antiox10111824 34829696
    [Google Scholar]
  92. Balk J. Leaver C.J. McCabe P.F. Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat‐induced programmed cell death in cucumber plants. FEBS Lett. 1999 463 1-2 151 154 10.1016/S0014‑5793(99)01611‑7 10601657
    [Google Scholar]
  93. Tang Q. Li T. Chen K. Deng X. Zhang Q. Tang H. Shi Z. Zhu T. Zhu J. PS-NPs Induced Neurotoxic Effects in SHSY-5Y Cells via Autophagy Activation and Mitochondrial Dysfunction. Brain Sci. 2022 12 7 952 10.3390/brainsci12070952 35884757
    [Google Scholar]
  94. Li Y. Liu Z. Li M. Jiang Q. Wu D. Huang Y. Jiao Y. Zhang M. Zhao Y. Effects of nanoplastics on antioxidant and immune enzyme activities and related gene expression in juvenile Macrobrachium nipponense. J. Hazard. Mater. 2020 398 122990 10.1016/j.jhazmat.2020.122990 32516731
    [Google Scholar]
  95. Ferrante M.C. Monnolo A. Del Piano F. Mattace Raso G. Meli R. The Pressing Issue of Micro- and Nanoplastic Contamination: Profiling the Reproductive Alterations Mediated by Oxidative Stress. Antioxidants 2022 11 2 193 10.3390/antiox11020193 35204076
    [Google Scholar]
  96. Ibrahim D. Kishawy A.T.Y. Khater S.I. Khalifa E. Ismail T.A. Mohammed H.A. Elnahriry S.S. Tolba H.A. Sherief W.R.I.A. Farag M.F.M. El-Hamid M.I.A. Interactive effects of dietary quercetin nanoparticles on growth, flesh antioxidant capacity and transcription of cytokines and Aeromonas hydrophila quorum sensing orchestrating genes in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2021 119 478 489 10.1016/j.fsi.2021.10.034 34699975
    [Google Scholar]
  97. Malafaia G. Nóbrega R.H. Luz T.M. Araújo A.P.C. Shedding light on the impacts of gestational exposure to polystyrene nanoplastics on the reproductive performance of Poecilia reticulata female and on the biochemical response of embryos. J. Hazard. Mater. 2022 427 127873 10.1016/j.jhazmat.2021.127873 34863562
    [Google Scholar]
  98. Zhou W. Tong D. Tian D. Yu Y. Huang L. Zhang W. Yu Y. Lu L. Zhang X. Pan W. Shen J. Shi W. Liu G. Exposure to Polystyrene Nanoplastics Led to Learning and Memory Deficits in Zebrafish by Inducing Oxidative Damage and Aggravating Brain Aging. Adv. Healthc. Mater. 2023 12 29 2301799 10.1002/adhm.202301799 37611966
    [Google Scholar]
  99. Lin Y. Wang J. Dai H. Mao F. Chen Q. Yan H. Chen M. Salinity Moderated the Toxicity of Zinc Oxide Nanoparticles (ZnO NPs) towards the Early Development of Takifugu obscurus. Int. J. Environ. Res. Public Health 2023 20 4 3209 10.3390/ijerph20043209 36833904
    [Google Scholar]
  100. Fernández-Míguez M. Puvanendran V. Burgerhout E. Presa P. Tveiten H. Vorkamp K. Hansen Ø.J. Johansson G.S. Bogevik A.S. Effects of weathered polyethylene microplastic ingestion on sexual maturation, fecundity and egg quality in maturing broodstock Atlantic cod Gadus morhua. Environ. Pollut. 2023 320 121053 10.1016/j.envpol.2023.121053 36632969
    [Google Scholar]
  101. Bobori D. Dimitriadi A. Karasiali S. Tsoumaki-Tsouroufli P. Mastora M. Kastrinaki G. Feidantsis K. Printzi A. Koumoundouros G. Kaloyianni M. Common mechanisms activated in the tissues of aquatic and terrestrial animal models after TiO2 nanoparticles exposure. Environ. Int. 2020 138 105611 10.1016/j.envint.2020.105611 32126387
    [Google Scholar]
  102. Vevers W.F. Jha A.N. Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 2008 17 5 410 420 10.1007/s10646‑008‑0226‑9 18491228
    [Google Scholar]
  103. Rocco L. Santonastaso M. Mottola F. Costagliola D. Suero T. Pacifico S. Stingo V. Genotoxicity assessment of TiO2 nanoparticles in the teleost Danio rerio. Ecotoxicol. Environ. Saf. 2015 113 223 230 10.1016/j.ecoenv.2014.12.012 25506637
    [Google Scholar]
  104. Vicari T. Dagostim A.C. Klingelfus T. Galvan G.L. Monteiro P.S. da Silva Pereira L. Silva de Assis H.C. Cestari M.M. Co-Exposure to Titanium Dioxide Nanoparticles (NpTiO) and Lead at Environmentally Relevant Concentrations in the Neotropical Fish Species. Toxicol. Rep. 2018 5 1032 1043 10.1016/j.toxrep.2018.09.001 30386731
    [Google Scholar]
  105. Qualhato G. Rocha T.L. de Oliveira Lima E.C. Silva E. D. M.; Cardoso, J. R.; Koppe Grisolia, C.; de Saboia-Morais, S. M. T. Genotoxic and Mutagenic Assessment of Iron Oxide (maghemite-γ-FeO) Nanoparticle in the Guppy Poecilia Reticulata. Chemosphere 2017 183 305 314 10.1016/j.chemosphere.2017.05.061 28551207
    [Google Scholar]
  106. Zhao X. Ren X. Zhu R. Luo Z. Ren B. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos. Aquat. Toxicol. 2016 180 56 70 10.1016/j.aquatox.2016.09.013 27658222
    [Google Scholar]
  107. Amjad S. Sharma A.K. Serajuddin M. Toxicity assessment of cypermethrin nanoparticles in Channa punctatus: Behavioural response, micronuclei induction and enzyme alteration. Regul. Toxicol. Pharmacol. 2018 100 127 133 10.1016/j.yrtph.2018.10.004 30393047
    [Google Scholar]
  108. Sovová T. Boyle D. Sloman K.A. Vanegas Pérez C. Handy R.D. Impaired behavioural response to alarm substance in rainbow trout exposed to copper nanoparticles. Aquat. Toxicol. 2014 152 195 204 10.1016/j.aquatox.2014.04.003 24792150
    [Google Scholar]
  109. Faria M. Navas J.M. Soares A.M.V.M. Barata C. Barata C. Oxidative stress effects of titanium dioxide nanoparticle aggregates in zebrafish embryos. Sci. Total Environ. 2014 470-471 379 389 10.1016/j.scitotenv.2013.09.055 24140700
    [Google Scholar]
  110. Kaloyianni M. Dimitriadi A. Ovezik M. Stamkopoulou D. Feidantsis K. Kastrinaki G. Gallios G. Tsiaoussis I. Koumoundouros G. Bobori D. Magnetite nanoparticles effects on adverse responses of aquatic and terrestrial animal models. J. Hazard. Mater. 2020 383 121204 10.1016/j.jhazmat.2019.121204 31541956
    [Google Scholar]
  111. Pushpa K. Gireesh-Babu P. Rajendran K.V. Purushothaman C.S. Dasgupta S. Makesh M. Molecular cloning, sequencing and tissue-level expression of complement C3 of Labeo rohita (Hamilton, 1822). Fish Shellfish Immunol. 2014 40 1 319 330 10.1016/j.fsi.2014.07.008 25038278
    [Google Scholar]
  112. Zhao X. Wang S. Wu Y. You H. Lv L. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat. Toxicol. 2013 136-137 49 59 10.1016/j.aquatox.2013.03.019 23643724
    [Google Scholar]
  113. Kansara K. Patel P. Shah D. Shukla R.K. Singh S. Kumar A. Dhawan A. TiO 2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environ. Mol. Mutagen. 2015 56 2 204 217 10.1002/em.21925 25524809
    [Google Scholar]
  114. Bhabra G. Sood A. Fisher B. Cartwright L. Saunders M. Evans W.H. Surprenant A. Lopez-Castejon G. Mann S. Davis S.A. Hails L.A. Ingham E. Verkade P. Lane J. Heesom K. Newson R. Case C.P. Nanoparticles can cause DNA damage across a cellular barrier. Nat. Nanotechnol. 2009 4 12 876 883 10.1038/nnano.2009.313 19893513
    [Google Scholar]
  115. Brun N.R. van Hage P. Hunting E.R. Haramis A.P.G. Vink S.C. Vijver M.G. Schaaf M.J.M. Tudorache C. Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioural changes in larval zebrafish. Commun. Biol. 2019 2 1 382 10.1038/s42003‑019‑0629‑6 31646185
    [Google Scholar]
  116. Li Y. Liu Z. Yang Y. Jiang Q. Wu D. Huang Y. Jiao Y. Chen Q. Huang Y. Zhao Y. Nanoplastics on energy metabolism in the oriental river prawn (Macrobrachium Nipponense). Environ. Pollut. 2021 268 Pt A 115890
    [Google Scholar]
  117. Tallec K. Paul-Pont I. Petton B. Alunno-Bruscia M. Bourdon C. Bernardini I. Boulais M. Lambert C. Quere C. Bideau A. Le Goic N. Cassone A-L. Le Grand F. Fabioux C. Soudant P. Huvet A. Amino-Nanopolystyrene Exposures of Oyster () Embryos Induced No Apparent Intergenerational Effects. Nanotoxicology 2021 15 4 477 493 10.1080/17435390.2021.1879963 33555961
    [Google Scholar]
  118. Trevisan R. Uzochukwu D. Di Giulio R.T. PAH SORPTION TO NANOPLASTICS AND THE TROJAN HORSE EFFECT AS DRIVERS OF MITOCHONDRIAL TOXICITY AND PAH LOCALIZATION IN ZEBRAFISH. Front. Environ. Sci. 2020 8 78 10.3389/fenvs.2020.00078 34322495
    [Google Scholar]
  119. Trevisan R. Voy C. Chen S. Di Giulio R.T. Nanoplastics Decrease the Toxicity of a Complex PAH Mixture but Impair Mitochondrial Energy Production in Developing Zebrafish. Environ. Sci. Technol. 2019 53 14 8405 8415 10.1021/acs.est.9b02003 31259535
    [Google Scholar]
  120. Mattsson K. Ekvall M.T. Hansson L.A. Linse S. Malmendal A. Cedervall T. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles. Environ. Sci. Technol. 2015 49 1 553 561 10.1021/es5053655 25380515
    [Google Scholar]
  121. Greven A.C. Polycarbonate and polystyrene nanoplastic particles act as stressors to the innate immune system of fathead minnow (Pimephales promelas). Environ. Toxicol. Chem. 2016 35 12 3093 3100
    [Google Scholar]
  122. Cedervall T. Hansson L.A. Lard M. Frohm B. Linse S. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS One 2012 7 2 e32254 10.1371/journal.pone.0032254 22384193
    [Google Scholar]
  123. Lu Y. Zhang Y. Deng Y. Jiang W. Zhao Y. Geng J. Ding L. Ren H. Response to Comment on “Uptake and Accumulation of Polystyrene Microplastics in Zebrafish ( Danio rerio ) and Toxic Effects in Liver”. Environ. Sci. Technol. 2016 50 22 12523 12524 10.1021/acs.est.6b04379 27808508
    [Google Scholar]
  124. Chae Y. Kim D. Kim S.W. An Y.J. Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain. Sci. Rep. 2018 8 1 284 10.1038/s41598‑017‑18849‑y 29321604
    [Google Scholar]
  125. Pitt J.A. Kozal J.S. Jayasundara N. Massarsky A. Trevisan R. Geitner N. Wiesner M. Levin E.D. Di Giulio R.T. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio). Aquat. Toxicol. 2018 194 185 194 10.1016/j.aquatox.2017.11.017 29197232
    [Google Scholar]
  126. Chen Q. Gundlach M. Yang S. Jiang J. Velki M. Yin D. Hollert H. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. Sci. Total Environ. 2017 584-585 1022 1031 10.1016/j.scitotenv.2017.01.156 28185727
    [Google Scholar]
  127. Blom S. Andersson T.B. Förlin L. Effects of food deprivation and handling stress on head kidney 17α-hydroxyprogesterone 21-hydroxylase activity, plasma cortisol and the activities of liver detoxification enzymes in rainbow trout. Aquat. Toxicol. 2000 48 2-3 265 274 10.1016/S0166‑445X(99)00031‑4 10686331
    [Google Scholar]
  128. De Marco R.J. Groneberg A.H. Yeh C-M. Treviño M. Ryu S. The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development. Front. Behav. Neurosci. 2014 8 367 10.3389/fnbeh.2014.00367 25368561
    [Google Scholar]
  129. Wilkinson P.O. Goodyer I.M. Childhood adversity and allostatic overload of the hypothalamic–pituitary–adrenal axis: A vulnerability model for depressive disorders. Dev. Psychopathol. 2011 23 4 1017 1037 10.1017/S0954579411000472 22018079
    [Google Scholar]
  130. Hartig E.I. Zhu S. King B.L. Coffman J.A. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation. Biol. Open 2016 5 8 1134 1141 10.1242/bio.020065 27444789
    [Google Scholar]
  131. Wendelaar Bonga S.E. The stress response in fish. Physiol. Rev. 1997 77 3 591 625 10.1152/physrev.1997.77.3.591 9234959
    [Google Scholar]
  132. Steenbergen P.J. Bardine N. Sharif F. Kinetics of glucocorticoid exposure in developing zebrafish: A tracer study. Chemosphere 2017 183 147 155 10.1016/j.chemosphere.2017.05.059 28544900
    [Google Scholar]
  133. Elo B. Villano C.M. Govorko D. White L.A. Larval zebrafish as a model for glucose metabolism: expression of phosphoenolpyruvate carboxykinase as a marker for exposure to anti-diabetic compounds. J. Mol. Endocrinol. 2007 38 4 433 440 10.1677/JME‑06‑0037 17446233
    [Google Scholar]
  134. Win-Shwe T.T. Fujimaki H. Nanoparticles and Neurotoxicity. Int. J. Mol. Sci. 2011 12 9 6267 6280 10.3390/ijms12096267 22016657
    [Google Scholar]
  135. Oszlánczi G. Vezér T. Sárközi L. Horváth E. Szabó A. Horváth E. Kónya Z. Papp A. Metal deposition and functional neurotoxicity in rats after 3–6 weeks nasal exposure by two physicochemical forms of manganese. Environ. Toxicol. Pharmacol. 2010 30 2 121 126 10.1016/j.etap.2010.04.006 21787641
    [Google Scholar]
  136. Borisova T. Nervous System Injury in Response to Contact With Environmental, Engineered and Planetary Micro- and Nano-Sized Particles. Front. Physiol. 2018 9 728 10.3389/fphys.2018.00728 29997517
    [Google Scholar]
  137. Boyes W.K. van Thriel C. Neurotoxicology of Nanomaterials. Chem. Res. Toxicol. 2020 33 5 1121 1144 10.1021/acs.chemrestox.0c00050 32233399
    [Google Scholar]
  138. Truong L. Saili K.S. Miller J.M. Hutchison J.E. Tanguay R.L. Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2012 155 2 269 274 10.1016/j.cbpc.2011.09.006 21946249
    [Google Scholar]
  139. Dedeh A. Ciutat A. Treguer-Delapierre M. Bourdineaud J.P. Impact of gold nanoparticles on zebrafish exposed to a spiked sediment. Nanotoxicology 2015 9 1 71 80 10.3109/17435390.2014.889238 24559428
    [Google Scholar]
  140. Ferreira G.K. Cardoso E. Vuolo F.S. Galant L.S. Michels M. Gonçalves C.L. Rezin G.T. Dal-Pizzol F. Benavides R. Alonso-Núñez G. Andrade V.M. Streck E.L. da Silva Paula M.M. Effect of acute and long-term administration of gold nanoparticles on biochemical parameters in rat brain. Mater. Sci. Eng. C 2017 79 748 755 10.1016/j.msec.2017.05.110 28629076
    [Google Scholar]
  141. Miranda R.R. Damaso da Silveira A.L.R. de Jesus I.P. Grötzner S.R. Voigt C.L. Campos S.X. Garcia J.R.E. Randi M.A.F. Ribeiro C.A.O. Filipak Neto F. Effects of realistic concentrations of TiO2 and ZnO nanoparticles in Prochilodus lineatus juvenile fish. Environ. Sci. Pollut. Res. Int. 2016 23 6 5179 5188 10.1007/s11356‑015‑5732‑8 26555884
    [Google Scholar]
  142. Sheng L. Wang L. Su M. Zhao X. Hu R. Yu X. Hong J. Liu D. Xu B. Zhu Y. Wang H. Hong F. Mechanism of TiO 2 nanoparticle‐induced neurotoxicity in zebrafish (Danio rerio ). Environ. Toxicol. 2016 31 2 163 175 10.1002/tox.22031 25059219
    [Google Scholar]
  143. Hu Q. Guo F. Zhao F. Fu Z. Effects of titanium dioxide nanoparticles exposure on parkinsonism in zebrafish larvae and PC12. Chemosphere 2017 173 373 379 10.1016/j.chemosphere.2017.01.063 28129614
    [Google Scholar]
  144. Carmo T.L.L. Siqueira P.R. Azevedo V.C. Tavares D. Pesenti E.C. Cestari M.M. Martinez C.B.R. Fernandes M.N. Overview of the toxic effects of titanium dioxide nanoparticles in blood, liver, muscles, and brain of a Neotropical detritivorous fish. Environ. Toxicol. 2019 34 4 457 468 10.1002/tox.22699 30604913
    [Google Scholar]
  145. Mattsson K. Johnson E.V. Malmendal A. Linse S. Hansson L.A. Cedervall T. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci. Rep. 2017 7 1 11452 10.1038/s41598‑017‑10813‑0 28904346
    [Google Scholar]
  146. Chen Q. Yin D. Jia Y. Schiwy S. Legradi J. Yang S. Hollert H. Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish. Sci. Total Environ. 2017 609 1312 1321 10.1016/j.scitotenv.2017.07.144 28793400
    [Google Scholar]
  147. Hu M. Palić D. Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. Redox Biol. 2020 37 101620 10.1016/j.redox.2020.101620 32863185
    [Google Scholar]
  148. Brandts I. Teles M. Gonçalves A.P. Barreto A. Franco-Martinez L. Tvarijonaviciute A. Martins M.A. Soares A.M.V.M. Tort L. Oliveira M. Effects of nanoplastics on Mytilus galloprovincialis after individual and combined exposure with carbamazepine. Sci. Total Environ. 2018 643 775 784 10.1016/j.scitotenv.2018.06.257 29958167
    [Google Scholar]
  149. Silva M.S.S. Oliveira M. Valente P. Figueira E. Martins M. Pires A. Behavior and biochemical responses of the polychaeta Hediste diversicolor to polystyrene nanoplastics. Sci. Total Environ. 2020 707 134434 10.1016/j.scitotenv.2019.134434 31863996
    [Google Scholar]
  150. Varó I. Perini A. Torreblanca A. Garcia Y. Bergami E. Vannuccini M.L. Corsi I. Time-dependent effects of polystyrene nanoparticles in brine shrimp Artemia franciscana at physiological, biochemical and molecular levels. Sci. Total Environ. 2019 675 570 580 10.1016/j.scitotenv.2019.04.157 31030162
    [Google Scholar]
  151. Ding J. Zhang S. Razanajatovo R.M. Zou H. Zhu W. Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus). Environ. Pollut. 2018 238 1 9 10.1016/j.envpol.2018.03.001 29529477
    [Google Scholar]
  152. Jin Y. Xia J. Pan Z. Yang J. Wang W. Fu Z. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ. Pollut. 2018 235 322 329 10.1016/j.envpol.2017.12.088 29304465
    [Google Scholar]
  153. Brandts I. Balasch J.C. Gonçalves A.P. Martins M.A. Pereira M.L. Tvarijonaviciute A. Teles M. Oliveira M. Immuno-modulatory effects of nanoplastics and humic acids in the European seabass (Dicentrarchus labrax). J. Hazard. Mater. 2021 414 125562 10.1016/j.jhazmat.2021.125562 34030413
    [Google Scholar]
  154. Jacob H. Besson M. Swarzenski P.W. Lecchini D. Metian M. Effects of Virgin Micro- and Nanoplastics on Fish: Trends, Meta-Analysis, and Perspectives. Environ. Sci. Technol. 2020 54 8 4733 4745 10.1021/acs.est.9b05995 32202766
    [Google Scholar]
  155. Abdel-Latif H.M.R. Dawood M.A.O. Mahmoud S.F. Shukry M. Noreldin A.E. Ghetas H.A. Khallaf M.A. Copper Oxide Nanoparticles Alter Serum Biochemical Indices, Induce Histopathological Alterations, and Modulate Transcription of Cytokines, and Oxidative Stress Genes in. Animals (Basel) 2021 11 3 10.3390/ani11030652 33804566
    [Google Scholar]
  156. Aksakal F.I. Ciltas A. Impact of copper oxide nanoparticles (CuO NPs) exposure on embryo development and expression of genes related to the innate immune system of zebrafish (Danio rerio). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019 223 78 87 10.1016/j.cbpc.2019.05.016 31158555
    [Google Scholar]
  157. Wang T. Long X. Liu Z. Cheng Y. Yan S. Effect of copper nanoparticles and copper sulphate on oxidation stress, cell apoptosis and immune responses in the intestines of juvenile Epinephelus coioides. Fish Shellfish Immunol. 2015 44 2 674 682 10.1016/j.fsi.2015.03.030 25839971
    [Google Scholar]
  158. Teles M. Reyes-López F.E. Fierro-Castro C. Tort L. Soares A.M.V.M. Oliveira M. Modulation of immune genes mRNA levels in mucosal tissues and DNA damage in red blood cells of Sparus aurata by gold nanoparticles. Mar. Pollut. Bull. 2018 133 428 435 10.1016/j.marpolbul.2018.06.007 30041332
    [Google Scholar]
  159. Goetz F. Planas J.V. MacKenzie S. Tumor necrosis factors. Dev. Comp. Immunol. 2004 28 5 487 497 10.1016/j.dci.2003.09.008 15062645
    [Google Scholar]
  160. Hardie L.J. Laing K.J. Daniels G.D. Grabowski P.S. Cunningham C. Secombes C.J. ISOLATION OF THE FIRST PISCINE TRANSFORMING GROWTH FACTOR β GENE: ANALYSIS REVEALS TISSUE SPECIFIC EXPRESSION AND A POTENTIAL REGULATORY SEQUENCE IN RAINBOW TROUT (ONCORHYNCHUS MYKISS). Cytokine 1998 10 8 555 563 10.1006/cyto.1997.0334 9722928
    [Google Scholar]
  161. Savan R. Sakai M. Genomics of fish cytokines. Comp. Biochem. Physiol. Part D Genomics Proteomics 2006 1 1 89 101 10.1016/j.cbd.2005.08.005 20483237
    [Google Scholar]
  162. Reyes-Cerpa S. Reyes-López F. Toro-Ascuy D. Montero R. Maisey K. Acuña-Castillo C. Sunyer J.O. Parra D. Sandino A.M. Imarai M. Induction of anti-inflammatory cytokine expression by IPNV in persistent infection. Fish Shellfish Immunol. 2014 41 2 172 182 10.1016/j.fsi.2014.08.029 25193394
    [Google Scholar]
  163. Zou J. Secombes C. The Function of Fish Cytokines. Biology (Basel) 2016 5 2 23 10.3390/biology5020023 27231948
    [Google Scholar]
  164. Jovanović B. Anastasova L. Rowe E.W. Zhang Y. Clapp A.R. Palić D. Effects of Nanosized Titanium Dioxide on Innate Immune System of Fathead Minnow Effects of nanosized titanium dioxide on innate immune system of fathead minnow (Pimephales promelas Rafinesque, 1820). Ecotoxicol. Environ. Saf. 2011 74 4 675 683 10.1016/j.ecoenv.2010.10.017 21035856
    [Google Scholar]
  165. Alboloushi A. Impact of copper nanoparticles on inactivation and toxicity pathway on model bacteria. Thesis, Arizona State University, 2012.
    [Google Scholar]
  166. La Grave V.L. Environmental Applications and Implications of Iron Based Nanoparticles: Arsenic Removal From Contaminated Water Effluents and Toxicity To Aquatic Organisms. 2014
    [Google Scholar]
  167. Mohanty K. Saran S. Kumara Swamy B.E. Sharma S.C. Graphene and its derivatives. Water/Wastewater Treatment and Other Environmental Applications Springer Nature 2023
    [Google Scholar]
  168. Ha Y. Bioavailability of fullerene nanoparticles : factors affecting membrane partitioning and cellular uptake. 2015 Available from: https://www.semanticscholar.org/paper/Bioavailability-of-fullerene-nanoparticles-%3A-and-Ha/eeaef694afd8654c195aafdb329388849c5cf345(accessed on 23-10-2024)
    [Google Scholar]
  169. Book F. Backhaus T. Aquatic ecotoxicity of manufactured silica nanoparticles: A systematic review and meta-analysis. Sci. Total Environ. 2022 806 Pt 4 150893 10.1016/j.scitotenv.2021.150893 34653448
    [Google Scholar]
  170. Sielska A. Cembrowska-Lech D. Kowalska-Góralska M. Czerniawski R. Krepski T. Skuza L. Effects of copper nanoparticles on oxidative stress genes and their enzyme activities in common carp ( Cyprinus carpio ). Eur. Zool. J. 2024 91 1 354 365 10.1080/24750263.2024.2332290
    [Google Scholar]
  171. Wu Y. Zhou Q. Silver nanoparticles cause oxidative damage and histological changes in medaka ( Oryzias latipes ) after 14 days of exposure. Environ. Toxicol. Chem. 2013 32 1 165 173 10.1002/etc.2038 23097154
    [Google Scholar]
  172. Lakota S. Raszka A. Utracki T. Chmiel Z. Toxic Effect of Deltamethrin and Cypermethrin on Selected Aquatic Organisms. 1987
    [Google Scholar]
  173. Zeumer R. Hermsen L. Kaegi R. Kühr S. Knopf B. Schlechtriem C. Bioavailability of silver from wastewater and planktonic food borne silver nanoparticles in the rainbow trout Oncorhynchus mykiss. Sci. Total Environ. 2020 706 135695 10.1016/j.scitotenv.2019.135695 31940723
    [Google Scholar]
  174. Adhikari S. Sarkar B. Chatterjee A. Mahapatra C.T. Ayyappan S. Effects of cypermethrin and carbofuran on certain hematological parameters and prediction of their recovery in a freshwater teleost, Labeo rohita (Hamilton). Ecotoxicol. Environ. Saf. 2004 58 2 220 226 10.1016/j.ecoenv.2003.12.003 15157576
    [Google Scholar]
  175. Vali S. Mohammadi G. Tavabe K.R. Moghadas F. Naserabad S.S. The effects of silver nanoparticles (Ag-NPs) sublethal concentrations on common carp (Cyprinus carpio): Bioaccumulation, hematology, serum biochemistry and immunology, antioxidant enzymes, and skin mucosal responses. Ecotoxicol. Environ. Saf. 2020 194 110353 10.1016/j.ecoenv.2020.110353 32146193
    [Google Scholar]
  176. Manikandan A. Saravanan A. Antony S.A. Bououdina M. One-Pot Low Temperature Synthesis and Characterization Studies of Nanocrystalline α-Fe<SUB>2</SUB>O<SUB>3</SUB> Based Dye Sensitized Solar Cells. J. Nanosci. Nanotechnol. 2015 15 6 4358 4366 10.1166/jnn.2015.9804 26369049
    [Google Scholar]
  177. Abdel-Khalek A.A. Al-Quraishy S. Abdel-Gaber R. Evaluation of Nephrotoxicity in Oreochromis niloticus After Exposure to Aluminum Oxide Nanoparticles: Exposure and Recovery Study. Bull. Environ. Contam. Toxicol. 2022 108 2 292 299 10.1007/s00128‑021‑03335‑z 34331072
    [Google Scholar]
  178. Remya S. Basu S. Venkateshwarlu G. Mohan C.O. Quality of shrimp analogue product as affected by addition of modified potato starch. J. Food Sci. Technol. 2015 52 7 4432 4440 10.1007/s13197‑014‑1494‑4 26139909
    [Google Scholar]
  179. Munir T. Latif M. Mahmood A. Malik A. Shafiq F. Influence of IP-injected ZnO-nanoparticles in Catla catla fish: hematological and serological profile. Naunyn Schmiedebergs Arch. Pharmacol. 2020 393 12 2453 2461 10.1007/s00210‑020‑01955‑6 32725284
    [Google Scholar]
  180. Ibrahim A.T.A. Banaee M. Sureda A. Genotoxicity, oxidative stress, and biochemical biomarkers of exposure to green synthesized cadmium nanoparticles in Oreochromis niloticus (L.). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021 242 108942 10.1016/j.cbpc.2020.108942 33220515
    [Google Scholar]
  181. Lee J. Kim J. Shin Y. Ryu J. Eom I. Lee J.S. Kim Y. Kim P. Choi K. Lee B. Serum and ultrastructure responses of common carp (Cyprinus carpio L.) during long-term exposure to zinc oxide nanoparticles. Ecotoxicol. Environ. Saf. 2014 104 9 17 10.1016/j.ecoenv.2014.01.040 24632117
    [Google Scholar]
  182. Chaudhary S. Chauhan P. Kumar R. Bhasin K.K. Toxicological responses of surfactant functionalized selenium nanoparticles: A quantitative multi-assay approach. Sci. Total Environ. 2018 643 1265 1277 10.1016/j.scitotenv.2018.06.296 30189543
    [Google Scholar]
  183. Kumar N. Krishnani K.K. Singh N.P. Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. Environ. Sci. Pollut. Res. Int. 2018 25 9 8914 8927 10.1007/s11356‑017‑1165‑x 29332272
    [Google Scholar]
  184. Kakakhel M.A. Bibi N. Mahboub H.H. Wu F. Sajjad W. Din S.Z.U. Hefny A.A. Wang W. Influence of biosynthesized nanoparticles exposure on mortality, residual deposition, and intestinal bacterial dysbiosis in Cyprinus carpio. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023 263 109473 10.1016/j.cbpc.2022.109473 36174907
    [Google Scholar]
  185. Purushothaman S. Raghunath A. Dhakshinamoorthy V. Panneerselvam L. Perumal E. Acute exposure to titanium dioxide (TiO 2 ) induces oxidative stress in zebrafish gill tissues. Toxicol. Environ. Chem. 2014 96 6 890 905 10.1080/02772248.2014.987511
    [Google Scholar]
  186. Kumar N. Gupta S.K. Chandan N.K. Bhushan S. Singh D.K. Kumar P. Kumar P. Wakchaure G.C. Singh N.P. Mitigation potential of selenium nanoparticles and riboflavin against arsenic and elevated temperature stress in Pangasianodon hypophthalmus. Sci. Rep. 2020 10 1 17883 10.1038/s41598‑020‑74911‑2 33087779
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812325515241121053008
Loading
/content/journals/nanoasi/10.2174/0122106812325515241121053008
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test