Skip to content
2000
image of Recent Trends in Nanotechnological Approach in Targeting Selenium
Nanoparticles for the Treatment of Colorectal Cancer

Abstract

The human population ranks third in the occurrence of colorectal cancer (CRC). Cancer of the colon typically begins as a normal polyp on the colon or rectum's inner wall but can progress to cancer if left untreated. Early detection of CRC may be crucial in preventative and therapeutic measures to lower the death rate, even if there are few treatment options for CRC. Several molecular markers are present in CRC-affected tissues, which might provide an entirely new perspective from which to approach the development of more effective treatments. Nanotechnology encompasses a vast range of novel and remarkable nanoparticles that have tremendous potential for use in medical diagnosis and treatment. Dendrimers, silica nanoparticles, carbon nanotubes, liposomes, and gold nanoparticles are only a few examples of the nanomaterials and nanoformulations that have the potential to be utilised for diagnostic and targeted anticancer drug delivery in colorectal cancer. The bioavailability, biocompatibility, and minimal toxicity of selenium nanoparticles (SeNPs) have recently attracted the curiosity of numerous researchers. Because of their increased bioactivity, selenium nanoparticles are finding widespread use in a wide range of biomedical fields. Biological, chemical, and physical processes are all capable of producing selenium nanoparticles. But SeNPs made sustainably are better to human tissues and organs. This review paper covers a lot of ground when it comes to colorectal cancer, covering the many stages of the disease, new diagnostic tools, and treatment methods that make use of nano-formulations. The biomedical uses and synthesis of SeNPs are covered in this review.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812342216241120051723
2024-11-26
2025-01-27
Loading full text...

Full text loading...

References

  1. Spaander M.C.W. Zauber A.G. Syngal S. Blaser M.J. Sung J.J. You Y.N. Kuipers E.J. Young-onset colorectal cancer. Nat. Rev. Dis. Primers 2023 9 1 21 10.1038/s41572‑023‑00432‑7 37105987
    [Google Scholar]
  2. Xi Y. Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021 14 10 101174 10.1016/j.tranon.2021.101174 34243011
    [Google Scholar]
  3. Wei Q.Y. Xu Y.M. Lau A.T.Y. Recent progress of nanocarrier-based therapy for solid malignancies. Cancers (Basel) 2020 12 10 2783 10.3390/cancers12102783 32998391
    [Google Scholar]
  4. Chang Y. Ou Q. Zhou X. Nie K. Yan H. Liu J. Li J. Zhang S. Mapping the intellectual structure and landscape of nano-drug delivery systems in colorectal cancer. Front. Pharmacol. 2023 14 1258937 10.3389/fphar.2023.1258937 37781707
    [Google Scholar]
  5. Brar B. Ranjan K. Palria A. Kumar R. Ghosh M. Sihag S. Minakshi P. Nanotechnology in colorectal cancer for precision diagnosis and therapy. Front. Nanotechnol. 2021 3 699266 10.3389/fnano.2021.699266
    [Google Scholar]
  6. Krasteva N. Georgieva M. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022 14 6 1213 10.3390/pharmaceutics14061213 35745786
    [Google Scholar]
  7. Gogoi P. Kaur G. Singh N.K. Nanotechnology for colorectal cancer detection and treatment. World J. Gastroenterol. 2022 28 46 6497 6511 10.3748/wjg.v28.i46.6497 36569271
    [Google Scholar]
  8. German-Cortés J. Vilar-Hernández M. Rafael D. Abasolo I. Andrade F. Solid lipid nanoparticles: Multitasking nano-carriers for cancer treatment. Pharmaceutics 2023 15 3 831 10.3390/pharmaceutics15030831 36986692
    [Google Scholar]
  9. Chehelgerdi M. Chehelgerdi M. Allela O.Q.B. Pecho R.D.C. Jayasankar N. Rao D.P. Thamaraikani T. Vasanthan M. Viktor P. Lakshmaiya N. Saadh M.J. Amajd A. Abo-Zaid M.A. Castillo-Acobo R.Y. Ismail A.H. Amin A.H. Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol. Cancer 2023 22 1 169 10.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  10. Yaqoob A.A. Ahmad H. Parveen T. Ahmad A. Oves M. Ismail I.M.I. Qari H.A. Umar K. Mohamad Ibrahim M.N. Recent advances in metal decorated nanomaterials and their various biological applications: A review. Front Chem. 2020 8 341 10.3389/fchem.2020.00341 32509720
    [Google Scholar]
  11. Truong L.B. Medina-Cruz D. Mostafavi E. Rabiee N. Selenium Nanomaterials to Combat Antimicrobial Resistance. Molecules 2021 26 12 3611 10.3390/molecules26123611 34204666
    [Google Scholar]
  12. Zhang T. Qi M. Wu Q. Xiang P. Tang D. Li Q. Recent research progress on the synthesis and biological effects of selenium nanoparticles. Front. Nutr. 2023 10 1183487 10.3389/fnut.2023.1183487 37260518
    [Google Scholar]
  13. Sans-Serramitjana E. Obreque M. Muñoz F. Zaror C. Mora M.L.L. Viñas M. Betancourt P. Antimicrobial activity of selenium nanoparticles (SeNPs) against potentially pathogenic oral microorganisms: A scoping review. Pharmaceutics 2023 15 9 2253 10.3390/pharmaceutics15092253 37765222
    [Google Scholar]
  14. Bisht N. Phalswal P. Khanna P.K. Selenium nanoparticles: a review on synthesis and biomedical applications. Mater. Adv. 2022 3 3 1415 1431 [Internet]. 10.1039/D1MA00639H
    [Google Scholar]
  15. Haggar F. Boushey R. Colorectal cancer epidemiology: Incidence, mortality, survival, and risk factors. Clin. Colon Rectal Surg. 2009 22 4 191 197 10.1055/s‑0029‑1242458 21037809
    [Google Scholar]
  16. Schroy P.C. Duhovic E. Chen C.A. Heeren T.C. Lopez W. Apodaca D.L. Wong J.B. Risk stratification and shared decision making for colorectal cancer screening. Med. Decis. Making 2016 36 4 526 535 10.1177/0272989X15625622 26785715
    [Google Scholar]
  17. Xynos I.D. Kavantzas N. Tsaousi S. Zacharakis M. Agrogiannis G. Kosmas C. Lazaris A. Sarantonis J. Sougioultzis S. Tzivras D. Polyzos A. Patsouris E.S. Tsavaris N. Factors influencing survival in stage IV colorectal cancer: The influence of DNA ploidy. ISRN Gastroenterol. 2013 2013 1 6 10.1155/2013/490578 23840958
    [Google Scholar]
  18. Lai Y. Wang C. Civan J.M. Palazzo J.P. Ye Z. Hyslop T. Lin J. Myers R.E. Li B. Jiang B. Sama A. Xing J. Yang H. Effects of cancer stage and treatment differences on racial disparities in survival from colon cancer: A United States population-based study. Gastroenterology 2016 150 5 1135 1146 10.1053/j.gastro.2016.01.030 26836586
    [Google Scholar]
  19. Pesta M. Kulda V. Narsanska A. Fichtl J. Topolcan O. May CTC technologies promote better cancer management? EPMA J. 2015 6 1 1 10.1186/s13167‑014‑0023‑x 25628770
    [Google Scholar]
  20. Young P.E. Womeldorph C.M. Johnson E.K. Maykel J.A. Brucher B. Stojadinovic A. Avital I. Nissan A. Steele S.R. Early detection of colorectal cancer recurrence in patients undergoing surgery with curative intent: Current status and challenges. J. Cancer 2014 5 4 262 271 10.7150/jca.7988 24790654
    [Google Scholar]
  21. Seifi Z. Khazaei M. Cheraghali D. Rezakhani L. Decellularized tissues as platforms for digestive system cancer models. Heliyon 2024 10 11 e31589 10.1016/j.heliyon.2024.e31589 38845895
    [Google Scholar]
  22. Alzahrani S. Al Doghaither H. Al-Ghafari A. General insight into cancer: An overview of colorectal cancer (Review). Mol. Clin. Oncol. 2021 15 6 271 10.3892/mco.2021.2433 34790355
    [Google Scholar]
  23. Balchen V. Simon K. Colorectal cancer development and advances in screening. Clin. Interv. Aging 2016 11 967 976 10.2147/CIA.S109285 27486317
    [Google Scholar]
  24. Tanaka T. Colorectal carcinogenesis: Review of human and experimental animal studies. J. Carcinog. 2009 8 1 5 10.4103/1477‑3163.49014 19332896
    [Google Scholar]
  25. Armaghany T. Wilson J.D. Chu Q. Mills G. Genetic alterations in colorectal cancer. Gastrointest. Cancer Res. 2012 5 1 19 27 22574233
    [Google Scholar]
  26. Zhu M. Niu G. Tang J. Elemental Se: Fundamentals and its optoelectronic applications. J. Mater. Chem. C Mater. Opt. Electron. Devices 2019 7 8 2199 2206 10.1039/C8TC05873C
    [Google Scholar]
  27. Ansari J.A. Malik J.A. Ahmed S. Manzoor M. Ahemad N. Anwar S. Recent advances in the therapeutic applications of selenium nanoparticles. Mol. Biol. Rep. 2024 51 1 688 10.1007/s11033‑024‑09598‑z 38796570
    [Google Scholar]
  28. Kang L. Jia Y. Wu Y. Liu H. Zhao D. Ju Y. Pan C. Mao J. Selenium nanoparticle and melatonin treatments improve melon seedling growth by regulating carbohydrate and polyamine. Int. J. Mol. Sci. 2024 25 14 7830 10.3390/ijms25147830 39063071
    [Google Scholar]
  29. Krinsky N.I. Beecher G.R. Burk R.F. Chan A.C. Erdman J.W. Jacob R.A. Jialal I. Kolonel L.N. Marshall J.R. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids Washington DC, USA The National Academies Press 2000
    [Google Scholar]
  30. Vahdati M. Tohidi Moghadam T. Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Sci. Rep. 2020 10 510 10.1038/s41598‑019‑57333‑7 31949299
    [Google Scholar]
  31. Forootanfar H. Adeli-Sardou M. Nikkhoo M. Mehrabani M. Amir-Heidari B. Shahverdi A.R. Shakibaie M. Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. J. Trace Elem. Med. Biol. 2014 28 1 75 79 10.1016/j.jtemb.2013.07.005 24074651
    [Google Scholar]
  32. Yu B. Zhang Y. Zheng W. Fan C. Chen T. Zero-dimensional hybrid organic–inorganic indium bromide with blue emission. Inorg. Chem. 2012 51 8956 8963 10.1021/ic301050v 22873404
    [Google Scholar]
  33. Hariharan H. Al-Harbi N. Karuppiah P. Rajaram S. Microbial synthesis of selinium nanocomposite using saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial infection. Chalcogenide Lett. 2012 9 12 509 515
    [Google Scholar]
  34. Shahverdi A.R. Fakhimi A. Mosavat G. Antifungal activity of selenium nanoparticles synthesized by Bacillus species Msh-1 against aspergillus fumigatus and Candida albicans. World Appl. Sci. J. 2010 10 918 922
    [Google Scholar]
  35. Beheshti N. Soflaei S. Shakibaie M. Yazdi M.H. Ghaffarifar F. Dalimi A. Shahverdi A.R. Leishmanicidal activities of novel methylseleno-imidocarbamates. J. Trace Elem. Med. Biol. 2013 27 203 207 10.1016/j.jtemb.2012.11.002 23219368
    [Google Scholar]
  36. Shakibaie M. Forootanfar H. Golkari Y. Mohammadi-Khorsand T. Shakibaie M.R. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J. Trace Elem. Med. Biol. 2015 29 235 241 10.1016/j.jtemb.2014.07.020 25175509
    [Google Scholar]
  37. Cong W. Bai R. Li Y-F. Wang L. Chen C. Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections. ACS Appl. Mater. Interfaces 2019 11 34725 34735 10.1021/acsami.9b12319 31479233
    [Google Scholar]
  38. Johnson J.A. Saboungi M.L. Thiyagarajan P. Csencsits R. Meisel D. J. Selenium nanoparticles: A small-angle neutron scattering study Phys. J. Phys. Chem. B 1999 103 1 59 63 10.1021/jp983229y
    [Google Scholar]
  39. Vidal O. Goff´e B. Arndt N. Metals for a low-carbon society. Nat. Geosci. 2013 6 894 896 10.1038/ngeo1993
    [Google Scholar]
  40. Venugopal S. Therapeutic potential of selenium nanoparticles. Front. Nanotechnol. 2022 4 1042338 10.3389/fnano.2022.1042338
    [Google Scholar]
  41. Fortina P. Kricka L.J. Graves D.J. Park J. Hyslop T. Tam F. Halas N. Surrey S. Waldman S.A. Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol. 2007 25 4 145 152 10.1016/j.tibtech.2007.02.005 17316852
    [Google Scholar]
  42. Lambe U. P M. Brar B. Guray M. Na I. Ranjan K. Bansal N. Khurana S.K. J M. Nanodiagnostics: A new frontier for veterinary and medical sciences. J. Exp. Biol. Agric. Sci. 2016 4 3S 307 320 10.18006/2016.4(3S).307.320
    [Google Scholar]
  43. Bose S. Panda A.K. Mukherjee S. Sa G. Curcumin and tumor immune-editing: Resurrecting the immune system. Cell Div. 2015 10 1 6 10.1186/s13008‑015‑0012‑z 26464579
    [Google Scholar]
  44. Yallapu M.M. Nagesh P.K.B. Jaggi M. Chauhan S.C. Therapeutic applications of curcumin nanoformulations. AAPS J. 2015 17 6 1341 1356 10.1208/s12248‑015‑9811‑z 26335307
    [Google Scholar]
  45. Shi Y. Shan S. Li C. Song X. Zhang C. Chen J. You J. Xiong J. Application of the tumor site recognizable and dual-responsive nanoparticles for combinational treatment of the drug-resistant colorectal can- cer. Pharm. Res. 2020 37 4 72 10.1007/s11095‑020‑02791‑2 32215748
    [Google Scholar]
  46. Hu Y. He Y. Ji J. Zheng S. Cheng Y. Tumor targeted curcumin delivery by folate-modified MPEG-PCL self-assembly micelles for colorectal cancer therapy. Int. J. Nanomedicine 2020 15 1239 1252 10.2147/IJN.S232777 32110020
    [Google Scholar]
  47. Zhang Y. Li M. Gao X. Chen Y. Liu T. Nanotechnology in cancer diagnosis: Progress, challenges and opportunities. J. Hematol. Oncol. 2019 12 1 137 10.1186/s13045‑019‑0833‑3 31847897
    [Google Scholar]
  48. Yusefi M. Chan H.Y. Teow S.Y. Kia P. Lee-Kiun Soon M. Sidik N.A.B.C. Shameli K. 5-fluorouracil encapsulated chitosan-cellulose fiber bionanocomposites: Synthesis, characterization and in vitro analysis towards colorectal cancer cells. Nanomaterials (Basel) 2021 11 7 1691 10.3390/nano11071691 34203241
    [Google Scholar]
  49. Ge P. Niu B. Wu Y. Xu W. Li M. Sun H. Zhou H. Zhang X. Xie J. Enhanced cancer therapy of celastrol in vitro and in vivo by smart dendrimers delivery with specificity and biosafety. Chem. Eng. J. 2020 383 123228 10.1016/j.cej.2019.123228
    [Google Scholar]
  50. Soe Z.C. Poudel B.K. Nguyen H.T. Thapa R.K. Ou W. Gautam M. Poudel K. Jin S.G. Jeong J.H. Ku S.K. Choi H.G. Yong C.S. Kim J.O. Folate-targeted nanostructured chitosan/chondroitin sulfate complex carriers for enhanced delivery of bortezomib to colorectal cancer cells. Asian J. Pharm. Sci. 2019 14 1 40 51 10.1016/j.ajps.2018.09.004 32104437
    [Google Scholar]
  51. Bai H. Wang J. Phan C.U. Chen Q. Hu X. Shao G. Zhou J. Lai L. Tang G. Cyclodextrin-based host-guest complexes loaded with regorafenib for colorectal cancer treatment. Nat. Commun. 2021 12 1 759 10.1038/s41467‑021‑21071‑0 33536421
    [Google Scholar]
  52. Pan D.C. Krishnan V. Salinas A.K. Kim J. Sun T. Ravid S. Peng K. Wu D. Nurunnabi M. Nelson J.A. Niziolek Z. Guo J. Mitragotri S. Hyaluronic acid–doxorubicin nanoparticles for targeted treatment of colorectal cancer. Bioeng. Transl. Med. 2021 6 1 e10166 10.1002/btm2.10166 33532580
    [Google Scholar]
  53. Afzal M. Ameeduzzafar Alharbi K.S. Alruwaili N.K. Al-Abassi F.A. Al-Malki A.A.L. Kazmi I. Kumar V. Kamal M.A. Nadeem M.S. Aslam M. Anwar F. Nanomedicine in treatment of breast cancer – A challenge to conventional therapy. Semin. Cancer Biol. 2021 69 279 292 10.1016/j.semcancer.2019.12.016 31870940
    [Google Scholar]
  54. Maeda H. Sawa T. Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control. Release 2001 74 1-3 47 61 10.1016/S0168‑3659(01)00309‑1 11489482
    [Google Scholar]
  55. Sahu S. Ghosh V. Jain P. Recent advancement of novel drug delivery systems for topical anaesthesia formulations. Curr. Nanomed. 2025 15 1 17
    [Google Scholar]
  56. Wang Y. Ma J. Qiu T. Tang M. Zhang X. Dong W. In vitro and in vivo combinatorial anticancer effects of oxaliplatin- and resveratrol-loaded N,O-carboxymethyl chitosan nanoparticles against colorectal cancer. Eur. J. Pharm. Sci. 2021 163 105864 10.1016/j.ejps.2021.105864 33965502
    [Google Scholar]
  57. Nichols J.W. Bae Y.H. EPR: Evidence and fallacy. J. Control. Release 2014 190 451 464 10.1016/j.jconrel.2014.03.057 24794900
    [Google Scholar]
  58. Golombek S.K. May J.N. Theek B. Appold L. Drude N. Kiessling F. Lammers T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev. 2018 130 17 38 10.1016/j.addr.2018.07.007 30009886
    [Google Scholar]
  59. Acharya S. Sahoo S.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev. 2011 63 3 170 183 10.1016/j.addr.2010.10.008 20965219
    [Google Scholar]
  60. Anitha A. Maya S. Sivaram A.J. Mony U. Jayakumar R. Combinatorial nanomedicines for colon cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016 8 1 151 159 10.1002/wnan.1353 26061225
    [Google Scholar]
  61. Udompornmongkol P. Chiang B.H. Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications. J. Biomater. Appl. 2015 30 5 537 546 10.1177/0885328215594479 26170212
    [Google Scholar]
  62. Jasmine M.D.C. Prabhu V.V. Polymeric nanoparticles-the new face in Drug Delivery and Cancer Therapy. Malaya J. Biosci. 2014 1 1 7
    [Google Scholar]
  63. Zielińska A. Carreiró F. Oliveira A.M. Neves A. Pires B. Venkatesh D.N. Durazzo A. Lucarini M. Eder P. Silva A.M. Santini A. Souto E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  64. Hoosain F.G. Choonara Y.E. Tomar L.K. Kumar P. Tyagi C. du Toit L.C. Pillay V. Bypassing P-glycoprotein drug efflux mechanisms: Possible applications in pharmacoresistant schizophrenia therapy. BioMed Res. Int. 2015 2015 1 21 10.1155/2015/484963 26491671
    [Google Scholar]
  65. Zhang M. Kim Y.K. Cui P. Zhang J. Qiao J. He Y. Lyu J. Luo C. Xing L. Jiang H. Folate-conjugated polyspermine for lung cancer–targeted gene therapy. Acta Pharm. Sin. B 2016 6 4 336 343 10.1016/j.apsb.2016.03.010 27471674
    [Google Scholar]
  66. Sinha L. Jain S.K. Choudhary R. Current trends in the treatment of hepatocellular carcinoma: Clinical applications and advancement. Prob. Sci. 2024 1 1 24
    [Google Scholar]
  67. Kumar M.K. Narayan S. Singh P.K. A review on advancement of mouth dissolving tablets. Prob. Sci. 2024 1 1 34 49
    [Google Scholar]
  68. Shanmuganathan R. Edison T.N.J.I. LewisOscar F. Kumar P. Shanmugam S. Pugazhendhi A. Chitosan nanopolymers: An overview of drug delivery against cancer. Int. J. Biol. Macromol. 2019 130 727 736 10.1016/j.ijbiomac.2019.02.060 30771392
    [Google Scholar]
  69. Tawfeek H.M. Younis M.A. Aldosari B.N. Almurshedi A.S. Abdelfattah A. Abdel-Aleem J.A. Impact of the functional coating of silver nanoparticles on their in vivo performance and biosafety. Drug Dev. Ind. Pharm. 2023 49 5 349 356 10.1080/03639045.2023.2214207 37184200
    [Google Scholar]
  70. Abdellatif A.A.H. Abdelfattah A. Younis M.A. Aldalaan S.M. Tawfeek H.M. Chitosan-capped silver nanoparticles with potent and selective intrinsic activity against the breast cancer cells. Nanotechnol. Rev. 2023 12 1 20220546 10.1515/ntrev‑2022‑0546
    [Google Scholar]
  71. Chen K. Cai H. Zhang H. Zhu H. Gu Z. Gong Q. Luo K. Stimuli-responsive polymer-doxorubicin conjugate: Antitumor mechanism and potential as nano-prodrug. Acta Biomater. 2019 84 339 355 10.1016/j.actbio.2018.11.050 30503561
    [Google Scholar]
  72. Xia P. Chen J. Liu Y. Fletcher M. Jensen B.C. Cheng Z. Doxorubicin induces cardiomyocyte apoptosis and atrophy through cyclin-dependent kinase 2–mediated activation of forkhead box O1. J. Biol. Chem. 2020 295 13 4265 4276 10.1074/jbc.RA119.011571 32075913
    [Google Scholar]
  73. Yang F. Cabe M. Nowak H.A. Langert K.A. Chitosan/poly(lactic- co-glycolic)acid nanoparticle formulations with finely-tuned size distributions for enhanced mucoadhesion. Pharmaceutics 2022 14 1 95 10.3390/pharmaceutics14010095 35056991
    [Google Scholar]
  74. Upadhyay J. Shah K. Implementation of factorial experimental design in chitosan - tripolyphosphate nanoparticles development by ionotropic gelation. Int. J. Health Sci. 2022 6 8529 8543 10.53730/ijhs.v6nS4.10613
    [Google Scholar]
  75. Sahu B. Comprehensive review on non-alcoholic fatty liver disease (NAFLD). Clinical Advancement and Drug Treatments. Prob. Sci. 2024 1 1 1 7
    [Google Scholar]
  76. Tang X. Zeng B. Gao J.K. Liu H.Q. Molecular mechanism of enhanced anticancer effect of nanoparticle formulated LY2835219 via p16-CDK4/6-pRb pathway in colorectal carci- noma cell line. J. Nanomater. 2016 2016 1 8 10.1155/2016/2095878
    [Google Scholar]
  77. Sudhir Dhote N. Dineshbhai Patel R. Kuwar U. Agrawal M. Alexander A. Jain P. Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting. Curr. Cancer Drug Targets 2024 2024 1 22
    [Google Scholar]
  78. Zhou T. Liu Y. Lei K. Liu J. Hu M. Guo L. Guo Y. Ye Q. A “Trojan Horse” strategy: The preparation of bile acid-modifying irinote- can hydrochloride nanoliposomes for liver-targeted anticancer drug delivery system study. Molecules 2023 28 4 1577 10.3390/molecules28041577 36838565
    [Google Scholar]
  79. Mikušová V. Mikuš P. Advances in chitosan-based nanoparticles for drug delivery. Int. J. Mol. Sci. 2021 22 17 9652 10.3390/ijms22179652 34502560
    [Google Scholar]
  80. Aibani N. Rai R. Patel P. Cuddihy G. Wasan E.K. Chitosan nanoparticles at the biological interface: implications for drug delivery. Pharmaceutics 2021 13 10 1686 10.3390/pharmaceutics13101686 34683979
    [Google Scholar]
  81. Fulton M.D. Najahi-Missaoui W. Liposomes in cancer therapy: How did we start and where are we now. Int. J. Mol. Sci. 2023 24 7 6615 10.3390/ijms24076615 37047585
    [Google Scholar]
  82. Patel R. Kuwar U. Dhote N. Alexander A. Nakhate K. Jain P. Ajazuddin Natural polymers as a carrier for the effective delivery of antineoplastic drugs. Curr. Drug Deliv. 2024 21 2 193 210 10.2174/1567201820666230112170035 36644864
    [Google Scholar]
  83. Shi X. Sun K. Baker J.R. Spontaneous formation of functionalized dendrimer-stabilized gold nanoparticles. J. Phys. Chem. C 2008 112 22 8251 8258 10.1021/jp801293a 19727334
    [Google Scholar]
  84. Netam A.K. Prasad J. Satapathy T. Jain P. Evaluation for toxicity and improved therapeutic effectiveness of natural polymer co-administered along with venocin in acetic acid-induced colitis using rat model. Advances in Biomedical Engineering and Technology Rizvanov A.A. Singh B.K. Ganasala P. Singapore Springer Singapore 2021 207 220 10.1007/978‑981‑15‑6329‑4_19
    [Google Scholar]
  85. Zappavigna S. Abate M. Cossu A.M. Lusa S. Campani V. Scotti L. Luce A. Yousif A.M. Merlino F. Grieco P. De Rosa G. Caraglia M. Urotensin-II-targeted liposomes as a new drug deliv- ery system towards prostate and colon cancer cells. J. Oncol. 2019 2019 1 14 10.1155/2019/9293560 31929800
    [Google Scholar]
  86. El Hallal R. Lyu N. Wang Y. Effect of cetuximab-conjugated gold nanoparticles on the cytotoxicity and phenotypic evolution of colorectal cancer cells. Molecules 2021 26 3 567 10.3390/molecules26030567 33499047
    [Google Scholar]
  87. Wang K. Shen R. Meng T. Hu F. Yuan H. Nano-drug delivery systems based on different targeting mechanisms in the targeted therapy of colorectal cancer. Molecules 2022 27 9 2981 10.3390/molecules27092981 35566331
    [Google Scholar]
  88. Bhattacharya S. Anti-EGFR-mAb and 5-fluorouracil conjugated polymeric nanoparticles for colorectal cancer. Rec. Pat. Anti-Cancer Drug Discov. 2020 16 17 84 100 10.2174/1574892815666201221121859
    [Google Scholar]
  89. Huang M. Zhai B.T. Fan Y. Sun J. Shi Y.J. Zhang X.F. Zou J.B. Wang J.W. Guo D.Y. Targeted drug delivery systems for curcumin in breast cancer therapy. Int. J. Nanomedicine 2023 18 4275 4311 10.2147/IJN.S410688 37534056
    [Google Scholar]
  90. Jain A. Jain S.K. Ganesh N. Barve J. Beg A.M. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomedicine 2010 6 1 179 190 10.1016/j.nano.2009.03.002 19447205
    [Google Scholar]
  91. Wei Y. Gu X. Sun Y. Meng F. Storm G. Zhong Z. Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo. J. Control. Release 2020 319 407 415 10.1016/j.jconrel.2020.01.012 31923538
    [Google Scholar]
  92. Lee K.J. Ko E.J. Park Y.Y. Park S.S. Ju E.J. Park J. Shin S.H. Suh Y.A. Hong S.M. Park I.J. Kim K. Hwang J.J. Jang S.J. Lee J.S. Song S.Y. Jeong S.Y. Choi E.K. A novel nanoparticle-based theranostic agent targeting LRP-1 enhances the efficacy of neoadjuvant radiotherapy in colorectal cancer. Biomaterials 2020 255 120151 10.1016/j.biomaterials.2020.120151 32505033
    [Google Scholar]
  93. Ullah S. Azad A.K. Nawaz A. Shah K.U. Iqbal M. Albadrani G.M. Al-Joufi F.A. Sayed A.A. Abdel-Daim M.M. 5-Fluorouracil-loaded folic-acid-fabricated chitosan nano- particles for site-targeted drug delivery cargo. Polymers (Basel) 2022 14 10 2010 10.3390/polym14102010 35631891
    [Google Scholar]
  94. Leve F. Bonfim D.P. Fontes G. Morgado-Díaz J.A. Gold nanoparticles regulate tight junctions and improve cetuximab effect in colon cancer cells. Nanomedicine (Lond.) 2019 14 12 1565 1578 10.2217/nnm‑2019‑0023 31215349
    [Google Scholar]
  95. Sahu N. Jain P. Nagori K. Ajazuddin Recent advancement and novel treatment strategies for breast fibroadenoma: Clinical approach and prospects. Curr. Cancer Ther. Rev. 2024 20 1 11 10.2174/0115733947318171240802100419
    [Google Scholar]
  96. DuRoss A.N. Landry M.R. Thomas C.R. Neufeld M.J. Sun C. Fucoidan-coated nanoparticles target radiation-induced P-selectin to enhance chemoradiotherapy in murine colorectal cancer. Cancer Lett. 2021 500 208 219 10.1016/j.canlet.2020.11.021 33232787
    [Google Scholar]
  97. Khatami F. Matin M.M. Danesh N.M. Bahrami A.R. Abnous K. Taghdisi S.M. Targeted delivery system using silica nanoparticles coated with chitosan and AS1411 for combination therapy of doxorubicin and antimiR-21. Carbohydr. Polym. 2021 266 118111 10.1016/j.carbpol.2021.118111 34044928
    [Google Scholar]
  98. rezakhani L. Fekri K. Rostaminasab G. Rahmati S. Exosomes: Special nano-therapeutic carrier for cancers, overview on anticancer drugs. Med. Oncol. 2022 40 1 31 10.1007/s12032‑022‑01887‑6 36460860
    [Google Scholar]
  99. Mary Lazer L. Sadhasivam B. Palaniyandi K. Muthuswamy T. Ramachandran I. Balakrishnan A. Pathak S. Narayan S. Ramalingam S. Chitosan-based nano-formulation enhances the anticancer efficacy of hesperetin. Int. J. Biol. Macromol. 2018 107 Pt B 1988 1998 10.1016/j.ijbiomac.2017.10.064 29032208
    [Google Scholar]
  100. Yang C. Merlin D. Lipid-based drug delivery nanoplatforms for colorectal cancer therapy. Nanomaterials 2020 10 7 1424 10.3390/nano10071424
    [Google Scholar]
  101. Mansoori B. Mohammadi A. Abedi-Gaballu F. Abbaspour S. Ghasabi M. Yekta R. Shirjang S. Dehghan G. Hamblin M.R. Baradaran B. Hyaluronic acid‐decorated liposomal nanoparticles for targeted delivery of 5‐fluorouracil into HT‐29 colorectal cancer cells. J. Cell. Physiol. 2020 235 10 6817 6830 10.1002/jcp.29576 31989649
    [Google Scholar]
  102. Xu M. Wen Y. Liu Y. Tan X. Chen X. Zhu X. Wei C. Chen L. Wang Z. Liu J. Hollow mesoporous ruthenium nanoparticles conjugated bispecific antibody for targeted anti-colorectal cancer response of combination therapy. Nanoscale 2019 11 19 9661 9678 10.1039/C9NR01904A 31065660
    [Google Scholar]
  103. Chen R. Huang Y. Wang L. Zhou J. Tan Y. Peng C. Yang P. Peng W. Li J. Gu Q. Sheng Y. Wang Y. Shao G. Zhang Q. Sun Y. Cetuximab functionalization strategy for combining active targeting and antimigration capacities of a hybrid composite nanoplatform applied to deliver 5-fluorouracil: Toward colorectal cancer treatment. Biomater. Sci. 2021 9 6 2279 2294 10.1039/D0BM01904F 33538278
    [Google Scholar]
  104. Min Y. Caster J.M. Eblan M.J. Wang A.Z. Clinical translation of nanomedicine. Chem. Rev. 2015 115 19 11147 11190 10.1021/acs.chemrev.5b00116 26088284
    [Google Scholar]
  105. Allen T.M. Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013 65 1 36 48 10.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  106. Younis M.A. Sato Y. Elewa Y.H.A. Harashima H. Reprogramming activated hepatic stellate cells by siRNA-loaded nanocarriers reverses liver fibrosis in mice. J. Control. Release 2023 361 592 603 10.1016/j.jconrel.2023.08.021 37579975
    [Google Scholar]
  107. Kieliszek M. Bano I. Selenium as an important factor in various disease states - A review. EXCLI J. 2022 21 948 966 10.17179/excli2022‑5137 36172072
    [Google Scholar]
  108. Prasad J. Netam A.K. Satapathy T. Prakash Rao S. Jain P. Anti-hyperlipidemic and antioxidant activities of a combination of Terminalia arjuna and Commiphora mukul on experimental animals. Advances in Biomedical Engineering and Technology Rizvanov A.A. Singh B.K. Ganasala P. Singapore Springer Singapore 2021 175 188 10.1007/978‑981‑15‑6329‑4_16
    [Google Scholar]
  109. Bhairam M. Prasad J. Verma K. Jain P. Gidwani B. Formulation of transdermal patch of Losartan Potassium & Glipizide for the treatment of hypertension & diabetes. Mater. Today Proc. 2023 83 59 68 10.1016/j.matpr.2023.01.147
    [Google Scholar]
  110. Sapra P. Tyagi P. Allen T. Ligand-targeted liposomes for cancer treatment. Curr. Drug Deliv. 2005 2 4 369 381 10.2174/156720105774370159 16305440
    [Google Scholar]
  111. Grieco P. Rovero P. Novellino E. Recent structure-activity studies of the peptide hormone urotensin-II, a potent vasoconstrictor. Curr. Med. Chem. 2004 11 8 969 979 10.2174/0929867043455495 15078159
    [Google Scholar]
  112. Maguire J.J. Davenport A.P. Is urotensin‐II the new endothelin? Br. J. Pharmacol. 2002 137 5 579 588 10.1038/sj.bjp.0704924 12381671
    [Google Scholar]
  113. Takahashi K. Totsune K. Murakami O. Shibahara S. Expression of urotensin II and urotensin II receptor mRNAs in various human tumor cell lines and secretion of urotensin II-like immunoreactivity by SW-13 adrenocortical carcinoma cells. Peptides 2001 22 7 1175 1179 10.1016/S0196‑9781(01)00441‑7 11445248
    [Google Scholar]
  114. Federico A. Zappavigna S. Romano M. Grieco P. Luce A. Marra M. Gravina A.G. Stiuso P. D’Armiento F.P. Vitale G. Tuccillo C. Novellino E. Loguercio C. Caraglia M. Urotensin‐II receptor is over‐expressed in colon cancer cell lines and in colon carcinoma in humans. Eur. J. Clin. Invest. 2014 44 3 285 294 10.1111/eci.12231 24372535
    [Google Scholar]
  115. García-Fernández A. Aznar E. Martínez-Máñez R. Sancenón F. New advances in in vivo applications of gated mesoporous silica as drug delivery nanocarriers. Small 2020 16 3 1902242 10.1002/smll.201902242 31846230
    [Google Scholar]
  116. Kankala R.K. Han Y.H. Na J. Lee C.H. Sun Z. Wang S.B. Kimura T. Ok Y.S. Yamauchi Y. Chen A.Z. Wu K.C.W. Nanoarchitectured structure and surface biofunc- tionality of mesoporous silica nanoparticles. Adv. Mater. 2020 32 23 1907035 10.1002/adma.201907035 32319133
    [Google Scholar]
  117. Wang Y. Huang H.Y. Yang L. Zhang Z. Ji H. Cetuximab-modified mesoporous silica nano-medicine specifically targets EGFR-mutant lung cancer and overcomes drug resistance. Sci. Rep. 2016 6 1 25468 10.1038/srep25468 27151505
    [Google Scholar]
  118. Hossain M.S. Karuniawati H. Jairoun A.A. Urbi Z. Ooi D.J. John A. Lim Y.C. Kibria K.M.K. Mohiuddin A.K.M. Ming L.C. Goh K.W. Hadi M.A. Colorectal cancer: A review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers (Basel) 2022 14 7 1732 10.3390/cancers14071732 35406504
    [Google Scholar]
  119. Stang J. Haynes M. Carson P. Moghaddam M. A preclinical system prototype for focused microwave thermal therapy of the breast. IEEE Trans. Biomed. Eng. 2012 59 9 2431 2438 10.1109/TBME.2012.2199492 22614518
    [Google Scholar]
  120. Blick S.K.A. Scott L.J. Ciardiello F. Magrassi F. Lanzara A. Cetuximab: A review of its use in squamous cell carcinoma of the head and neck and metastatic colorectal cancer. Drugs 2007 67 17 2585 2607 10.2165/00003495‑200767170‑00008 18034592
    [Google Scholar]
  121. Adams G.P. Weiner L.M. Monoclonal antibody therapy of cancer. Nat. Biotechnol. 2005 23 9 1147 1157 10.1038/nbt1137 16151408
    [Google Scholar]
  122. Cunningham D. Humblet Y. Siena S. Khayat D. Bleiberg H. Santoro A. Bets D. Mueser M. Harstrick A. Verslype C. Chau I. Van Cutsem E. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 2004 351 4 337 345 10.1056/NEJMoa033025 15269313
    [Google Scholar]
  123. Uekama K. Hirayama F. Irie T. Cyclodextrin drug carrier systems. Chem. Rev. 1998 98 5 2045 2076 10.1021/cr970025p 11848959
    [Google Scholar]
  124. Weng W. Feng J. Qin H. Ma Y. Molecular therapy of colorectal cancer: Progress and future directions. Int. J. Cancer 2015 136 3 493 502 10.1002/ijc.28722 24420815
    [Google Scholar]
  125. Normanno N. Tejpar S. Morgillo F. De Luca A. Van Cutsem E. Ciardiello F. Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat. Rev. Clin. Oncol. 2009 6 9 519 527 10.1038/nrclinonc.2009.111 19636327
    [Google Scholar]
  126. Waddell T. Cunningham D. Evaluation of regorafenib in colorectal cancer and GIST. Lancet 2013 381 9863 273 275 10.1016/S0140‑6736(12)62006‑6 23177516
    [Google Scholar]
  127. Demetri G.D. Reichardt P. Kang Y.K. Blay J.Y. Rutkowski P. Gelderblom H. Hohenberger P. Leahy M. von Mehren M. Joensuu H. Badalamenti G. Blackstein M. Le Cesne A. Schöffski P. Maki R.G. Bauer S. Nguyen B.B. Xu J. Nishida T. Chung J. Kappeler C. Kuss I. Laurent D. Casali P.G. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013 381 9863 295 302 10.1016/S0140‑6736(12)61857‑1 23177515
    [Google Scholar]
  128. Mir O. Brodowicz T. Italiano A. Wallet J. Blay J.Y. Bertucci F. Chevreau C. Piperno-Neumann S. Bompas E. Salas S. Perrin C. Delcambre C. Liegl-Atzwanger B. Toulmonde M. Dumont S. Ray-Coquard I. Clisant S. Taieb S. Guillemet C. Rios M. Collard O. Bozec L. Cupissol D. Saada-Bouzid E. Lemaignan C. Eisterer W. Isambert N. Chaigneau L. Cesne A.L. Penel N. Safety and efficacy of regorafenib in patients with advanced soft tissue sarcoma (REGOSARC): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2016 17 12 1732 1742 10.1016/S1470‑2045(16)30507‑1 27751846
    [Google Scholar]
  129. Dienstmann R. Vermeulen L. Guinney J. Kopetz S. Tejpar S. Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat. Rev. Cancer 2017 17 2 79 92 10.1038/nrc.2016.126 28050011
    [Google Scholar]
  130. Xiong M. Lei Q. You X. Gao T. Song X. Xia Y. Ye T. Zhang L. Wang N. Yu L. Mannosylated liposomes improve therapeutic effects of paclitaxel in colon cancer models. J. Microencapsul. 2017 34 6 513 521 10.1080/02652048.2017.1339739 28705043
    [Google Scholar]
  131. Fan N.J. Chen H.M. Song W. Zhang Z.Y. Zhang M.D. Feng L.Y. Gao C.F. Macrophage mannose receptor 1 and S100A9 were identified as serum diagnostic biomarkers for colorectal cancer through a label-free quantitative proteomic analysis. Cancer Biomark. 2016 16 2 235 243 10.3233/CBM‑150560 26682511
    [Google Scholar]
  132. Silva R. Ferreira H. Cavaco-Paulo A. Sonoproduction of liposomes and protein particles as templates for delivery purposes. Biomacromolecules 2011 12 10 3353 3368 10.1021/bm200658b 21905662
    [Google Scholar]
  133. Suntres Z.E. Liposomal antioxidants for protection against oxidant-induced damage. J. Toxicol. 2011 2011 1 16 10.1155/2011/152474 21876690
    [Google Scholar]
  134. Patil Y.P. Jadhav S. Novel methods for liposome preparation. Chem. Phys. Lipids 2014 177 8 18 10.1016/j.chemphyslip.2013.10.011 24220497
    [Google Scholar]
  135. Bangham A.D. Standish M.M. Watkins J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965 13 1 238 IN27 10.1016/S0022‑2836(65)80093‑6 5859039
    [Google Scholar]
  136. Abreu A.S. Castanheira E.M.S. Queiroz M.J.R.P. Ferreira P.M.T. Vale-Silva L.A. Pinto E. Nanoliposomes for encapsulation and delivery of the potential antitumoral methyl 6-methoxy-3-(4-methoxyphenyl)-1H-indole-2-carboxylate. Nanoscale Res. Lett. 2011 6 1 482 10.1186/1556‑276X‑6‑482 21812989
    [Google Scholar]
  137. Akbarzadeh A. Rezaei-Sadabady R. Davaran S. Joo S.W. Zarghami N. Hanifehpour Y. Samiei M. Kouhi M. Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013 8 1 102 10.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  138. Nag O. Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics 2013 5 4 542 569 10.3390/pharmaceutics5040542 24300562
    [Google Scholar]
  139. Noble G.T. Stefanick J.F. Ashley J.D. Kiziltepe T. Bilgicer B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol. 2014 32 1 32 45 10.1016/j.tibtech.2013.09.007 24210498
    [Google Scholar]
  140. Barenholz Y.C. Doxil® — The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012 160 2 117 134 10.1016/j.jconrel.2012.03.020 22484195
    [Google Scholar]
  141. Rivera E. Liposomal anthracyclines in metastatic breast cancer: Clinical update. Oncologist 2003 8 Suppl 2 3 9 10.1634/theoncologist.8‑suppl_2‑3 13679590
    [Google Scholar]
  142. Lammers T. Hennink W.E. Storm G. Tumour-targeted nanomedicines: Principles and practice. Br. J. Cancer 2008 99 3 392 397 10.1038/sj.bjc.6604483 18648371
    [Google Scholar]
  143. Lam R. Ho D. Nanodiamonds as vehicles for systemic and localized drug delivery. Expert Opin. Drug Deliv. 2009 6 9 883 895 10.1517/17425240903156382 19637985
    [Google Scholar]
  144. Abdollahzade A. Rahimi H. Yaghoobi E. Ramezani M. Alibolandi M. Abnous K. Taghdisi S.M. Targeted delivery of doxorubicin and therapeutic FOXM1 aptamer to tumor cells using gold nanoparticles modified with AS1411 and ATP aptamers. Iran. J. Basic Med. Sci. 2023 26 10 1177 1187 37736517
    [Google Scholar]
  145. Li W. Chen H. Yu M. Fang J. Targeted delivery of doxorubicin using a colorectal cancer-specific ssDNA aptamer. Anat. Rec. (Hoboken) 2014 297 12 2280 2288 10.1002/ar.22990 25044297
    [Google Scholar]
  146. Raza M.A. Sharma M.K. Nagori K. Jain P. Ghosh V. Gupta U. Ajazuddin Recent trends on polycaprolactone as sustainable polymer-based drug delivery system in the treatment of cancer: Biomedical applications and nanomedicine. Int. J. Pharm. 2024 666 124734 10.1016/j.ijpharm.2024.124734 39343332
    [Google Scholar]
  147. Abbasi E. Aval S.F. Akbarzadeh A. Milani M. Nasrabadi H.T. Joo S.W. Hanifehpour Y. Nejati-Koshki K. Pashaei-Asl R. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett. 2014 9 1 247 10.1186/1556‑276X‑9‑247 24994950
    [Google Scholar]
  148. Huang W. Wang X. Shi C. Guo D. Xu G. Wang L. Bodman A. Luo J. Fine-tuning vitamin E-containing telodendrimers for efficient delivery of gambogic acid in colon cancer treatment. Mol. Pharm. 2015 a 12 4 1216 1229 10.1021/acs.molpharmaceut.5b00051 25692376
    [Google Scholar]
  149. Wu L. Ficker M. Christensen J.B. Trohopoulos P.N. Moghimi S.M. Dendrimers in Medicine: Therapeutic Concepts and Pharmaceutical Challenges. Bioconjug. Chem. 2015 26 7 1198 1211 10.1021/acs.bioconjchem.5b00031 25654320
    [Google Scholar]
  150. Xie J. Gao Y. Zhao R. Sinko P.J. Gu S. Wang J. Li Y. Lu Y. Yu S. Wang L. Chen S. Shao J. Jia L. Ex vivo and in vivo capture and deactivation of circulating tumor cells by dual-antibody-coated nanomaterials. J. Control. Release 2015 209 159 169 10.1016/j.jconrel.2015.04.036 25933713
    [Google Scholar]
  151. Xie J. Wang J. Chen H. Shen W. Sinko P.J. Dong H. Zhao R. Lu Y. Zhu Y. Jia L. Multivalent conjugation of antibody to dendrimers for the enhanced capture and regulation on colon cancer cells. Sci. Rep. 2015 b 5 1 9445 10.1038/srep09445 25819426
    [Google Scholar]
  152. Xie J. Zhao R. Gu S. Dong H. Wang J. Lu Y. Sinko P.J. Yu T. Xie F. Wang L. Shao J. Jia L. The architecture and biological function of dual antibody-coated dendrimers: Enhanced control of circulating tumor cells and their hetero-adhesion to endothelial cells for metastasis prevention. Theranostics 2014 4 12 1250 1263 10.7150/thno.8775 25285173
    [Google Scholar]
  153. Banu H. Sethi D.K. Edgar A. Sheriff A. Rayees N. Renuka N. Faheem S.M. Premkumar K. Vasanthakumar G. Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines. J. Photochem. Photobiol. B 2015 149 116 128 10.1016/j.jphotobiol.2015.05.008 26057021
    [Google Scholar]
  154. Mackey M.A. El-Sayed M.A. Chemosensitization of cancer cells via gold nanoparticle-induced cell cycle regulation. Photochem. Photobiol. 2014 90 2 306 312 10.1111/php.12226 24329577
    [Google Scholar]
  155. Cui L. Her S. Dunne M. Borst G.R. De Souza R. Bristow R.G. Jaffray D.A. Allen C. Significant radiation enhancement effects by gold nanoparticles in combination with cisplatin in triple negative breast cancer cells and tumor xenografts. Radiat. Res. 2017 187 2 147 160 10.1667/RR14578.1 28085639
    [Google Scholar]
  156. Zhao X. Pan J. Li W. Yang W. Qin L. Pan Y. Gold nanoparticles enhance cisplatin delivery and potentiate chemotherapy by decompressing colorectal cancer vessels. Int. J. Nanomedicine 2018 13 6207 6221 10.2147/IJN.S176928 30349245
    [Google Scholar]
  157. Agabeigi R. Rasta S.H. Rahmati-Yamchi M. Salehi R. Alizadeh E. Novel chemo-photothermal therapy in breast cancer using methotrexate-loaded folic acid conjugated Au@SiO2 nanopar- ticles. Nanoscale Res. Lett. 2020 15 1 62 10.1186/s11671‑020‑3295‑1 32189075
    [Google Scholar]
  158. Liu D. Sun J. Zhu J. Zhou H. Zhang X. Zhang Y. Expression and clinical significance of colorectal cancer stem cell marker EpCAMhigh/CD44+ in colorectal cancer. Oncol. Lett. 2014 7 5 1544 1548 10.3892/ol.2014.1907 24765173
    [Google Scholar]
  159. Qian Y. Qiu M. Wu Q. Tian Y. Zhang Y. Gu N. Li S. Xu L. Yin R. Enhanced cytotoxic activity of cetuximab in EGFR-positive lung cancer by conjugating with gold nanoparticles. Sci. Rep. 2014 4 1 7490 10.1038/srep07490 25502402
    [Google Scholar]
  160. Kao H.W. Lin Y.Y. Chen C.C. Chi K.H. Tien D.C. Hsia C.C. Lin W.J. Chen F.D. Lin M.H. Wang H.E. Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model. Nanotechnology 2014 25 29 295102 10.1088/0957‑4484/25/29/295102 24990295
    [Google Scholar]
  161. Andrade L.M. Martins E.M.N. Versiani A.F. Reis D.S. da Fonseca F.G. Souza I.P. Paniago R.M. Pereira-Maia E. Ladeira L.O. The physicochemical and biological characterization of a 24-month-stored nanocomplex based on gold nanoparticles conjugated with cetuximab demonstrated long-term stability, EGFR affinity and cancer cell death due to apoptosis. Mater. Sci. Eng. C 2020 107 110203 10.1016/j.msec.2019.110203 31761220
    [Google Scholar]
  162. Amato G. Silica-encapsulated efficient and stable si quantum dots with high biocompatibility. Nanoscale Res. Lett. 2010 5 7 1156 1160 10.1007/s11671‑010‑9619‑9 20596494
    [Google Scholar]
  163. Kuwar U.C. Pradhan M. Dhote N.S. Patel R. Sinha A. Jain P. Ajazuddin Novel approaches and applications of nanotechnology in the delivery of topical drugs for psoriasis via nanocarriers. Curr. Nanosci. 2024 20 1 27 10.2174/0115734137301584240722054651
    [Google Scholar]
  164. Bharti C. Gulati N. Nagaich U. Pal A.K. Mesoporous silica nanoparticles in target drug delivery system: A review. Int. J. Pharm. Investig. 2015 5 3 124 133 10.4103/2230‑973X.160844 26258053
    [Google Scholar]
  165. Radhakrishnan K. Gupta S. Gnanadhas D.P. Ramamurthy P.C. Chakravortty D. Raichur A.M. Protamine‐capped mesoporous silica nanoparticles for biologically triggered drug release. Part. Part. Syst. Charact. 2014 31 4 449 458 10.1002/ppsc.201300219
    [Google Scholar]
  166. Yu M. Jambhrunkar S. Thorn P. Chen J. Gu W. Yu C. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale 2013 5 1 178 183 10.1039/C2NR32145A 23076766
    [Google Scholar]
  167. Gidding C. Kellie S.J. Kamps W.A. de Graaf S.S. Vincristine revisited. Crit. Rev. Oncol. Hematol. 1999 29 3 267 287 10.1016/S1040‑8428(98)00023‑7 10226730
    [Google Scholar]
  168. Hanafi-Bojd M.Y. Jaafari M.R. Ramezanian N. Xue M. Amin M. Shahtahmassebi N. Malaekeh-Nikouei B. Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells. Eur. J. Pharm. Biopharm. 2015 89 248 258 10.1016/j.ejpb.2014.12.009 25511563
    [Google Scholar]
  169. Zhou H.S. Sasahara H. Honma I. Komiyama H. Haus J.W. Coated semiconductor nanoparticles: The CdS/PbS system’s photoluminescence properties. Chem. Mater. 1994 6 9 1534 1541 10.1021/cm00045a010
    [Google Scholar]
  170. Kumar R. Mondal K. Panda P.K. Kaushik A. Abolhassani R. Ahuja R. Rubahn H.G. Mishra Y.K. Core–shell nanostructures: Perspectives towards drug delivery applications. J. Mater. Chem. B Mater. Biol. Med. 2020 8 39 8992 9027 10.1039/D0TB01559H 32902559
    [Google Scholar]
  171. Simonet B.M. Valcárcel M. Monitoring nanoparticles in the environment. Anal. Bioanal. Chem. 2009 393 1 17 21 10.1007/s00216‑008‑2484‑z 18974979
    [Google Scholar]
  172. Begines B. Ortiz T. Pérez-Aranda M. Martínez G. Merinero M. Argüelles-Arias F. Alcudia A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials (Basel) 2020 10 7 1403 10.3390/nano10071403 32707641
    [Google Scholar]
  173. Kalele S. Gosavi S. Urban J. Kulkarni S. Nanoshell particles: Synthesis, properties and applications. Curr. Sci. 2006 91 8 1038 1052
    [Google Scholar]
  174. Bai Y. Teng B. Chen S. Chang Y. Li Z. Preparation of magnetite nanoparticles coated with an amphiphilic block copolymer: A potential drug carrier with a core‐shell‐corona structure for hydrophobic drug delivery. Macromol. Rapid Commun. 2006 27 24 2107 2112 10.1002/marc.200600504
    [Google Scholar]
  175. Sounderya N. Zhang Y. Use of core/shell structured nanoparticles for biomedical applications. Recent Pat. Biomed. Eng. 2008 1 1 34 42 10.2174/1874764710801010034
    [Google Scholar]
  176. Stanciu L. Won Y.H. Ganesana M. Andreescu S. Magnetic particle-based hybrid platforms for bioanalytical sensors. Sensors (Basel) 2009 9 4 2976 2999 10.3390/s90402976 22574058
    [Google Scholar]
  177. Wang Z.H. Liu J.M. Li C.Y. Wang D. Lv H. Lv S.W. Zhao N. Ma H. Wang S. Bacterial biofilm bioinspired persistent luminescence nanoparticles with gut-oriented drug delivery for colorectal cancer imaging and chemotherapy. ACS Appl. Mater. Interfaces 2019 11 40 36409 36419 10.1021/acsami.9b12853 31525949
    [Google Scholar]
  178. Li Y. Duo Y. Bao S. He L. Ling K. Luo J. Zhang Y. Huang H. Zhang H. Yu X. EpCAM aptamer-functionalized polydopamine-coated mesoporous silica nanoparticles loaded with DM1 for targeted therapy in colorectal cancer. Int. J. Nanomedicine 2017 12 6239 6257 10.2147/IJN.S143293 28894364
    [Google Scholar]
  179. Espinosa A. Di Corato R. Kolosnjaj-Tabi J. Flaud P. Pellegrino T. Wilhelm C. Duality of iron oxide nanoparticles in cancer therapy: Amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 2016 10 2 2436 2446 10.1021/acsnano.5b07249 26766814
    [Google Scholar]
  180. Kuo C.Y. Liu T.Y. Chan T.Y. Tsai S.C. Hardiansyah A. Huang L.Y. Yang M.C. Lu R.H. Jiang J.K. Yang C.Y. Lin C.H. Chiu W.Y. Magnetically triggered nanovehicles for controlled drug release as a colorectal cancer therapy. Colloids Surf. B Biointerfaces 2016 140 567 573 10.1016/j.colsurfb.2015.11.008 26705859
    [Google Scholar]
  181. Esmaelbeygi E. Khoei S. Khoee S. Eynali S. Role of iron oxide core of polymeric nanoparticles in the thermosensitivity of colon cancer cell line HT-29. Int. J. Hyperthermia 2015 31 5 489 497 10.3109/02656736.2015.1035766 25960148
    [Google Scholar]
  182. Feng S.T. Li J. Luo Y. Yin T. Cai H. Wang Y. Dong Z. Shuai X. Li Z.P. pH-sensitive nanomicelles for controlled and efficient drug delivery to human colorectal carcinoma LoVo cells. PLoS One 2014 9 6 e100732 10.1371/journal.pone.0100732 24964012
    [Google Scholar]
  183. Costa Lima S.A. Gaspar A. Reis S. Durães L. Multifunctional nanospheres for co-delivery of methotrexate and mild hyperthermia to colon cancer cells. Mater. Sci. Eng. C 2017 75 1420 1426 10.1016/j.msec.2017.03.049
    [Google Scholar]
  184. He X. Liu F. Liu L. Duan T. Zhang H. Wang Z. Lectin-conjugated Fe2O3@Au core@Shell nanoparticles as dual mode contrast agents for in vivo detection of tumor. Mol. Pharm. 2014 11 3 738 745 10.1021/mp400456j 24472046
    [Google Scholar]
  185. Jain A. Bajaj S. Jain P. Majumdar A. Singh A. Soni P. A review on biotechnologically derived techniques to combat COVID-19 situation. Health Sci. Rev. (Oxf.) 2023 8 100112 10.1016/j.hsr.2023.100112
    [Google Scholar]
  186. Yang C.C. Yang S.Y. Ho C.S. Chang J.F. Liu B.H. Huang K.W. Development of antibody functionalized magnetic nanoparticles for the immunoassay of carcinoembryonic antigen: A feasibility study for clinical use. J. Nanobiotechnology 2014 12 1 44 10.1186/s12951‑014‑0044‑6 25424410
    [Google Scholar]
  187. Fang J. Wang S. Li W. Yuan D. Song J. Quantitative detection of the tumor-associated antigen large external antigen in colorectal cancer tissues and cells using quantum dot probe. Int. J. Nanomedicine 2016 11 235 247 10.2147/IJN.S97509 26834472
    [Google Scholar]
  188. Leowattana W. Leowattana P. Leowattana T. Systemic treatment for metastatic colorectal cancer. World J. Gastroenterol. 2023 29 10 1569 1588 10.3748/wjg.v29.i10.1569 36970592
    [Google Scholar]
  189. Akl M.A. Kartal-Hodzic A. Oksanen T. Ismael H.R. Afouna M.M. Yliperttula M. Samy A.M. Viitala T. Factorial design formulation optimization and in vitro characterization of curcumin-loaded PLGA nanoparticles for colon delivery. J. Drug Deliv. Sci. Technol. 2016 32 Part A 10 20 10.1016/j.jddst.2016.01.007
    [Google Scholar]
  190. Pangeni R. Choi S.W. Jeon O.C. Byun Y. Park J.W. Multiple nanoemulsion system for an oral combinational delivery of oxaliplatin and 5-fluorouracil: preparation and in vivo evaluation. Int. J. Nanomedicine 2016 11 6379 6399 10.2147/IJN.S121114 27942212
    [Google Scholar]
  191. Chuah L.H. Roberts C.J. Billa N. Abdullah S. Rosli R. Manickam S. Using nanoparticle tracking analysis (NTA) to decipher mucoadhesion propensity of curcumin-containing chitosan nanoparticles and curcumin release. J. Dispers. Sci. Technol. 2014 35 9 1201 1207 10.1080/01932691.2013.800458
    [Google Scholar]
  192. Zheng Y. You X. Guan S. Huang J. Wang L. Zhang J. Wu J. Poly(ferulic acid) with an anticancer effect as a drug nanocarrier for enhanced colon cancer therapy. Adv. Funct. Mater. 2019 29 15 1808646 10.1002/adfm.201808646
    [Google Scholar]
  193. Maksimenko A. Alami M. Zouhiri F. Brion J.D. Pruvost A. Mougin J. Hamze A. Boissenot T. Provot O. Desmaële D. Couvreur P. Therapeutic modalities of squalenoyl nanocomposites in colon cancer: An ongoing search for improved efficacy. ACS Nano 2014 8 3 2018 2032 10.1021/nn500517a 24555414
    [Google Scholar]
  194. Lee Y. Geckeler K.E. Cellular interactions of a water-soluble supramolecular polymer complex of carbon nanotubes with human epithelial colorectal adenocarcinoma cells. Macromol. Biosci. 2012 12 8 1060 1067 10.1002/mabi.201200085 22707328
    [Google Scholar]
  195. Wu C. Zhang Y. Yang D. Zhang J. Ma J. Cheng D. Chen J. Deng L. Novel SN38 derivative-based liposome as anticancer prodrug: An in vitro and in vivo study. Int. J. Nanomedicine 2018 14 75 85 10.2147/IJN.S187906 30587986
    [Google Scholar]
  196. Hosseinifar T. Sheybani S. Abdouss M. Hassani Najafabadi S.A. Shafiee Ardestani M. Pressure responsive nanogel base on alginate‐cyclodextrin with enhanced apoptosis mechanism for colon cancer delivery. J. Biomed. Mater. Res. A 2018 106 2 349 359 10.1002/jbm.a.36242 28940736
    [Google Scholar]
  197. Canton A.S. Broek N.V.D. Danelon C. 2019 Development of a lipid-based delivery system for the chemotherapeutic compound SN-38. bioRxiv 10.1101/792317
    [Google Scholar]
  198. Nie T. Wu H. Wong K-H. Chen T. Facile synthesis of highly uniform selenium nanoparticles using glucose as the reductant and surface decorator to induce cancer cell apoptosis. Mater. Chem. B 2016 4 2351 2358 10.1039/C5TB02710A
    [Google Scholar]
  199. Fern´andez-Llamosas H. Castro L. Bl´azquez M.L. D´ıaz E. Carmona M. Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB. Microb. Cell Fact 2016 15 1 109 10.1186/s12934‑016‑0510‑y
    [Google Scholar]
  200. Shirsat S. Kadam A. Naushad M. Mane R.S. Selenium nanostructures: Microbial synthesis and applications. RSC Advances 2015 5 112 92799 92811 10.1039/C5RA17921A
    [Google Scholar]
  201. Kim C. Hong J. Park J.-W. Synthesis and thermoelectric properties of selenium nanoparticles coated with PEDOT:PSS. Polymers 2019 11 6 1052 10.3390/polym11061052
    [Google Scholar]
  202. Xia Y-Y. Ti-based compounds as anode materials for Li-ion batteries. Mater. Lett. 2007 61 4321 4324 10.1016/j.matlet.2007.01.095
    [Google Scholar]
  203. El-Ghazaly M.A. Fadel N. Rashed E. El-Batal A. Kenawy S.A. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Can. J. Physiol. Pharmacol. 2017 95 2 101 110 10.1139/cjpp‑2016‑0183 27936913
    [Google Scholar]
  204. Tran P.A. O’Brien-Simpson N. Reynolds E.C. Pantarat N. Biswas D.P. O’Connor A.J. Comparison of antibacterial activity and cytotoxicity of silver nanoparticles and silver-loaded montmorillonite and saponite. Nanotechnology 2016 27 45101 10.1088/0957‑4484/27/4/045101
    [Google Scholar]
  205. Khalid A. Tran P.A. Norello R. Simpson D.A. O’Connor A.J. Tomljenovic-Hanic S. Intrinsic fluorescence of selenium nanoparticles for cellular imaging applications. Nanoscale 2016 8 6 3376 3385 10.1039/C5NR08771F 26792107
    [Google Scholar]
  206. Shah C.P. Kumar M. Pushpa K.K. Bajaj P.N. Acrylonitrile-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles. Cryst. Growth Des. 2008 8 11 4159 4164 10.1021/cg800669d
    [Google Scholar]
  207. Zhang Y. Wang J. Zhang L. Creation of highly stable selenium nanoparticles capped with hyperbranched polysaccharide in water. Langmuir 2010 26 22 17617 17623 10.1021/la1033959
    [Google Scholar]
  208. Huang T. Holden J.A. Heath D.E. O’Brien-Simpson N.M. O’Connor A.J. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale 2019 11 31 14937 14951 10.1039/C9NR04424H 31363721
    [Google Scholar]
  209. Shi X.D. Tian Y.Q. Wu J.L. Wang S.Y. Synthesis, characterization, and biological activity of selenium nanoparticles conjugated with polysaccharides. Crit. Rev. Food Sci. Nutr. 2020 61 13 2225 2236 10.1080/10408398.2020.1774497
    [Google Scholar]
  210. Mellinas C. Jim´enez A. Garrigo´s M. C. Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using Theobroma cacao L. bean shell extract. Molecules 2019 24 4048 10.3390/molecules24224048
    [Google Scholar]
  211. Abbasian R. Jafarizadeh-Malmiri H. Green approach in gold, silver and selenium nanoparticles using coffee bean extract. Open Agric. 2020 5 761 767 10.1515/opag‑2020‑0074
    [Google Scholar]
  212. Chen H. Yoo J.B. Liu Y. Zhao G. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. Electron. Mater. Lett. 2011 7 333 336 10.1007/s13391‑011‑0420‑4
    [Google Scholar]
  213. Piacenza E. Presentato A. Heyne B. Turner R.J. Processing of metals and metalloids by actinobacteria: Cell resistance mechanisms and synthesis of metal(loid)-based nanostructures. Nanophotonics 2020 9 3615 3628 10.1515/nanoph‑2020‑0239
    [Google Scholar]
  214. Afzal B. Yasin D. Husain S. Zaki A. Srivastava P. Kumar R. Fatma T. Postharvest disease inhibition in fruit by synthesis and characterization of chitosan iron oxide nanoparticles. Biocatal. Agric. Biotechnol. 2019 21 101307 10.1016/j.bcab.2019.101307
    [Google Scholar]
  215. Kumar H. Bhardwaj K. Nepovimova E. Kuča K. Singh Dhanjal D. Bhardwaj S. Bhatia S.K. Verma R. Kumar D. Antioxidant functionalized nanoparticles: a combat against oxidative stress. Nanomaterials (Basel) 2020 10 7 1334 10.3390/nano10071334
    [Google Scholar]
  216. Ma X. Yu H. Yale J. Molecular classification identifies a subset of human papillomavirus–associated oropharyngeal cancers with favorable prognosis. Biol. Med. 2006 79 85 94
    [Google Scholar]
  217. Thun M.J. DeLancey J.O. Center M.M. Jemal A. Ward E.M. The global burden of cancer: Priorities for prevention. Carcinogenesis 2010 31 1 100 110 10.1093/carcin/bgp263 19934210
    [Google Scholar]
  218. Devlin E.J. Denson L.A. Whitford H.S. The role of response expectancies in cancer treatment. Pain Symptom Manag. 2017 54 245 258 10.1016/j.jpainsymman.2017.03.017
    [Google Scholar]
  219. Tan Q. Li J. Yin H. Wang L. Tang W. Zhao F. Liu X. Zeng H. Drugs that may cause or exacerbate heart failure: A scientific statement from the american heart association invest. New Drugs 2010 28 205 215 10.1007/s10637‑009‑9235‑7
    [Google Scholar]
  220. Puspitasari I.M. Abdulah R. Yamazaki C. Kameo S. Nakano T. Koyama H. Advances in biomolecular medicine - Research and publication radiat. Oncol. 2014 9 125
    [Google Scholar]
  221. Yakubov E. Buchfelder M. Eyu¨poglu I.Y. Savaskan N.E. Brain tumor – Glioblastoma. Biol. Trace Elem. Res. 2014 161 246 254 10.1007/s12011‑014‑0111‑8 25164034
    [Google Scholar]
  222. Evans S.O. Khairuddin P.F. Jameson M.B. Optimising selenium for modulation of cancer treatments. Anticancer Res. 2017 37 12 6497 6509 10.21873/anticanres.12106
    [Google Scholar]
  223. Song H. Hur I. Park H. Nam J. Bin Park G. Kong K.H. Hwang Y.M. Kim Y.S. Cho D.H. Lee W.J. Hur D.Y. Endoscopic diagnosis and treatment of gastric dysplasia and early cancer: Current evidence and what the future may hold. Immune Netw. 2009 9 236 10.4110/in.2009.9.6.236 20157610
    [Google Scholar]
  224. Chen Y.C. Prabhu K.S. Das A. Mastro A.M. Dietary selenium supplementation modifies breast tumor growth and metastasis. Int. J. Cancer 2013 133 9 2054 2064 10.1002/ijc.28224 23613334
    [Google Scholar]
  225. Davis C.D. Tsuji P.A. Milner J.A. Selenoproteins and cancer prevention. Annu. Rev. Nutr. 2012 32 1 73 95 10.1146/annurev‑nutr‑071811‑150740 22404120
    [Google Scholar]
  226. Lavu R.V.S. Van De Wiele T. Pratti V.L. Tack F. Du Laing G. Selenium and sulfur to produce allium functional crops. Food Chem. 2016 197 382 387 10.1016/j.foodchem.2015.08.001 26616964
    [Google Scholar]
  227. Fairweather-Tait S.J. Collings R. Hurst R. Selenium bioavailability: Current knowledge and future research requirements. Am. J. Clin. Nutr. 2010 91 5 1484S 1491S 10.3945/ajcn.2010.28674J 20200264
    [Google Scholar]
  228. Ekoue D.N. Zaichick S. Valyi-Nagy K. Picklo M. Lacher C. Hoskins K. Warso M.A. Bonini M.G. Diamond A.M. Selenium levels in human breast carcinoma tissue are associated with a common polymorphism in the gene for SELENOP (Selenoprotein P). J. Trace Elem. Med. Biol. 2017 39 227 233 10.1016/j.jtemb.2016.11.003 27908419
    [Google Scholar]
  229. Tan V.C. Hinchman A. Williams R. Tran P.A. Fox K. Nanostructured biomedical selenium at the biological interface (Review) Editor’s Pick. Biointerphases 2018 13 06D301 10.1116/1.5042693
    [Google Scholar]
  230. Ferro C. Florindo H.F. Santos H.A. Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics. Adv. Healthc. Mater. 2021 10 16 2100598 10.1002/adhm.202100598
    [Google Scholar]
  231. El-Ramady H. Abdalla N. Taha H.S. Alshaal T. El-Henawy A. Faizy S.E-D.A. Shams M.S. Youssef S.M. Shalaby T. Bayoumi Y. Elhawat N. Shehata S. Sztrik A. Prokisch J. F’ari M. Selenium and nano-selenium in plant nutrition. Environ. Chem. Lett. 2016 14 123 147 10.1007/s10311‑015‑0535‑1
    [Google Scholar]
  232. Schrauzer G.N. Selenomethionine: A review of its nutritional significance, metabolism and toxicity. J. Nutr. 2000 130 7 1653 1656 10.1093/jn/130.7.1653 10867031
    [Google Scholar]
  233. Shakibaie M. Khorramizadeh M.R. Faramarzi M.A. Sabzevari O. Shahverdi A.R. Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase‐2 expression. Biotechnol. Appl. Biochem. 2010 56 1 7 15 10.1042/BA20100042 20408816
    [Google Scholar]
  234. Yang F. Tang Q. Zhong X. Bai Y. Chen T. Zhang Y. Li Y. Zheng W. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int. J. Nanomedicine 2012 7 835 844 22359460
    [Google Scholar]
  235. Ip C. Lessons from basic research in selenium and cancer prevention. J. Nutr. 1998 128 11 1845 1854 10.1093/jn/128.11.1845 9808633
    [Google Scholar]
  236. Jain A. Jain P. Soni P. Tiwari A. Tiwari S.P. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29). J. Gastrointest. Cancer 2023 54 1 90 95 10.1007/s12029‑021‑00788‑7 35043370
    [Google Scholar]
  237. Khurana A. Tekula S. Saifi M.A. Venkatesh P. Godugu C. Therapeutic applications of selenium nanoparticles. Biomed. Pharmacother. 2019 111 802 812 10.1016/j.biopha.2018.12.146 30616079
    [Google Scholar]
  238. Rayman M.P. Selenoproteins and their impact on human health through diverse physiological pathways. Proc. Nutr. Soc. 2005 64 527 542 10.1079/PNS2005467 16313696
    [Google Scholar]
  239. Wallenberg M. Misra S. Bjo¨rnstedt M. Serum levels of selenium and zinc in patients with breast cancer: A case-control study. Basic Clin. Pharmacol. Toxicol. 2014 114 377 386 10.1111/bcpt.12207 24529300
    [Google Scholar]
  240. Papp L.V. Lu J. Holmgren A. Khanna K.K. Selenium compounds as therapeutic agents in cancer. Antioxid. Redox Signal. 2007 9 775 806 10.1089/ars.2007.1528 17508906
    [Google Scholar]
  241. Combs G.F. Biomarkers of selenium status. Nutrients 2015 7 4 2209 2236 10.3390/nu7042209 25835046
    [Google Scholar]
  242. Prasad K.S. Selvaraj K. Biogenic synthesis of selenium nanoparticles and their effect on As(III)-induced toxicity on human lymphocytes. Biol. Trace Elem. Res. 2014 157 3 275 283 10.1007/s12011‑014‑9891‑0 24469678
    [Google Scholar]
  243. Jain P. Satapathy T. Pandey R.K. Acaricidal activity and clinical safety of arecoline hydrobromide on calves infested with cattle tick Rhipicephalus microplus (Acari: Ixodidae). Vet. Parasitol. 2021 298 May 109490 10.1016/j.vetpar.2021.109490 34271319
    [Google Scholar]
  244. Singh R. Prasad J. Satapathy T. Jain P. Singh S. Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles. Indian J. Biochem. Biophys. 2021 58 2 156 161
    [Google Scholar]
  245. Islam M. Huang Y. Jain P. Fan B. Tong L. Wang F. Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno-functional property. Biocatal. Agric. Biotechnol. 2023 50 102700 [Internet]. 10.1016/j.bcab.2023.102700
    [Google Scholar]
  246. Vekariya K.K. Kaur J. Tikoo K. An insight into biofabrication of selenium nanostructures and their biomedical application. Toxicol. Appl. Pharmacol. 2013 268 212 220 10.1016/j.taap.2013.01.028 23415680
    [Google Scholar]
  247. Wadhwani S.A. Shedbalkar U.U. Singh R. Chopade B.A. Biogenic selenium nanoparticles: Current status and future prospects. Appl. Microbiol. Biotechnol. 2016 100 6 2555 2566 10.1007/s00253‑016‑7300‑7 26801915
    [Google Scholar]
  248. Ping Z. Liu T. Xu H. Meng Y. Li W. Xu X. Zhang L. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nano Res. 2017 10 3775 3789 10.1007/s12274‑017‑1590‑7
    [Google Scholar]
  249. Zeng D. Zhao J. Luk K.H. Cheung S.T. Wong K.H. Chen T. Potentiation of in vivo anticancer efficacy of selenium nanoparticles by mushroom polysaccharides surface decoration. J. Agric. Food Chem. 2019 67 10 2865 2876 10.1021/acs.jafc.9b00193 30785270
    [Google Scholar]
  250. Thubagere A. Reinhard B.M. Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing: Insights from a human intestinal epithelium in vitro model. ACS Nano 2010 4 7 3611 3622 10.1021/nn100389a 20560658
    [Google Scholar]
  251. Tang S. Wang T. Jiang M. Huang C. Lai C. Fan Y. Yong Q. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? - A review. Int. J. Biol. Macromol. 2019 128 444 451 10.1016/j.ijbiomac.2019.01.152 30703423
    [Google Scholar]
  252. Khiralla G.M. El-Deeb B.A. Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. Lebensm. Wiss. Technol. 2015 63 2 1001 1007 10.1016/j.lwt.2015.03.086
    [Google Scholar]
  253. Gao X. Li X. Mu J. Ho C-T. Su J. Zhang Y. Lin X. Chen Z. Li B. Xie Y. Carbon dots: A new type of carbon-based nanomaterial with wide applications. Int. J. Biol. Macromol. 2020 152 605 615 10.1016/j.ijbiomac.2020.02.199 32087224
    [Google Scholar]
  254. Mulla N.A. Otari S.V. Bohara R.A. Yadav H.M. Pawar S.H. Rapid and size-controlled biosynthesis of cytocompatible selenium nanoparticles by Azadirachta indica leaves extract for antibacterial activity. Mater. Lett. 2020 264 127353 10.1016/j.matlet.2020.127353
    [Google Scholar]
  255. Ali E.N. El-Sonbaty S.M. Salem F.M. Evaluation of selenium nanoparticles as a potential chemopreventive agent against lung carcinoma. Biol. Sci. 2013 2 38 46
    [Google Scholar]
  256. Rao N.G.R. Majumdar A. Mishra S. Jain P. Biomaterials in the design of nanosensors for disease diagnosis. Biomaterial-Inspired Nanomedicines for Targeted Therapies Pradhan M. Yadav K. Singh Chauhan N. Singapore Springer 2024 209 236 10.1007/978‑981‑97‑3925‑7_8
    [Google Scholar]
  257. Pansare A.V. Kulal D.K. Shedge A.A. Patil V.R. hsDNA groove binding, photocatalytic activity, and in vitro breast and colon cancer cell reducing function of greener SeNPs. Dalton Trans. 2016 45 30 12144 12155 10.1039/C6DT01457G 27402164
    [Google Scholar]
  258. Ramamurthy C. Sampath K.S. Arunkumar P. Kumar M.S. Sujatha V. Premkumar K. Thirunavukkarasu C. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst. Eng. 2013 36 8 1131 1139 10.1007/s00449‑012‑0867‑1 23446776
    [Google Scholar]
  259. Ramos J.F. Tran P.A. Webster T.J. Selenium nanoparticles for the prevention of PVC-related medical infections. 38th Annual Northeast Bioengineering Conference (NEBEC) Philadelphia, PA, USA, 16-18 Mar. 2012, pp. 185-186. 10.1109/NEBC.2012.6207025
    [Google Scholar]
  260. Prasanth S. Sudarsanakumar C. Elucidating the interaction of 1-cysteine-capped selenium nanoparticles and human serum albumin: spectroscopic and thermodynamic analysis. New J. Chem. 2017 41 17 9521 9530 10.1039/C7NJ00477J
    [Google Scholar]
  261. Ramos J.F. Webster T.J. Inflammatory effects of highly pathogenic H5N1 influenza virus infection in the CNS of mice. Int. J. Nanomedicine 2012 7 3907 3914 22915842
    [Google Scholar]
  262. Nguyen T.H.D. Vardhanabhuti B. Lin M. Mustapha A. Cellulose nanofibril/silver nanoparticle composite as an active food packaging system and its toxicity to human colon cells. Food Control 2017 77 17 24 10.1016/j.foodcont.2017.01.018
    [Google Scholar]
  263. Sharma G. Sharma A. Bhavesh R. Park J. Ganbold B. Nam J.S. Lee S.S. Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules 2014 19 3 2761 2770 10.3390/molecules19032761 24583881
    [Google Scholar]
  264. Zhang W. Chen Z. Liu H. Zhang L. Gao P. Li D. Ionic liquids-assisted synthesis and electrochemical properties of Bi2S3 nanostructures. Colloids Surf. B Biointerfaces 2011 88 196 201 10.1016/j.colsurfb.2011.06.031 21752611
    [Google Scholar]
  265. Vyas J. Rana S. Antioxidant activity and green synthesis of selenium nanoparticles using allium sativum extract. Int. J. Phytomed. 2017 9 4 634 10.5138/09750185.2185
    [Google Scholar]
  266. Yazdi M.H. Mahdavi M. Faghfuri E. Faramarzi M.A. Sepehrizadeh Z. Hassan Z.M. Gholami M. Shahverdi A.R. Biogenic selenium nanoparticles and their anticancer effects pertaining to probiotic bacteria - A review. Iran. J. Biotechnol. 2015 13 1 9 10.15171/ijb.1056 28959284
    [Google Scholar]
  267. Shubharani R. Mahesh M. Yogananda Murthy V.N. Biosynthesis and characterization, antioxidant and antimicrobial activities of selenium nanoparticles from ethanol extract of bee propolis J. Nanomed. Nanotechnol. 2019 10 1 7
    [Google Scholar]
  268. Afzal B. Yasin D. Husain S. Zaki A. Srivastava P. Kumar R. Fatma T. Biocontrol efficacy of mycosynthesized selenium nanoparticle using Trichoderma sp. on insect pest Spodoptera litura. Biocatal. Agric. Biotechnol. 2019 21 101307 10.1016/j.bcab.2019.101307
    [Google Scholar]
  269. Yazdi M.H. Mahdavi M. Setayesh N. Esfandyar M. Shahverdi A.R. Bioreduction of Se(IV) by Lactiplantibacillus plantarum NML21 and synthesis of selenium nanospheres Se(0). Daru 2013 21 33 10.1186/2008‑2231‑21‑33 23631392
    [Google Scholar]
  270. Kamnev A.A. Mamchenkova P.V. Dyatlova Y.A. Tugarova A.V. FTIR spectroscopic studies of selenite reduction by cells of the rhizobacterium Azospirillum brasilense Sp7 and the formation of selenium nanoparticles. J. Mol. Struct. 2017 1140 106 112 10.1016/j.molstruc.2016.12.003
    [Google Scholar]
  271. Fritea L. Laslo V. Cavalu S. Costea T. Vicas S.I. Green biosynthesis of selenium nanoparticles using parsley (Petroselinum crispum) leaves extract. Stud. Univ. Vasile Goldis Arad Ser. Stiint. Vietii. 2017 27 3 203 208
    [Google Scholar]
  272. Kokila K. Elavarasan N. Sujatha V. Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and their biological applications. New J. Chem. 2017 41 15 7481 7490 10.1039/C7NJ01124E
    [Google Scholar]
  273. Karami M. Asri-Rezaei S. Dormanesh B. Nazarizadeh A. Comparative study of radioprotective effects of selenium nanoparticles and sodium selenite in irradiation-induced nephropathy of mice model. Int. J. Radiat. Biol. 2018 94 1 17 27 10.1080/09553002.2018.1400709 29108452
    [Google Scholar]
  274. Wu H. Li X. Liu W. Chen T. Li Y. Zheng W. Man C.W.Y. Wong M.K. Wong K.H. Surface decoration of selenium nanoparticles by mushroom polysaccharides–protein complexes to achieve enhanced cellular uptake and antiproliferative activity. J. Mater. Chem. 2012 22 19 9602 10.1039/c2jm16828f
    [Google Scholar]
  275. Alabi C. Vegas A. Anderson D. Attacking the genome: Emerging siRNA nanocarriers from concept to clinic. Curr. Opin. Pharmacol. 2012 12 4 427 433 10.1016/j.coph.2012.05.004 22726555
    [Google Scholar]
  276. Malumbres M. Barbacid M. Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer 2009 9 3 153 166 10.1038/nrc2602 19238148
    [Google Scholar]
  277. Tian X. Nguyen M. Foote H.P. Caster J.M. Roche K.C. Peters C.G. Wu P. Jayaraman L. Garmey E.G. Tepper J.E. Eliasof S. Wang A.Z. CRLX101, a nanoparticle-drug conjugate containing camptothecin, improves rectal cancer chemoradiotherapy by inhibiting DNA repair and HIF1α. Cancer Res. 2017 77 1 112 122 10.1158/0008‑5472.CAN‑15‑2951 27784746
    [Google Scholar]
  278. Chibaudel B. Maindrault-Gœbel F. Bachet J.B. Louvet C. Khalil A. Dupuis O. Hammel P. Garcia M.L. Bennamoun M. Brusquant D. Tournigand C. André T. Arbaud C. Larsen A.K. Wang Y.W. Yeh C.G. Bonnetain F. de Gramont A. PEPCOL: A GERCOR randomized phase II study of nanoliposomal irinotecan PEP02 (MM-398) or irinotecan with leucovorin/5-fluorouracil as second-line therapy in metastatic colorectal cancer. Cancer Med. 2016 5 4 676 683 10.1002/cam4.635 26806397
    [Google Scholar]
  279. Lyon P.C. Griffiths L.F. Lee J. Chung D. Carlisle R. Wu F. Middleton M.R. Gleeson F.V. Coussios C.C. Clinical trial protocol for TARDOX: A phase I study to investigate the feasibility of targeted release of lyso-thermosensitive liposomal doxorubicin (ThermoDox®) using focused ultrasound in patients with liver tumours. J. Ther. Ultrasound 2017 5 1 28 10.1186/s40349‑017‑0104‑0 29118984
    [Google Scholar]
  280. Golan T. Grenader T. Ohana P. Amitay Y. Shmeeda H. La-Beck N.M. Tahover E. Berger R. Gabizon A.A. Pegylated liposomal mitomycin C prodrug enhances tolerance of mitomycin C: A phase 1 study in advanced solid tumor patients. Cancer Med. 2015 4 10 1472 1483 10.1002/cam4.491 26172205
    [Google Scholar]
  281. Maitra R. Halpin P.A. Karlson K.H. Page R.L. Paik D.Y. Leavitt M.O. Moyer B.D. Stanton B.A. Hamilton J.W. Differential effects of mitomycin C and doxorubicin on P-glycoprotein expression. Biochem. J. 2001 355 3 617 624 10.1042/bj3550617 11311122
    [Google Scholar]
  282. Norris R.E. Shusterman S. Gore L. Muscal J.A. Macy M.E. Fox E. Berkowitz N. Buchbinder A. Bagatell R. Phase 1 evaluation of EZN-2208, a polyethylene glycol conjugate of SN38, in children adolescents and young adults with relapsed or refractory solid tumors. Pediatr. Blood Cancer 2014 61 10 1792 1797 10.1002/pbc.25105 24962521
    [Google Scholar]
  283. Garrett C.R. Bekaii-Saab T.S. Ryan T. Fisher G.A. Clive S. Kavan P. Shacham-Shmueli E. Buchbinder A. Goldberg R.M. Randomized phase 2 study of pegylated SN‐38 (EZN‐2208) or irinotecan plus cetuximab in patients with advanced colorectal cancer. Cancer 2013 119 24 4223 4230 10.1002/cncr.28358 24105075
    [Google Scholar]
  284. Abdellatif A.A.H. Zayed G. El-Bakry A. Zaky A. Saleem I.Y. Tawfeek H.M. Novel gold nanoparticles coated with somatostatin as a potential delivery system for targeting somatostatin receptors. Drug Dev. Ind. Pharm. 2016 42 11 1782 1791 10.3109/03639045.2016.1173052 27032509
    [Google Scholar]
  285. Awosika A.O. Below J. Das J.M. Vincristine. StatPearls Internet Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  286. Ishida T. Huang C.L. Wada H. Liposome containing shRNA molecule targeting a thymidylate synthase and use thereof US Patent 20120301537A1 2012
  287. Phase 2 study of thermodox as adjuvant therapy with thermal ablation (RFA) in treatment of metastatic colorectal cancer(mCRC) (ABLATE). NCT01464593 2022
  288. Pillai G. Nanomedicines for Cancer Therapy: An Update of FDA Approved and Those under Various Stages of Development. SOJ Pharm. Pharm. Sci. 2014 1 2 13 10.15226/2374‑6866/1/1/00109
    [Google Scholar]
  289. Dragovich T. Mendelson D. Kurtin S. Richardson K. Von Hoff D. Hoos A. A Phase 2 trial of the liposomal DACH platinum L-NDDP in patients with therapy-refractory advanced colorectal cancer. Cancer Chemother. Pharmacol. 2006 58 6 759 764 10.1007/s00280‑006‑0235‑4 16847673
    [Google Scholar]
  290. Bala V. Rao S. Boyd B.J. Prestidge C.A. Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. J. Control. Release 2013 172 1 48 61 10.1016/j.jconrel.2013.07.022 23928356
    [Google Scholar]
  291. Cabeza L. Perazzoli G. Mesas C. Jiménez-Luna C. Prados J. Rama A.R. Melguizo C. Nanoparticles in colorectal cancer therapy: Latest in vivo assays, clinical trials, and patents. AAPS PharmSciTech 2020 21 5 178 10.1208/s12249‑020‑01731‑y 32591920
    [Google Scholar]
  292. Xiao B. Zhang M. Viennois E. Zhang Y. Wei N. Baker M.T. Jung Y. Merlin D. Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface-functionalized nanoparticles. Biomaterials 2015 48 147 160 10.1016/j.biomaterials.2015.01.014 25701040
    [Google Scholar]
  293. Rampado R. Crotti S. Caliceti P. Pucciarelli S. Agostini M. Nanovectors design for theranostic applications in colorectal cancer. J. Oncol. 2019 2019 1 27 10.1155/2019/2740923 31662751
    [Google Scholar]
  294. Giglio V. Sgarlata C. Vecchio G. Novel amino-cyclodextrin cross-linked oligomer as efficient carrier for anionic drugs: A spectroscopic and nanocalorimetric investigation. RSC Advances 2015 5 22 16664 16671 10.1039/C4RA16064A
    [Google Scholar]
  295. Hamaguchi T. Tsuji A. Yamaguchi K. Takeda K. Uetake H. Esaki T. Amagai K. Sakai D. Baba H. Kimura M. Matsumura Y. Tsukamoto T. A phase II study of NK012, a polymeric micelle formulation of SN-38, in unresectable, metastatic or recurrent colorectal cancer patients. Cancer Chemother. Pharmacol. 2018 82 6 1021 1029 10.1007/s00280‑018‑3693‑6 30284603
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812342216241120051723
Loading
/content/journals/nanoasi/10.2174/0122106812342216241120051723
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: cancer ; adenocarcinoma ; Selenium nanoparticles ; carbon nanotube ; nanomaterials ; colorectal
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test