Skip to content
2000
image of A Review of Nanocellulose as a Drug Carrier System

Abstract

Nanocellulose is derived from plant fibers that exhibit extraordinary strength and adaptability at the nanoscale. The nanocellulose is categorized into three different types of namely bacterial cellulose (BC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (CNC). A few remarkable properties like shape, good surface area, and biological characteristics like biodegradability, biocompatibility, and less toxicity make it unique. Nanocellulose may have usage in antimicrobial applications, drug delivery systems, pharmaceutical coatings, and bioavailability enhancement. The nanocellulose is explored continuously to obtain a thorough knowledge of it in the field of pharmaceuticals. Nanocellulose exhibits remarkable potential as a medication delivery carrier system because of its special properties. Drug distribution to targeted locations inside the human body can be made more effective and selective when nanocellulose is structured and formulated in the form of nanocarrier system. Before nanocellulose is used in pharmaceutical yield it is extracted from plant cell walls there are some extraction methods for each type of nanocellulose. For nanocrystalline cellulose and nano fibrillated cellulose, processes like grinding, homogenization, and acid hydrolysis are employed, while BC is extracted using bacterial culture techniques. Several applications of nanocellulose are now beneficial in terms of pharmaceutical uses as well as pharmacological research, and future study is anticipated to provide more information. The pharmaceutical sector is now researching to test the use of developed nanocellulose in medication delivery systems.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812333663241106023502
2024-11-11
2025-01-27
Loading full text...

Full text loading...

References

  1. Ashique S. Sandhu N.K. Chawla V. Chawla P.A. Targeted drug delivery: trends and perspectives. Curr. Drug Deliv. 2021 18 10 1435 1455 10.2174/1567201818666210609161301 34151759
    [Google Scholar]
  2. Holt B.L. Stoyanov S.D. Pelan E. Paunov V.N. Novel anisotropic materials from functionalised colloidal cellulose and cellulose derivatives. J. Mater. Chem. 2010 20 45 10058 10070 10.1039/c0jm01022g
    [Google Scholar]
  3. Gao K. Shao Z. Li J. Wang X. Peng X. Wang W. Wang F. Cellulose nanofiber–graphene all solid-state flexible supercapacitors. J. Mater. Chem. A Mater. Energy Sustain. 2013 1 1 63 67 10.1039/C2TA00386D
    [Google Scholar]
  4. Nogi M. Iwamoto S. Nakagaito A.N. Yano H. Optically transparent nanofiber paper. Adv. Mater. 2009 21 16 1595 1598 10.1002/adma.200803174
    [Google Scholar]
  5. Phanthong P. Reubroycharoen P. Hao X. Xu G. Abudula A. Guan G. Nanocellulose: Extraction and application. Carbon Resources Conversion 2018 1 1 32 43 10.1016/j.crcon.2018.05.004
    [Google Scholar]
  6. Kim J.H. Shim B.S. Kim H.S. Lee Y.J. Min S.K. Jang D. Abas Z. Kim J. Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology 2015 2 2 197 213 10.1007/s40684‑015‑0024‑9
    [Google Scholar]
  7. Ashique S. Upadhyay A. Hussain A. Bag S. Chaterjee D. Rihan M. Mishra N. Bhatt S. Puri V. Sharma A. Prasher P. Singh S.K. Chellappan D.K. Gupta G. Dua K. Green biogenic silver nanoparticles, therapeutic uses, recent advances, risk assessment, challenges, and future perspectives. J. Drug Deliv. Sci. Technol. 2022 77 103876 10.1016/j.jddst.2022.103876
    [Google Scholar]
  8. Bilbao-Sainz C. Bras J. Williams T. Sénechal T. Orts W. HPMC reinforced with different cellulose nano-particles. Carbohydr. Polym. 2011 86 4 1549 1557 10.1016/j.carbpol.2011.06.060
    [Google Scholar]
  9. Jiang W. Gu J. Nanocrystalline cellulose isolated from different renewable sources to fabricate natural rubber composites with outstanding mechanical properties. Cellulose 2020 27 10 5801 5813 10.1007/s10570‑020‑03209‑3
    [Google Scholar]
  10. Zhang Y. Yin M. Li L. Fan B. Liu Y. Li R. Ren X. Huang T.S. Kim I.S. Construction of aerogels based on nanocrystalline cellulose and chitosan for high efficient oil/water separation and water disinfection. Carbohydr. Polym. 2020 243 116461 10.1016/j.carbpol.2020.116461 32532394
    [Google Scholar]
  11. Habibi Y. Lucia L.A. Rojas O.J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 2010 110 6 3479 3500 10.1021/cr900339w 20201500
    [Google Scholar]
  12. Pradeep H.K. Patel D.H. Onkarappa H.S. Pratiksha C.C. Prasanna G.D. Role of nanocellulose in industrial and pharmaceutical sectors - A review. Int. J. Biol. Macromol. 2022 207 1038 1047 10.1016/j.ijbiomac.2022.03.171 35364203
    [Google Scholar]
  13. Jawaid M. Mohammad F. Nanocellulose and nanohydrogel matrices: Biotechnological and biomedical applications. John Wiley & Sons 2017 10.1002/9783527803835
    [Google Scholar]
  14. Raghav N. Sharma M.R. Kennedy J.F. Nanocellulose: A mini-review on types and use in drug delivery systems. Carbohydrate Polymer Technologies and Applications 2021 2 100031 10.1016/j.carpta.2020.100031
    [Google Scholar]
  15. Hani U. Gowda B.H.J. Haider N. Ramesh K.V.R.N.S. Paul K. Ashique S. Ahmed M.G. Narayana S. Mohanto S. Kesharwani P. Nanoparticle-based approaches for treatment of hematological malignancies: a comprehensive review. AAPS PharmSciTech 2023 24 8 233 10.1208/s12249‑023‑02670‑0 37973643
    [Google Scholar]
  16. Priya Ashique S. Afzal O. Khalid M. Faruque Ahmad M. Upadhyay A. Kumar S. Garg A. Ramzan M. Hussain A. Altamimi M.A. Altamimi A.S.A. Webster T.J. Khanam A. Biogenic nanoparticles from waste fruit peels: Synthesis, applications, challenges and future perspectives. Int. J. Pharm. 2023 643 123223 10.1016/j.ijpharm.2023.123223 37442399
    [Google Scholar]
  17. Tran T.K. Nguyen M.K. Lin C. Hoang T.D. Nguyen T.C. Lone A.M. Khedulkar A.P. Gaballah M.S. Singh J. Chung W.J. Nguyen D.D. Review on fate, transport, toxicity and health risk of nanoparticles in natural ecosystems: Emerging challenges in the modern age and solutions toward a sustainable environment. Sci. Total Environ. 2024 912 169331 10.1016/j.scitotenv.2023.169331 38103619
    [Google Scholar]
  18. Ashique S. Garg A. Mishra N. Raina N. Ming L.C. Tulli H.S. Behl T. Rani R. Gupta M. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 11 2769 2792 10.1007/s00210‑023‑02522‑5 37219615
    [Google Scholar]
  19. Jiang F. Yin L. Yu Q. Zhong C. Zhang J. Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries. J. Power Sources 2015 279 21 27 10.1016/j.jpowsour.2014.12.090
    [Google Scholar]
  20. Jozala A.F. de Lencastre-Novaes L.C. Lopes A.M. de Carvalho Santos-Ebinuma V. Mazzola P.G. Pessoa- A. Jr Grotto D. Gerenutti M. Chaud M.V. Bacterial nanocellulose production and application: a 10-year overview. Appl. Microbiol. Biotechnol. 2016 100 5 2063 2072 10.1007/s00253‑015‑7243‑4 26743657
    [Google Scholar]
  21. Liu S. Liu Y.J. Deng F. Ma M.G. Bian J. Comparison of the effects of microcrystalline cellulose and cellulose nanocrystals on Fe 3 O 4 /C nanocomposites. RSC Advances 2015 5 91 74198 74205 10.1039/C5RA12440A
    [Google Scholar]
  22. Lin N. Huang J. Dufresne A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 2012 4 11 3274 3294 10.1039/c2nr30260h 22565323
    [Google Scholar]
  23. Dufresne A. Nanocellulose: a new ageless bionanomaterial. Mater. Today 2013 16 6 220 227 10.1016/j.mattod.2013.06.004
    [Google Scholar]
  24. Lin S.P. Loira Calvar I. Catchmark J.M. Liu J.R. Demirci A. Cheng K.C. Biosynthesis, production and applications of bacterial cellulose. Cellulose 2013 20 5 2191 2219 10.1007/s10570‑013‑9994‑3
    [Google Scholar]
  25. Lin N. Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J. 2014 59 302 325 10.1016/j.eurpolymj.2014.07.025
    [Google Scholar]
  26. Ilyas RA Sapuan SM Ibrahim R Atikah MS Atiqah A Ansari MN Norrrahim MN Production, Processes and Modification of Nanocrystalline Cellulose from Agro-Waste: A Review. Nanocrystalline Materials IntechOpen 2019
    [Google Scholar]
  27. Ditzel F.I. Prestes E. Carvalho B.M. Demiate I.M. Pinheiro L.A. Nanocrystalline cellulose extracted from pine wood and corncob. Carbohydr. Polym. 2017 157 1577 1585 10.1016/j.carbpol.2016.11.036 27987871
    [Google Scholar]
  28. Khan A. Khan R.A. Salmieri S. Le Tien C. Riedl B. Bouchard J. Chauve G. Tan V. Kamal M.R. Lacroix M. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr. Polym. 2012 90 4 1601 1608 10.1016/j.carbpol.2012.07.037 22944422
    [Google Scholar]
  29. Hamad W.Y. Development and properties of nanocrystalline cellulose. Sustainable production of fuels, chemicals, and fibers from forest biomass. American Chemical Society 2011 301 321 10.1021/bk‑2011‑1067.ch012
    [Google Scholar]
  30. Missoum K. Belgacem M. Bras J. Nanofibrillated cellulose surface modification: a review. Materials (Basel) 2013 6 5 1745 1766 10.3390/ma6051745 28809240
    [Google Scholar]
  31. Naderi A. Lindström T. A comparative study of the rheological properties of three different nanofibrillated cellulose systems. Nord. Pulp Paper Res. J. 2016 31 3 354 363 10.3183/npprj‑2016‑31‑03‑p354‑363
    [Google Scholar]
  32. Wang L. Li K. Copenhaver K. Mackay S. Lamm M.E. Zhao X. Dixon B. Wang J. Han Y. Neivandt D. Johnson D.A. Walker C.C. Ozcan S. Gardner D.J. Review on nonconventional fibrillation methods of producing cellulose nanofibrils and their applications. Biomacromolecules 2021 22 10 4037 4059 10.1021/acs.biomac.1c00640 34506126
    [Google Scholar]
  33. Simão C.D. Reparaz J.S. Wagner M.R. Graczykowski B. Kreuzer M. Ruiz-Blanco Y.B. García Y. Malho J.M. Goñi A.R. Ahopelto J. Sotomayor Torres C.M. Optical and mechanical properties of nanofibrillated cellulose: Toward a robust platform for next-generation green technologies. Carbohydr. Polym. 2015 126 40 46 10.1016/j.carbpol.2015.03.032 25933520
    [Google Scholar]
  34. Naderi A. Nanofibrillated cellulose: properties reinvestigated. Cellulose 2017 24 5 1933 1945 10.1007/s10570‑017‑1258‑1
    [Google Scholar]
  35. Zimmermann T. Bordeanu N. Strub E. Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr. Polym. 2010 79 4 1086 1093 10.1016/j.carbpol.2009.10.045
    [Google Scholar]
  36. Sharma C. Bhardwaj N.K. Bacterial nanocellulose: Present status, biomedical applications and future perspectives. Mater. Sci. Eng. C 2019 104 109963 10.1016/j.msec.2019.109963 31499992
    [Google Scholar]
  37. Brown A.J. XLIII.—On an acetic ferment which forms cellulose. J. Chem. Soc. Trans. 1886 49 0 432 439 10.1039/CT8864900432
    [Google Scholar]
  38. de Amorim J.D.P. de Souza K.C. Duarte C.R. da Silva Duarte I. de Assis Sales Ribeiro F. Silva G.S. de Farias P.M.A. Stingl A. Costa A.F.S. Vinhas G.M. Sarubbo L.A. Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ. Chem. Lett. 2020 18 3 851 869 10.1007/s10311‑020‑00989‑9
    [Google Scholar]
  39. Andree V. Niopek D. Müller C. Eiselt J.P. Foh N. Rzany A. Hensel B. Influence of drying methods on the physical properties of bacterial nanocellulose. Mater. Res. Express 2021 8 2 025402 10.1088/2053‑1591/abe016
    [Google Scholar]
  40. Yamanaka S. Sugiyama J. Structural modification of bacterial cellulose. Cellulose 2000 7 3 213 225 10.1023/A:1009208022957
    [Google Scholar]
  41. Liu S. Qamar S.A. Qamar M. Basharat K. Bilal M. Engineered nanocellulose-based hydrogels for smart drug delivery applications. Int. J. Biol. Macromol. 2021 181 275 290 10.1016/j.ijbiomac.2021.03.147 33781811
    [Google Scholar]
  42. Lunardi V.B. Soetaredjo F.E. Putro J.N. Santoso S.P. Yuliana M. Sunarso J. Ju Y.H. Ismadji S. Nanocelluloses: Sources, pretreatment, isolations, modification, and its application as the drug carriers. Polymers (Basel) 2021 13 13 2052 10.3390/polym13132052 34201884
    [Google Scholar]
  43. Hasan N. Rahman L. Kim S.H. Cao J. Arjuna A. Lallo S. Jhun B.H. Yoo J.W. Recent advances of nanocellulose in drug delivery systems. J. Pharm. Investig. 2020 50 6 553 572 10.1007/s40005‑020‑00499‑4
    [Google Scholar]
  44. Karimian A. Parsian H. Majidinia M. Rahimi M. Mir S.M. Samadi Kafil H. Shafiei-Irannejad V. Kheyrollah M. Ostadi H. Yousefi B. Nanocrystalline cellulose: Preparation, physicochemical properties, and applications in drug delivery systems. Int. J. Biol. Macromol. 2019 133 850 859 10.1016/j.ijbiomac.2019.04.117 31002901
    [Google Scholar]
  45. Singh G. Saquib S. Gupta A. Environmental, legal, health, and safety issue of nanocellulose. Nanocellulose materials. Elsevier 2022 265 288 10.1016/B978‑0‑12‑823963‑6.00008‑9
    [Google Scholar]
  46. Kian L.K. Jawaid M. Ariffin H. Karim Z. Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. Int. J. Biol. Macromol. 2018 114 54 63 10.1016/j.ijbiomac.2018.03.065 29551511
    [Google Scholar]
  47. Moon R.J. Martini A. Nairn J. Simonsen J. Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 2011 40 7 3941 3994 10.1039/c0cs00108b 21566801
    [Google Scholar]
  48. Dufresne A. Nanocellulose: potential reinforcement in composites, Nat. Polym., Vol. Nanocompos. 2012 2 1 32
    [Google Scholar]
  49. Kargarzadeh H Ioelovich M Ahmad I Thomas S Dufresne A Methods for Extraction of Nanocellulose from Various Sources. Handbook of Nanocellulose and Cellulose Nanocomposites Wiley 2017 10.1002/9783527689972.ch1
    [Google Scholar]
  50. Araki J. Wada M. Kuga S. Okano T. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf. A Physicochem. Eng. Asp. 1998 142 1 75 82 10.1016/S0927‑7757(98)00404‑X
    [Google Scholar]
  51. Filpponen I. Argyropoulos D.S. Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromolecules 2010 11 4 1060 1066 10.1021/bm1000247 20235575
    [Google Scholar]
  52. Dunlop M.J. Acharya B. Bissessur R. Isolation of nanocrystalline cellulose from tunicates. J. Environ. Chem. Eng. 2018 6 4 4408 4412 10.1016/j.jece.2018.06.056
    [Google Scholar]
  53. Liu D. Zhong T. Chang P.R. Li K. Wu Q. Starch composites reinforced by bamboo cellulosic crystals. Bioresour. Technol. 2010 101 7 2529 2536 10.1016/j.biortech.2009.11.058 20015636
    [Google Scholar]
  54. Nechyporchuk O. Belgacem M.N. Bras J. Production of cellulose nanofibrils: A review of recent advances. Ind. Crops Prod. 2016 93 2 25 10.1016/j.indcrop.2016.02.016
    [Google Scholar]
  55. Feng Y.H. Cheng T.Y. Yang W.G. Ma P.T. He H.Z. Yin X.C. Yu X.X. Characteristics and environmentally friendly extraction of cellulose nanofibrils from sugarcane bagasse. Ind. Crops Prod. 2018 111 285 291 10.1016/j.indcrop.2017.10.041
    [Google Scholar]
  56. Abo-Elseoud W.S. Hassan M.L. Sabaa M.W. Basha M. Hassan E.A. Fadel S.M. Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide. Int. J. Biol. Macromol. 2018 111 604 613 10.1016/j.ijbiomac.2018.01.044 29325745
    [Google Scholar]
  57. Hanafiah S.F. Danial W.H. Samah M.A. Samad W.Z. Susanti D. Salim R.M. Majid Z.A. Extraction and characterization of microfibrillated and nanofibrillated cellulose from office paper waste. Malays. J. Anal. Sci. 2019 23 901 913
    [Google Scholar]
  58. Roman M. Winter W.T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 2004 5 5 1671 1677 10.1021/bm034519+ 15360274
    [Google Scholar]
  59. Liu C. Du H. Yu G. Zhang Y. Kong Q. Li B. Mu X. Simultaneous Extraction of Carboxylated Celulose Nanocrystals and Nanofibrils via Citric Acid Hydrolysis——A Sustainable Route. Paper and Biomaterials 2017 2 4 19 26 10.26599/PBM.2017.9260024
    [Google Scholar]
  60. Purkayastha S. Saha S. Ghosh A.K. Influence of green extraction process of nano fibrillated cellulose using subcritical water/ CO 2 on its properties and development of its bio composite. Polym. Eng. Sci. 2021 61 5 1310 1323 10.1002/pen.25644
    [Google Scholar]
  61. Adnan S Azhar AH Jasmani L Samsudin MF Properties of paper incorporated with nanocellulose extracted using microbial hydrolysis assisted shear process. IOP Conf. Ser.: Mater. Sci. Eng. 2018 368 012022 10.1088/1757‑899X/368/1/012022
    [Google Scholar]
  62. C S J.C. George N. Narayanankutty S.K. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr. Polym. 2016 142 158 166 10.1016/j.carbpol.2016.01.015 26917386
    [Google Scholar]
  63. Nechyporchuk O. Pignon F. Belgacem M.N. Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J. Mater. Sci. 2015 50 2 531 541 10.1007/s10853‑014‑8609‑1
    [Google Scholar]
  64. Fitri I.A. Mitbumrung W. Akanitkul P. Rungraung N. Kemsawasd V. Jain S. Winuprasith T. Encapsulation of β-carotene in oil-in-water emulsions containing nanocellulose: Impact on emulsion properties, in vitro digestion, and bioaccessibility. Polymers (Basel) 2022 14 7 1414 10.3390/polym14071414 35406288
    [Google Scholar]
  65. Mujtaba M. Negi A. King A.W.T. Zare M. Kuncova-Kallio J. Surface modifications of nanocellulose for drug delivery applications; a critical review. Curr. Opin. Biomed. Eng. 2023 28 100475 10.1016/j.cobme.2023.100475
    [Google Scholar]
  66. Khojastehfar A. Mahjoub S. Application of nanocellulose derivatives as drug carriers; a novel approach in drug delivery. Anti-Cancer Agents Med. Chem. 2021 21 6 692 702
    [Google Scholar]
  67. Tan T.H. Lee H.V. Dabdawb W.A.Y. Abd Hamid S.B.B.O. Chapter 5 - A review of nanocellulose in the drug-delivery system. Materials for Biomedical Engineering Nanomaterials-Based Drug Delivery Elsevier 2019 131 164 10.1016/B978‑0‑12‑816913‑1.00005‑2
    [Google Scholar]
  68. Xie Z. Xiong Q. Fang Y. Zhang Q. Liang W. Cheng J. Shang W. Zhao W. Zhao J. Novel biodegradable composite mulch film embedded with temperature-responsive pesticide microcapsules for durable control of phytophthora root rot on soybean. ACS Sustain. Chem.& Eng. 2023 11 26 9868 9879 10.1021/acssuschemeng.3c02824
    [Google Scholar]
  69. Huo Y. Liu Y. Xia M. Du H. Lin Z. Li B. Liu H. Nanocellulose-based composite materials are used in drug delivery systems. Polymers (Basel) 2022 14 13 2648 10.3390/polym14132648 35808693
    [Google Scholar]
  70. Nanocellulose and Nanogels as Modern Drug Delivery Systems. Nanocellulose and Nanohydrogel Matrices: Biotechnological and Biomedical Applications 2017 209 269
    [Google Scholar]
  71. Cao P. Amiralian N. Wang J. Sun B. Popat A. Xie F. Xu Z.P. Li Y. Li L. Engineering nano-cellulose bio-composites to improve protein delivery for oral vaccination. Biomaterials Advances 2023 149 213400 10.1016/j.bioadv.2023.213400 37018915
    [Google Scholar]
  72. Posada L. Jaramillo-Quiceno N. Castro C. Osorio M. Mucoadhesive capsules based on bacterial nanocellulose and chitosan as delivery system of turmeric extract. Heliyon 2023 9 11 e21836 10.1016/j.heliyon.2023.e21836 38034640
    [Google Scholar]
  73. Roy H. Hasan Parvej K. Mozammal Hosen M. Shahinoor Islam M. Firoz S.H. pH-responsive release of ciprofloxacin hydrochloride from micro-, nano-, and functionalized nanocellulose. Arab. J. Chem. 2024 17 5 105763 10.1016/j.arabjc.2024.105763
    [Google Scholar]
  74. Bravo I. Viejo L. de los Ríos C. García-Frutos E.M. Darder M. Cellulose/pectin-based materials incorporating Laponite-indole derivative hybrid for oral administration and controlled delivery of the neuroprotective drug. Int. J. Biol. Macromol. 2023 234 123765 10.1016/j.ijbiomac.2023.123765 36812973
    [Google Scholar]
  75. Hung Mai V. Manufacture and Assessment of the absorption capability of famotidine to 3D-nano-cellulose network. Sys Rev Pharm 2020 11 7 309 313
    [Google Scholar]
  76. Qin Z. Kong F. Nanocellulose incorporated oleogel matrix for controlled-release of active ingredients in the lower gastrointestinal tract. Int. J. Biol. Macromol. 2023 225 615 624 10.1016/j.ijbiomac.2022.11.121 36395944
    [Google Scholar]
  77. Bolko Seljak K. Sterle Zorec B. Gosenca Matjaž M. Nanocellulose-Based Film-Forming Hydrogels for Improved Outcomes in Atopic Skin. Pharmaceutics 2023 15 7 1918 10.3390/pharmaceutics15071918 37514104
    [Google Scholar]
  78. Gonçalves I.S. Lima L.R. Berretta A.A. Amorim N.A. Pratavieira S. Corrêa T.Q. Nogueira F.A.R. Barud H.S. Antimicrobial formulation of a bacterial nanocellulose/propolis-containing photosensitizer for biomedical applications. Polymers (Basel) 2023 15 4 987 10.3390/polym15040987 36850271
    [Google Scholar]
  79. Loh E.Y.X. Mohamad N. Fauzi M.B. Ng M.H. Ng S.F. Mohd Amin M.C.I. Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci. Rep. 2018 8 1 2875 10.1038/s41598‑018‑21174‑7 29440678
    [Google Scholar]
  80. Sumitha N.S. Krishna N.G. Sailaja G.S. Chitosan-TEMPO-Oxidized Nanocellulose Magnetic Responsive Patches with Hyperthermia Potential for Smart Melanoma Therapy. ACS Appl. Polym. Mater. 2023 5 11 9170 9179 10.1021/acsapm.3c01654
    [Google Scholar]
  81. Cui M. Tian Y. Liu Y. Liu H. Tao J. A highly therapeutic and selective delivery system for curcumin based on nanocellulose and folic acid. Cellulose 2023 30 8 5113 5126 10.1007/s10570‑023‑05122‑x
    [Google Scholar]
  82. Yusefi M. Shameli K. Jahangirian H. Teow S.Y. Umakoshi H. Saleh B. Rafiee-moghaddam R. Webster T.J. The potential anticancer activity of 5-fluorouracil loaded in cellulose fibers isolated from rice straw. Int. J. Nanomedicine 2020 15 5417 5432 10.2147/IJN.S250047 32801697
    [Google Scholar]
  83. Ilkar Erdagi S. Ngwabebhoh F.A. Yildiz U. Pickering stabilized nanocellulose-alginate: A diosgenin-mediated delivery of quinalizarin as a potent cyto-inhibitor in human lung/breast cancer cell lines. Mater. Sci. Eng. C 2020 109 110621 10.1016/j.msec.2019.110621 32228903
    [Google Scholar]
  84. Anirudhan T.S. Manjusha V. Chithra Sekhar V. A new biodegradable nano cellulose-based drug delivery system for pH-controlled delivery of curcumin. Int. J. Biol. Macromol. 2021 183 2044 2054 10.1016/j.ijbiomac.2021.06.010 34097960
    [Google Scholar]
  85. Hamouda R.A. Abd El Maksoud A.I. Wageed M. Alotaibi A.S. Elebeedy D. Khalil H. Hassan A. Abdella A. Characterization and anticancer activity of biosynthesized Au/cellulose nanocomposite from Chlorella vulgaris. Polymers (Basel) 2021 13 19 3340 10.3390/polym13193340 34641156
    [Google Scholar]
  86. Yusefi M. Soon M.L.K. Teow S.Y. Monchouguy E.I. Neerooa B.N.H.M. Izadiyan Z. Jahangirian H. Rafiee-Moghaddam R. Webster T.J. Shameli K. Fabrication of cellulose nanocrystals as potential anticancer drug delivery systems for colorectal cancer treatment. Int. J. Biol. Macromol. 2022 199 372 385 10.1016/j.ijbiomac.2021.12.189 34998882
    [Google Scholar]
  87. Ning L. You C. Zhang Y. Li X. Wang F. Synthesis and biological evaluation of surface-modified nanocellulose hydrogel loaded with paclitaxel. Life Sci. 2020 241 117137 10.1016/j.lfs.2019.117137 31809713
    [Google Scholar]
  88. González-Domínguez J.M. Grasa L. Frontiñán-Rubio J. Abás E. Domínguez-Alfaro A. Mesonero J.E. Criado A. Ansón-Casaos A. Intrinsic and selective activity of functionalized carbon nanotube/nanocellulose platforms against colon cancer cells. Colloids Surf. B Biointerfaces 2022 212 112363 10.1016/j.colsurfb.2022.112363 35123194
    [Google Scholar]
  89. Castaño M. Martínez E. Osorio M. Castro C. Development of genistein drug delivery systems based on bacterial nanocellulose for potential colorectal cancer chemoprevention: effect of nanocellulose surface modification on genistein adsorption. Molecules 2022 27 21 7201 10.3390/molecules27217201 36364026
    [Google Scholar]
  90. Piccinno F. Hischier R. Seeger S. Som C. Predicting the environmental impact of a future nanocellulose production at industrial scale: Application of the life cycle assessment scale-up framework. J. Clean. Prod. 2018 174 283 295 10.1016/j.jclepro.2017.10.226
    [Google Scholar]
  91. Duan Y. Coreas R. Liu Y. Bitounis D. Zhang Z. Parviz D. Strano M. Demokritou P. Zhong W. Prediction of protein corona on nanomaterials by machine learning using novel descriptors. NanoImpact 2020 17 100207 10.1016/j.impact.2020.100207 32104746
    [Google Scholar]
  92. Daud JB Lee KY Surface Modification of Nanocellulose. Handbook of Nanocellulose and Cellulose Nanocomposites Wiley 2017 10.1002/9783527689972.ch3
    [Google Scholar]
  93. Ong X.R. Chen A.X. Li N. Yang Y.Y. Luo H.K. Nanocellulose: Recent advances toward biomedical applications. Small Sci. 2023 3 2 2200076 10.1002/smsc.202200076
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812333663241106023502
Loading
/content/journals/nanoasi/10.2174/0122106812333663241106023502
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test