Skip to content
2000
Volume 14, Issue 5
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Introduction

Asian spices are globally recognized for their rich phytochemical composition. The bioactive compounds of Asian spices have significant potential to extend the biological applications of metal nanomaterials by increasing their surface area, stability, dispersion, and eco-friendliness.

Methods

The present study is designed to prepare novel iron oxide (FeO) and copper oxide (CuO) nanoparticles using an aqueous extract of (star anise), a traditional Asian spice as a reducing, capping & stabilizing agent. The synthesized nanoparticles have been characterized to study their molecular environment using Fourier Transform Infrared Spectroscopy (FTIR). Elemental composition was examined through the Energy Dispersive X-ray Spectroscopy (EDS). Scanning Electron Microscopy (SEM) revealed the size, shape, and other morphological characteristics of nanoparticles. The optical properties have been tested through Ultraviolet-Visible (UV) spectroscopy and the band gap energies of both FeO and CuO nanoparticles have been calculated by using the Tauc plot method, which explores its semiconductor applications. The catalytic applications of obtained nanoparticles have shown significant potential in the degradation of aqueous methyl orange dye (MO).

Results

Results revealed that FeO and CuO nanoparticles significantly increased the rate of reaction by decreasing the reaction time to 45 mins and 40 mins, respectively in comparison to the NaBH (60 mins). This shows that CuO has a larger surface area and more absorption capacity than FeO NPs. To examine the cause of value healthcare, the obtained materials have also been applied against various Gram-positive and Gram-negative bacteria. The bactericidal activity was compared with gentamicin, which showed both nanometals are moderate to strongly active against tested microbes.

Conclusion

The successful eco-friendly synthesis of metallic nanoparticles by using Asian spices and their applications in physical and biological sciences opens the door for the scientific community to develop and apply more novel and green nanomaterials in industrial and commercial areas.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812320717240820104655
2024-08-26
2025-01-27
Loading full text...

Full text loading...

References

  1. ShahidiF. AmbigaipalanP. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – a review.J. Funct. Foods20151882089710.1016/j.jff.2015.06.018
    [Google Scholar]
  2. RubióL. MotilvaM.J. RomeroM.P. Recent advances in biologically active compounds in herbs and spices: A review of the most effective antioxidant and anti-inflammatory active principles.Crit. Rev. Food Sci. Nutr.201353994395310.1080/10408398.2011.574802 23768186
    [Google Scholar]
  3. ParthasarathyV.A. ChempakamB. ZachariahT.J. Chemistry of Spices.Cabi200810.1079/9781845934057.0000
    [Google Scholar]
  4. SachanA. KumarS. KumariK. SinghD. Medicinal uses of spices used in our traditional culture: Worldwide.J. Med. Plants Stud.201863116122Available from: https://www.plantsjournal.com/archives/2018/ vol6issue3/PartB/6-3-36-573.pdf
    [Google Scholar]
  5. KrishnaswamyK. Traditional Indian spices and their health significance.Asia Pac. J. Clin. Nutr.200817S1265268 18296352
    [Google Scholar]
  6. OriolaA.O. OyedejiA.O. Plant-derived natural products as lead agents against common respiratory diseases.Molecules20222710305410.3390/molecules27103054 35630531
    [Google Scholar]
  7. ZachariahT.J. LeelaN. Spices: Secondary metabolites and medicinal properties.Indian Spices201827731610.1007/978‑3‑319‑75016‑3_10
    [Google Scholar]
  8. SharangiA.B. Secondary metabolites in spices and medicinal plants: An overview.Plant Secondary Metabolites.Apple Academic Publishers201716318810.1201/9781315207506‑5
    [Google Scholar]
  9. Rivera-PérezA. Romero-GonzálezR. Garrido FrenichA. Determination and occurrence of alkenylbenzenes, pyrrolizidine and tropane alkaloids in spices, herbs, teas, and other plant-derived food products using chromatographic methods: Review from 2010–2020.Food Rev. Int.20233921110113610.1080/87559129.2021.1929300
    [Google Scholar]
  10. DattaR. SaxenaH.O. KakkarA. Phytochemical evaluation and antibacterial activity of four Indian spices.Asian J. Pharm. Pharmacol.20184680680910.31024/ajpp.2018.4.6.14
    [Google Scholar]
  11. AshokkumarK. PandianA. MuruganM. DhanyaM.K. SathyanT. SivakumarP. RajS. WarkentinT.D. Profiling bioactive flavonoids and carotenoids in select south Indian spices and nuts.Nat. Prod. Res.20203491306131010.1080/14786419.2018.1557179 30672326
    [Google Scholar]
  12. ArunaG. BaskaranV. Comparative study on the levels of carotenoids lutein, zeaxanthin and β-carotene in Indian spices of nutritional and medicinal importance.Food Chem.2010123240440910.1016/j.foodchem.2010.04.056
    [Google Scholar]
  13. LaiP. RoyJ. Antimicrobial and chemopreventive properties of herbs and spices.Curr. Med. Chem.200411111451146010.2174/0929867043365107 15180577
    [Google Scholar]
  14. KadamD.D. ManeP.C. ChaudhariR.D. Phytochemical screening and pharmacological applications of some selected Indian spices.Int. J. Sci. Res.201543704706Available from: https://www.ijsr.net/getabstract.php?paperid=SUB152143
    [Google Scholar]
  15. Bieżanowska-KopećR. PiątkowskaE. Total polyphenols and antioxidant properties of selected fresh and dried herbs and spices.Appl. Sci. (Basel)20221210487610.3390/app12104876
    [Google Scholar]
  16. ItoigawaM. ItoC. TokudaH. EnjoF. NishinoH. FurukawaH. Cancer chemopreventive activity of phenylpropanoids and phytoquinoids from Illicium plants.Cancer Lett.2004214216516910.1016/j.canlet.2004.05.005 15363542
    [Google Scholar]
  17. TanakaT. OriiY. NonakaG-I. NishiokaI. KounoI. Syzyginins A and B, two ellagitannins from Syzygium aromaticum.Phytochemistry19964361345134810.1016/S0031‑9422(96)00508‑0
    [Google Scholar]
  18. CaiL. WuC.D. Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens.J. Nat. Prod.1996591098799010.1021/np960451q 8904847
    [Google Scholar]
  19. CharlesR. GargS.N. KumarS. An orsellinic acid glucoside from Syzygium aromatica.Phytochemistry19984951375137610.1016/S0031‑9422(98)00091‑0
    [Google Scholar]
  20. FukuyamaY. HuangJ-M. Chemistry and neurotrophic activity of secoprezizaane- and anislactone-type sesquiterpenes from Illicium species.Stud. Nat. Prod. Chem.20053239542710.1016/S1572‑5995(05)80061‑4
    [Google Scholar]
  21. HuangY. ZhaoJ. ZhouL. WangJ. GongY. ChenX. GuoZ. WangQ. JiangW. Antifungal activity of the essential oil of Illicium verum fruit and its main component transanethole.Molecules201015117558756910.3390/molecules15117558 21030909
    [Google Scholar]
  22. SinghP. MishraN. GuptaE. Phytochemistry and ethanopharmacology of Illicium verum (Staranise).Ethnopharmacological Investigation of Indian Spice20209310510.4018/978‑1‑7998‑2524‑1.ch007
    [Google Scholar]
  23. CockI.E. CheesmanM. Plants of the genus Syzygium (Myrtaceae): A review on ethnobotany, medicinal properties and phytochemistry. Bioactive compounds of medicinal plants: Properties and potential for human health Apple Academic Press,20183584Available from: https://www.researchgate.net/publication/325542367_PLANTS_OF_THE_GENUS_SYZYGIUM_MYRTACEAE_A_REVIEW_ON_ETHNOBOTANY_MEDICINAL_PROPERTIES_AND_PHYTOCHEMISTRY
    [Google Scholar]
  24. BukhariS.F. AliS.N. DildarN. TauseefS. KhanS.T. Sara; Zia, A.; Hasan, E.; Ali, S.; Shehzadi, M. Bio‐fabricated chromium (III) oxide nanorods for catalytic and bactericidal applications in water treatment.J. Chin. Chem. Soc. (Taipei)20226991628163610.1002/jccs.202200299
    [Google Scholar]
  25. ArnezM. Tobacco and kretek: Indonesian drugs in historical change. ASEAS200921496910.14764/10.ASEAS‑2.1‑4
    [Google Scholar]
  26. JavaheryS. NekoubinH. MoradluA.H. Effect of anaesthesia with clove oil in fish (review).Fish Physiol. Biochem.20123861545155210.1007/s10695‑012‑9682‑5 22752268
    [Google Scholar]
  27. KamatouG.P. VermaakI. ViljoenA.M. Eugenol--from the remote Maluku Islands to the international market place: A review of a remarkable and versatile molecule.Molecules20121766953698110.3390/molecules17066953 22728369
    [Google Scholar]
  28. MeijerT.M. SchmidH. On the constitution of eugenin.Helv. Chim. Acta19483161603160710.1002/hlca.19480310620 18104429
    [Google Scholar]
  29. AshaM.K. PrashanthD. MuraliB. PadmajaR. AmitA. Anthelmintic activity of essential oil of Ocimum sanctum and eugenol.Fitoterapia200172666967010.1016/S0367‑326X(01)00270‑2 11543966
    [Google Scholar]
  30. Hernández-HernándezA.A. Aguirre-ÁlvarezG. Cariño-CortésR. Mendoza-HuizarL.H. Jiménez-AlvaradoR. Iron oxide nanoparticles: Synthesis, functionalization, and applications in diagnosis and treatment of cancer.Chem. Pap.202074113809382410.1007/s11696‑020‑01229‑8
    [Google Scholar]
  31. QumarU. HassanJ.Z. BhattiR.A. RazaA. NazirG. NabganW. IkramM. Photocatalysis vs adsorption by metal oxide nanoparticles.J. Mater. Sci. Technol.202213112216610.1016/j.jmst.2022.05.020
    [Google Scholar]
  32. SamrotA.V. SahithyaC.S. SelvaraniA. J.; Purayil, S.K.; Ponnaiah, P. A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles.Curr. Res. Green Sustain. Chem.2021410004210.1016/j.crgsc.2020.100042
    [Google Scholar]
  33. Bustamante-TorresM. Romero-FierroD. Estrella-NuñezJ. Arcentales-VeraB. Chichande-ProañoE. BucioE. Polymeric composite of magnetite iron oxide nanoparticles and their application in biomedicine: a review.Polymers (Basel)202214475210.3390/polym14040752 35215665
    [Google Scholar]
  34. NadarA. BanerjeeA.M. PaiM.R. MeenaS.S. PatraA.K. SastryP.U. SinghR. SinghM.K. TripathiA.K. Immobilization of crystalline Fe2O3 nanoparticles over SiO2 for creating an active and stable catalyst: A demand for high temperature sulfuric acid decomposition.Appl. Catal. B202128311961010.1016/j.apcatb.2020.119610
    [Google Scholar]
  35. KumarS. KumarM. SinghA. Synthesis and characterization of iron oxide nanoparticles (Fe2O3, Fe3O4): A brief review.Contemp. Phys.202162314416410.1080/00107514.2022.2080910
    [Google Scholar]
  36. SchmidH. BolleterA. About the ingredients of Eugenia caryophyllata (L.) Thunbg. IV. Isolation of isoeugenitol.Helv. Chim. Acta19493241358136010.1002/hlca.19490320429
    [Google Scholar]
  37. SchmidH. BolleterA. About the ingredients of Eugenia caryophyllata (L.) Thunbg. V. Isolation of isoeugenitin.Helv. Chim. Acta19503361770177210.1002/hlca.19500330645
    [Google Scholar]
  38. NarayananC.R. NatuA.A. Triterpene acids of indian clove buds.Phytochemistry19741391999200010.1016/0031‑9422(74)85139‑3
    [Google Scholar]
  39. TanakaT. OriiY. NonakaG. NishiokaI. Tannins and related compounds. CXXIII. Chromone, acetophenone and phenylpropanoid glycosides and their galloyl and/or hexahydroxydiphenoyl esters from the leaves of Syzygium aromaticum Merr. et Perry.Chem. Pharm. Bull. (Tokyo)19934171232123710.1248/cpb.41.1232 8374992
    [Google Scholar]
  40. BouafiaA. LaouiniS.E. OuahraniM.R. A review on green synthesis of CuO nanoparticles using plant extract and evaluation of antimicrobial activity.Asian J. Res. Chem2020131657010.5958/0974‑4150.2020.00014.0
    [Google Scholar]
  41. MohamedA.A. Abu-ElghaitM. AhmedN.E. SalemS.S. Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications.Biol. Trace Elem. Res.202119972788279910.1007/s12011‑020‑02369‑4 32895893
    [Google Scholar]
  42. NagaiahH.P. Recent developments in one-dimensional polymeric nanocomposites for wound healing and infection control. One- Dimensional Polymeric Nanocomposites202344947010.1201/9781003223764‑25
    [Google Scholar]
  43. ChauhanA. VermaR. BatooK.M. KumariS. KaliaR. KumarR. HadiM. RaslanE.H. ImranA. Structural and optical properties of copper oxide nanoparticles: A study of variation in structure and antibiotic activity.J. Mater. Res.20213671496150910.1557/s43578‑021‑00193‑7
    [Google Scholar]
  44. TommaliehM.J. Gamma radiation assisted modification on electrical properties of polyvinyl pyrrolidone/polyethylene oxide blend doped by copper oxide nanoparticles.Radiat. Phys. Chem.202117910923610.1016/j.radphyschem.2020.109236
    [Google Scholar]
  45. JamalM. BillahM.M. AyonS.A. Opto-structural and magnetic properties of fluorine doped CuO nanoparticles: An experimental study.Ceram. Int.2023496101071011810.1016/j.ceramint.2022.11.194
    [Google Scholar]
  46. ZhangQ. ZhangK. XuD. YangG. HuangH. NieF. LiuC. YangS. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications.Prog. Mater. Sci.20146020833710.1016/j.pmatsci.2013.09.003
    [Google Scholar]
  47. DeviA.B. MoirangthemD.S. TalukdarN.C. DeviM.D. SinghN.R. LuwangM.N. Novel synthesis and characterization of CuO nanomaterials: Biological applications.Chin. Chem. Lett.201425121615161910.1016/j.cclet.2014.07.014
    [Google Scholar]
  48. DagherS. HaikY. AyeshA.I. TitN. Synthesis and optical properties of colloidal CuO nanoparticles.J. Lumin.201415114915410.1016/j.jlumin.2014.02.015
    [Google Scholar]
  49. RadhakrishnanA.A. BeenaB.B. Structural and optical absorption analysis of CuO nanoparticles.Indian J. Adv. Chem. Sci201422158161Available from: https://www.ijacskros.com/artcles/IJACS-M64.pdf
    [Google Scholar]
  50. GrigoreM. BiscuE. HolbanA. GestalM. GrumezescuA. Methods of synthesis, properties and biomedical applications of CuO nanoparticles.Pharmaceuticals (Basel)2016947510.3390/ph9040075 27916867
    [Google Scholar]
  51. YadavS. ShakyaK. GuptaA. SinghD. ChandranA.R. Varayil AanappalliA. GoyalK. RaniN. SainiK. A review on degradation of organic dyes by using metal oxide semiconductors.Environ. Sci. Pollut. Res. Int.20223028719127193210.1007/s11356‑022‑20818‑6 35595896
    [Google Scholar]
  52. ChoudharyB. GoyalA. KhokraS.L. New visible spectrophotometric method for estimation of itopride hydrochloride from tablets formulations using methyl orange reagent.Int. J. Pharm. Pharm. Sci.200911159162[Available from https://www.researchgate.net/publication/26627137_New_visible_s pectrophotometric_ method_for_estimation_of_Itopride_hydrochloride_from_table ts_using_mordant_blue_3_reagent
    [Google Scholar]
  53. PaulR. GeethaR. Evaluation of anti-inflammatory action of Illicium verum -An in vitro study.Drug Invent. Today2018102
    [Google Scholar]
  54. SonK-H. KwonS. Kim, Hyun-Pyo.; Chang, H.; Kang, S. Constituents from Syzygium aromaticum Merr. et Perry.Nat. Prod. Sci.199844263267Available from https://www.semanticscholar.org/paper/Constituents-from- Syzygium-aromaticum-Merr.-et-Son- Kwon/4493e4d08b4c1c9835fc0b1fc73d398be98f242c
    [Google Scholar]
  55. BrieskornC.H. MünzhuberK. UngerG. Crataegolic acid and steroid glucosides from flower buds of Syzygium aromaticum.Phytochemistry197514102308230910.1016/S0031‑9422(00)91131‑2
    [Google Scholar]
  56. ParkM-K. Chemical constituents of Eugenia caryophyllata.Yakhak Hoeji1997412149152
    [Google Scholar]
  57. LunaC. ChávezV.H.G. Barriga-CastroE.D. NúñezN.O. Mendoza-ReséndezR. Biosynthesis of silver fine particles and particles decorated with nanoparticles using the extract of Illicium verum (star anise) seeds.Spectrochim. Acta A Mol. Biomol. Spectrosc.2015141435010.1016/j.saa.2014.12.076 25659741
    [Google Scholar]
  58. AllenS.P. SteevesT. FergussonA. MooreD. DavisR.M. VlaisialjevichE. MeyerC.H. Novel acoustic coupling bath using magnetite nanoparticles for MR‐guided transcranial focused ultrasound surgery.Med. Phys.201946125444545310.1002/mp.13863 31605643
    [Google Scholar]
  59. Taghavi FardoodS. MoradniaF. HeidarzadehS. NaghipourA. Green synthesis, characterization, photocatalytic and antibacterial activities of copper oxide nanoparticles of copper oxide nanoparticles.Nanochem Res.202382134140[Available from https://www.nanochemres.org/article_168471_0ee4a05ee2dbdcf0b a0e18f4f396fed5.pdf
    [Google Scholar]
  60. PuuseppA. Study of optical absorption properties of cu-based nanoparticles for green photocatalytic and photovoltaic applications by UV-Vis spectroscopy.. Bachelor’s thesis Engineering Curriculum- Estonian University of Life Sciences,2023Available from:https://dspace.emu.ee/items/fd9c8f65-978d-4547-bf99-878dab1f5053
    [Google Scholar]
  61. BauerA.W. KirbyW.M.M. SherrisJ.C. TurckM. Antibiotic susceptibility testing by a standardized single disk method.Am. J. Clin. Pathol.1966454_ts49349610.1093/ajcp/45.4_ts.4935325707
    [Google Scholar]
  62. Bin MobarakM. HossainM.S. ChowdhuryF. AhmedS. Synthesis and characterization of CuO nanoparticles utilizing waste fish scale and exploitation of XRD peak profile analysis for approximating the structural parameters.Arab. J. Chem.2022151010411710.1016/j.arabjc.2022.104117
    [Google Scholar]
  63. WillardsonR.K. BeerA.C. Optical properties of III-V compounds; Academic Press.1967Available from: https://search.worldcat.org/title/Optical-properties-of-III-V-compounds/oclc/22393673
  64. BasuS. ChakravortyD. Optical properties of nanocomposites with iron core–iron oxide shell structure.J. Non-Cryst. Solids2006352538038510.1016/j.jnoncrysol.2006.01.006
    [Google Scholar]
  65. MadhaviV. PrasadT. MadhaviG. Synthesis and spectral characterization of iron based micro and nanoparticles.Iran. J. Energy Environ.20134410.5829/idosi.ijee.2013.04.04.10
    [Google Scholar]
  66. NavaleS.T. BandgarD.K. NalgeS.R. MulikR.N. PawarS.A. ChouguleM.A. PatilV.B. Novel process for synthesis of α-Fe2O3: Microstructural and optoelectronic investigations.J. Mater. Sci. Mater. Electron.20132451422143010.1007/s10854‑012‑0944‑x
    [Google Scholar]
  67. SankarR. PrasathB.B. NandakumarR. SanthanamP. ShivashangariK.S. RavikumarV. Growth inhibition of bloom forming cyanobacterium Microcystis aeruginosa by green route fabricated copper oxide nanoparticles.Environ. Sci. Pollut. Res. Int.20142124142321424010.1007/s11356‑014‑3362‑1 25074832
    [Google Scholar]
  68. KoffybergF.P. BenkoF.A. A photoelectrochemical determination of the position of the conduction and valence band edges of p -type CuO.J. Appl. Phys.19825321173117710.1063/1.330567
    [Google Scholar]
  69. RehmanS. MumtazA. HasanainS.K. Size effects on the magnetic and optical properties of CuO nanoparticles.J. Nanopart. Res.20111362497250710.1007/s11051‑010‑0143‑8
    [Google Scholar]
  70. SchmidG. Nanoparticles: from theory to application.Wiley201010.1002/9783527631544
    [Google Scholar]
  71. JeyasubramanianK. Gopalakrishnan ThoppeyU.U. HikkuG.S. SelvakumarN. SubramaniaA. KrishnamoorthyK. Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles.RSC Advances2016619154511545910.1039/C5RA23425E
    [Google Scholar]
  72. ArjaghiS.K. AlaslM.K. SajjadiN. FataeiE. RajaeiG.E. RETRACTED ARTICLE: Green synthesis of iron oxide nanoparticles by RS lichen extract and its application in removing heavy metals of lead and cadmium.Biol. Trace Elem. Res.2021199276376810.1007/s12011‑020‑02170‑3 32643097
    [Google Scholar]
  73. LunaI.Z. HilaryL.N. ChowdhuryA.M.S. GafurM.A. KhanN. KhanR.A. Preparation and characterization of copper oxide nanoparticles synthesized via chemical precipitation method.OAlib2015231810.4236/oalib.1101409
    [Google Scholar]
  74. ChenL.J. LiG.S. LiL.P. CuO nanocrystals in thermal decomposition of ammonium perchlorate.J. Therm. Anal. Calorim.200891258158710.1007/s10973‑007‑8496‑7
    [Google Scholar]
  75. WangT. JinX. ChenZ. MegharajM. NaiduR. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater.Sci. Total Environ.2014466-46721021310.1016/j.scitotenv.2013.07.022 23895784
    [Google Scholar]
  76. AlphandéryE. Bio-synthesized iron oxide nanoparticles for cancer treatment.Int. J. Pharm.202058611947210.1016/j.ijpharm.2020.119472 32590095
    [Google Scholar]
  77. CarolingG. PriyadharshiniM.N. VinodhiniE. RanjithamA.M. ShanthiP. Biosynthesis of copper nanoparticles using aqueous guava extract-characterisation and study of antibacterial effects.Int. J. Pharm. Biol. Sci.2015522543
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812320717240820104655
Loading
/content/journals/nanoasi/10.2174/0122106812320717240820104655
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): antibacterial; copper oxide; Illicium verum; iron oxide; nanoparticles; photocatalyst
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test