Skip to content
2000
Volume 14, Issue 5
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Nano-biotechnology is the discipline of creating and using nanoscale devices to study biological sciences. It has become an important frontier in many important areas, especially in the treatment of diseases and drug use. Nano-biotechnology has great potential to improve biological research and thus support global health care. Many new nanodevices and nanoparticles will be used to benefit human health in the future. Healthcare as a human right often becomes the focus of technological innovations. Technological advances have made it easier to deliver goods efficiently, on time, reliable and cost-effectively. Advances in nanoscience facilitated the expansion of new generations of nanostructures. They all have unique features that make their applications perfect. Nanotechnology has continued to impact health since its inception and has had a significant impact on the evolution of health, leading to better outcomes. Over the last 20 years, the world has witnessed the advancement of nanotechnology into living spaces, with the influence of many research studies in various medical fields. The arena of nanomedicine emerges as the amalgamation of nanotechnology along with nanocarriers/nanosystems in the medical field, like in the prevention, prognosis and prophylaxis of various infectious diseases. It has been noticed that in the diagnosis and therapeutics, advanced nanosystems have been found to be more appropriate in comparison to conventional ones. The present review mainly highlights the merits and demerits of nanosystems in the areas of cancer management, gene therapy, genetic diseases, and drug delivery. Though nanotechnology has great potential, it is still underutilized. Further efforts are needed to overcome these limitations and exploit the potential to reform the healthcare sector in the future.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812316402240808101033
2024-08-12
2025-01-27
Loading full text...

Full text loading...

References

  1. RocoM.C. Nanotechnology: Convergence with modern biology and medicine.Curr. Opin. Biotechnol.200314333734610.1016/S0958‑1669(03)00068‑5
    [Google Scholar]
  2. GonzalezL. LozaR.J. HanK-Y. SunoqrotS. CunninghamC. PurtaP. Nanotechnology in corneal neovascularization therapy— a review.J Ocular Pharmacol Therapeut2013292015810.1089/jop.2012
    [Google Scholar]
  3. GoddardW.A.III BrennerD. LyshevskiS.E. IafrateG.J. Eds.; Handbook of Nanoscience, Engineering and Technology.2nd edBoca Raton, FloridaCRC Press200710.1201/9781420007848
    [Google Scholar]
  4. MoshedA.M.A. SarkarM.K.I. KhalequeM.A. The application of nanotechnology in medical sciences: New horizon of treatment.Am. J. Biomed. Sci.20179111410.5099/aj170100001
    [Google Scholar]
  5. FakruddinM. HossainZ. AfrozH. Prospects and applications of nanobiotechnology: S medical perspective.J. Nanobiotechnology20121013110.1186/1477‑3155‑10‑31
    [Google Scholar]
  6. KlymchenkoA.S. LiuF. CollotM. AntonN. Dye‐loaded nanoemulsions: Biomimetic fluorescent nanocarriers for bioimaging and nanomedicine.Adv. Healthc. Mater.2021101200128910.1002/adhm.202001289 33052037
    [Google Scholar]
  7. SurendiranA. SandhiyaS. PradhanS.C. AdithanC. Novel applications of nanotechnology in medicine.Indian J. Med. Res.20091306689701 20090129
    [Google Scholar]
  8. XuY. ZhangL. ChenZ. ChenP. Thinking on the application of nanotechnology in the mechanism research on the traditional Chinese medicine diagnosis and treatment of diabetes mellitus.J. Phys. Conf. Ser.20112761205010.1088/1742‑6596/276/1/012050
    [Google Scholar]
  9. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM del P. Acosta-TorresL.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑8
    [Google Scholar]
  10. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  11. ShafeyA. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review.Green Proc Synth20209130433910.1515/gps‑2020‑0031
    [Google Scholar]
  12. BogutskaK.I. SklyarovY.P. PrylutskyyY. Zinc and zinc nanoparticles: Biological role and application in biomedicine.Ukr. Bioorg. Acta20131916
    [Google Scholar]
  13. MarquesA.C. ValeM. VicenteD. SchreckM. TervoortE. NiederbergerM. Porous silica microspheres with immobilized titania nanoparticles for in-flow solar-driven purification of wastewater.Glob. Chall.202155200011610.1002/gch2.202000116
    [Google Scholar]
  14. SharifiS. BehzadiS. LaurentS. Laird ForrestM. StroeveP. MahmoudiM. Toxicity of nanomaterials.Chem. Soc. Rev.20114162323234310.1039/C1CS15188F
    [Google Scholar]
  15. ShikuH. WangL. IkutaY. OkugawaT. SchmittM. GuX. AkiyoshiK. SunamotoJ. NakamuraH. Development of a cancer vaccine: Peptides, proteins, and DNA.Cancer Chemother. Pharmacol.200046S77S8210.1007/s002800000179 10950153
    [Google Scholar]
  16. SaulJ.M. AnnapragadaA.V. BellamkondaR.V. A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers.J. Control. Release20061143277287
    [Google Scholar]
  17. PrajnamitraR.P. ChenH.C. LinC.J. ChenL.L. HsiehP.C.H. Nanotechnology approaches in tackling cardiovascular diseases.Molecules20192410201710.3390/molecules24102017 31137787
    [Google Scholar]
  18. HatamiA. HeydarinasabA. AkbarzadehkhiyaviA. Pajoum ShariatiF. An introduction to nanotechnology and drug delivery.Chem Methodol.20215153165
    [Google Scholar]
  19. KhanA.U. KhanM. ChoM.H. KhanM.M. Selected nanotechnologies and nanostructures for drug delivery, nanomedicine and cure.Bioprocess Biosyst. Eng.20204381339135710.1007/s00449‑020‑02330‑8 32193755
    [Google Scholar]
  20. HealyM.J. TongW. OstroffS. EichlerH.G. PatakA. NeuspielM. DeluykerH. SlikkerW.Jr Regulatory bioinformatics for food and drug safety.Regul. Toxicol. Pharmacol.20168034234710.1016/j.yrtph.2016.05.021 27208439
    [Google Scholar]
  21. PettittD. SmithJ. MeadowsN. ArshadZ. SchuhA. DiGiustoD. BountraC. HolländerG. BarkerR. BrindleyD. Regulatory barriers to the advancement of precision medicine.Expert Rev. Precis. Med. Drug Dev.20161331932910.1080/23808993.2016.1176526
    [Google Scholar]
  22. SlikkerW.Jr de Souza LimaT.A. ArchellaD. de SilvaJ.B. Junior; Barton-Maclaren, T.; Bo, L.; Buvinich, D.; Chaudhry, Q.; Chuan, P.; Deluyker, H.; Domselaar, G.; Freitas, M.; Hardy, B.; Eichler, H.G.; Hugas, M.; Lee, K.; Liao, C.D.; Loo, L.H.; Okuda, H.; Orisakwe, O.E.; Patri, A.; Sactitono, C.; Shi, L.; Silva, P.; Sistare, F.; Thakkar, S.; Tong, W.; Valdez, M.L.; Whelan, M.; Zhao-Wong, A. Emerging technologies for food and drug safety.Regul. Toxicol. Pharmacol.20189811512810.1016/j.yrtph.2018.07.013 30048704
    [Google Scholar]
  23. TongW. OstroffS. BlaisB. SilvaP. DubucM. HealyM. SlikkerW. Genomics in the land of regulatory science.Regul. Toxicol. Pharmacol.201572110210610.1016/j.yrtph.2015.03.008 25796433
    [Google Scholar]
  24. ThakkarS. AnklamE. XuA. UlberthF. LiJ. LiB. HugasM. SarmaN. CrerarS. SwiftS. HakamatsukaT. CurtuiV. YanW. GengX. SlikkerW. TongW. Regulatory landscape of dietary supplements and herbal medicines from a global perspective.Regul. Toxicol. Pharmacol.202011410464710.1016/j.yrtph.2020.104647 32305367
    [Google Scholar]
  25. AllanJ. BelzS. HoevelerA. HugasM. OkudaH. PatriA. Regulatory landscape of nanotechnology and nanoplastics from a global perspective.Regul. Toxicol. Pharmacol.202112210488510.1016/j.yrtph.2021.104885
    [Google Scholar]
  26. ZaibS. Nanotechnology: Applications, techniques, approaches, & the advancement in toxicology and environmental impact of engineered nanomaterials.2019Available From: http://meddocsonline.org/
  27. SimS. WongN. Nanotechnology and its use in imaging and drug delivery (Review).Biomed. Rep.20211454210.3892/br.2021.1418 33728048
    [Google Scholar]
  28. LombardoD. KiselevM.A. CaccamoM.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine.J. Nanomater.2019201912610.1155/2019/3702518
    [Google Scholar]
  29. KatsukiS. MatobaT. KogaJ. NakanoK. EgashiraK. Anti-inflammatory nanomedicine for cardiovascular disease.Front. Cardiovasc. Med.201748710.3389/fcvm.2017.00087 29312961
    [Google Scholar]
  30. OchekpeN.A. OlorunfemiP.O. NgwulukaN.C. Nanotechnology and drug delivery part 1: Background and applications.Trop. J. Pharm. Res.2009831810.4314/tjpr.v8i3.44546
    [Google Scholar]
  31. KaulG. AmijiM. Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: In vitro and in vivo studies.Pharm. Res.200522695196110.1007/s11095‑005‑4590‑3 15948039
    [Google Scholar]
  32. WicklineS.A. LanzaG.M. Nanotechnology for molecular imaging and targeted therapy. Circulation.Am. Heart Assoc.20031710921095
    [Google Scholar]
  33. DarwishN. SekaranS. KhorS. Point-of-care tests: A review of advances in the emerging diagnostic tools for dengue virus infection.Sens. Actuators B Chem.20171255
    [Google Scholar]
  34. WuJ. DongM. RigattoC. LiuY. LinF. Lab-on-chip technology for chronic disease diagnosis.NPJ Digit. Med.201811710.1038/s41746‑017‑0014‑0 31304292
    [Google Scholar]
  35. MisraS. Human gene therapy: A brief overview of the genetic revolution.J. Assoc. Physicians India2013612127133 24471251
    [Google Scholar]
  36. GardlíkR. PálffyR. HodosyJ. LukácsJ. TurnaJ. CelecP. Vectors and delivery systems in gene therapy.Med. Sci. Monit.2005114RA110RA121 15795707
    [Google Scholar]
  37. KayM.A. State-of-the-art gene-based therapies: The road ahead.Nat. Rev. Genet.201112531632810.1038/nrg2971 21468099
    [Google Scholar]
  38. VermaI.M. WeitzmanM.D. Gene therapy: Twenty-first century medicine.Annu. Rev. Biochem.200574171173810.1146/annurev.biochem.74.050304.091637 15952901
    [Google Scholar]
  39. LundstromK. Latest development in viral vectors for gene therapy.Trends Biotechnol.200321311712210.1016/S0167‑7799(02)00042‑2 12628368
    [Google Scholar]
  40. YeK. JinS. Potent and specific inhibition of retrovirus production by coexpression of multiple siRNAs directed against different regions of viral genomes.Biotechnol. Prog.2006221455210.1021/bp050133u 16454491
    [Google Scholar]
  41. VishwakarmaK. VishwakarmaO.P. BhateleM. A brief review on role of nanotechnology in medical sciences.Proceedings of All India Seminar on Biomedical Engineering 2012 (AISOBE 2012)2013536310.1007/978‑81‑322‑0970‑6_7
    [Google Scholar]
  42. KeskinboraK.H. JameelM.A. Nanotechnology applications and approaches in medicine: A review.J. Nanosci. Nanotechnol. Res.2018226
    [Google Scholar]
  43. JavaidM. HaleemA. SinghR.P. SumanR. 3D printing applications for healthcare research and development.Glob. Health J.20226421722610.1016/j.glohj.2022.11.001
    [Google Scholar]
  44. CacciatoreM.A. ScheufeleD.A. CorleyE.A. From enabling technology to applications: The evolution of risk perceptions about nanotechnology.Public Underst. Sci.201120338540410.1177/0963662509347815
    [Google Scholar]
  45. LinH. DatarR.H. Medical applications of nanotechnology.Natl Med J.20061912732
    [Google Scholar]
  46. ShiJ. VotrubaA.R. FarokhzadO.C. LangerR. Nanotechnology in drug delivery and tissue engineering: From discovery to applications.Nano Lett.20101093223323010.1021/nl102184c 20726522
    [Google Scholar]
  47. ZhangL. QianM. CuiH. ZengS. WangJ. ChenQ. Spatiotemporal concurrent liberation of cytotoxins from dual-prodrug nanomedicine for synergistic antitumor therapy.ACS Appl. Mater. Interfaces20211356053606810.1021/acsami.0c21422 33525873
    [Google Scholar]
  48. SahooS.K. ParveenS. PandaJ.J. The present and future of nanotechnology in human health care. Nanomedicine in Cancer.SingaporeJenny Stanford Publishing201777580610.1201/b22358‑32
    [Google Scholar]
  49. CaraccioloG. ValiH. MooreA. MahmoudiM. Challenges in molecular diagnostic research in cancer nanotechnology.Nano Today20192761010.1016/j.nantod.2019.06.001
    [Google Scholar]
  50. WangW. JinY. LiuX. ChenF. ZhengX. LiuT. YangY. YuH. Endogenous stimuli‐activatable nanomedicine for immune theranostics for cancer.Adv. Funct. Mater.20213126210038610.1002/adfm.202100386
    [Google Scholar]
  51. BhojY. PandeyG. BhojA. TharmavaramM. RawtaniD. Recent advancements in practices related to desalination by means of nanotechnology.Chem. Phys. Impact.2021210002510.1016/j.chphi.2021.100025
    [Google Scholar]
  52. VuK.A. MulliganC.N. An overview on the treatment of oil pollutants in soil using synthetic and biological surfactant foam and nanoparticles.Int. J. Mol. Sci.2023243191610.3390/ijms24031916
    [Google Scholar]
  53. SiegelR. NaishadhamD. JemalA. Cancer statistics, 2013.CA Cancer J. Clin.2013631113010.3322/caac.21166 23335087
    [Google Scholar]
  54. van VlerkenL.E. VyasT.K. AmijiM.M. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery.Pharm. Res.20072481405141410.1007/s11095‑007‑9284‑6 17393074
    [Google Scholar]
  55. BiswasA.K. IslamM.R. ChoudhuryZ.S. MostafaA. KadirM.F. Nanotechnology based approaches in cancer therapeutics.Adv. Nat. Sci. Nanosci. Nanotechnol.20145404300110.1088/2043‑6262/5/4/043001
    [Google Scholar]
  56. GuptaP. VermaniK. GargS. Hydrogels: From controlled release to pH-responsive drug delivery.Drug Discov. Today200271056957910.1016/S1359‑6446(02)02255‑9 12047857
    [Google Scholar]
  57. McHughK.J. JingL. BehrensA.M. JayawardenaS. TangW. GaoM. LangerR. JaklenecA. Biocompatible semiconductor quantum dots as cancer imaging agents.Adv. Mater.20183018170635610.1002/adma.201706356 29468747
    [Google Scholar]
  58. DouceyM.A. CarraraS. Nanowire Sensors in Cancer.Trends Biotechnol.2019371869910.1016/j.tibtech.2018.07.014 30126620
    [Google Scholar]
  59. KuG. Spatial and temporal confined photothermolysis of cancer cells mediated by hollow gold nanospheres targeted to epidermal growth factor receptors.ACS Omega2018355888589510.1021/acsomega.8b00712
    [Google Scholar]
  60. GuptaN. BahlS. BaghaA.K. VaidS. JavaidM. HaleemA. Nanomedicine technology and COVID-19 outbreak: Applications and challenges.J. Indus. Integr. Manage.20216216117410.1142/S2424862221500123
    [Google Scholar]
  61. ZhangY. MaS. LiuX. XuY. ZhaoJ. SiX. LiH. HuangZ. WangZ. TangZ. SongW. ChenX. Supramolecular assembled programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy.Adv. Mater.2021337200729310.1002/adma.202007293 33448050
    [Google Scholar]
  62. McGillH.C.Jr McMahanC.A. GiddingS.S. Preventing heart disease in the 21st century: Implications of the pathobiological determinants of atherosclerosis in youth (PDAY) study.Circulation200811791216122710.1161/CIRCULATIONAHA.107.717033 18316498
    [Google Scholar]
  63. DasA. MukherjeeP. SinglaS.K. GuturuP. FrostM.C. MukhopadhyayD. ShahV.H. PatraC.R. Fabrication and characterization of an inorganic gold and silica nanoparticle mediated drug delivery system for nitric oxide.Nanotechnology2010213030510210.1088/0957‑4484/21/30/305102 20610873
    [Google Scholar]
  64. RakeshM. DivyaT.N. VishalT.S.K. Applications of Nanotechnology.J. Nanomed. Biotherap. Discov.20155110 34322585
    [Google Scholar]
  65. RajakA. Nanotechnology and Its Application.J. Nanomed. Nanotechnol.201819
    [Google Scholar]
  66. Nanotechnology: Big things from a tiny world: A review. 2009Available From: https://www.nano.gov/sites/default/files/pub_resource/Nanotechnology_Big_Things_Brochure_web_0.pdf
  67. MobasserS. FirooziA.A. Review of nanotechnology applications in science and engineering.J Civ Eng Urban.201668493
    [Google Scholar]
  68. AnjumS. IshaqueS. FatimaH. FarooqW. HanoC. AbbasiB.H. AnjumI. Emerging applications of nanotechnology in healthcare systems: Grand challenges and perspectives.Pharmaceuticals (Basel)202114870710.3390/ph14080707 34451803
    [Google Scholar]
  69. Nanotechnologies. Nanotechnologies A Prelim RISK Anal BASIS A Work Organ BRUSSELS 1–2 MARCH 2004 BY Heal Consum Prot Dir Gen Eur Comm 2004Available From: http://europa.eu.int/comm/health/ph_risk/events_risk_en.htm
  70. AliS. KhanI. KhanS.A. SohailM. AhmedR. RehmanA. AnsariM.S. MorsyM.A. Electrocatalytic performance of Ni@Pt core–shell nanoparticles supported on carbon nanotubes for methanol oxidation reaction.J. Electroanal. Chem. (Lausanne)2017795172510.1016/j.jelechem.2017.04.040
    [Google Scholar]
  71. ThomasS. HarshitaB.S.P. MishraP. TalegaonkarS. Ceramic nanoparticles: Fabrication methods and applications in drug delivery.Curr. Pharm. Des.201521426165618810.2174/1381612821666151027153246 26503144
    [Google Scholar]
  72. SoW.C. KitaS. Goldin-MeadowS. Using the hands to identify who does what to whom: Gesture and speech go hand-in-hand.Cogn. Sci.200933111512510.1111/j.1551‑6709.2008.01006.x 20126430
    [Google Scholar]
  73. DreadenE.C. AlkilanyA.M. HuangX. MurphyC.J. El-SayedM.A. The golden age: Gold nanoparticles for biomedicine.Chem. Soc. Rev.20124172740277910.1039/C1CS15237H 22109657
    [Google Scholar]
  74. VickersN.J. Animal communication: When i’m calling you, will you answer too?Curr. Biol.20172714R713R71510.1016/j.cub.2017.05.064 28743020
    [Google Scholar]
  75. MousumiS. Nanocomposite materials.Nanotechnology and the EnvironmentInTechOpen: London2020
    [Google Scholar]
  76. MishraA.K. ValodkarM.C. Polymer nanocomposites for energy and fuel cell applications.Properties and Applications of Polymer Nanocomposites.ChamSpringer201710713710.1007/978‑3‑662‑53517‑2_6
    [Google Scholar]
  77. KurcB. PigłowskaM. RymaniakŁ. FućP. Modern Nanocomposites and Hybrids as Electrode Materials Used in Energy Carriers.Nanomaterials (Basel)202111253810.3390/nano11020538 33669863
    [Google Scholar]
  78. LoosM. Nanoscience and Nanotechnology.Carbon nanotube reinforced composites.2nd edAmsterdamElsevier2015
    [Google Scholar]
  79. AguilarZ.P. Types of nanomaterials and corresponding methods of synthesis.Nanomaterials for Medical ApplicationsElsevier: Amsterdam2013
    [Google Scholar]
  80. GöppertT.M. MüllerR.H. Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: Comparison of plasma protein adsorption patterns.J. Drug Target.200513317918710.1080/10611860500071292 16036306
    [Google Scholar]
  81. ToyR. RoyK. Engineering nanoparticles to overcome barriers to immunotherapy.Bioeng. Transl. Med.201611476210.1002/btm2.10005 29313006
    [Google Scholar]
  82. National Nanotechnology Initiative.2023Available Fromhttp://www.nano.gov
    [Google Scholar]
  83. GardnerJ. Nanotechnology in medicine and healthcare: Possibilities, progress and problems.South African J Bioethics Law20158250
    [Google Scholar]
  84. YokelR.A. MacPhailR.C. Engineered nanomaterials: Exposures, hazards, and risk prevention.J. Occup. Med. Toxicol.201161710.1186/1745‑6673‑6‑7 21418643
    [Google Scholar]
  85. SiegristM. KellerC. KastenholzH. FreyS. WiekA. Laypeople’s and experts’ perception of nanotechnology hazards.Risk Anal.2007271596910.1111/j.1539‑6924.2006.00859.x 17362400
    [Google Scholar]
  86. ScheufeleD.A. CorleyE.A. DunwoodyS. ShihT.J. HillbackE. GustonD.H. Scientists worry about some risks more than the pub-lic.Nat. Nanotechnol.200721273273410.1038/nnano.2007.392 18654416
    [Google Scholar]
  87. KahanD.M. BramanD. SlovicP. GastilJ. CohenG. Cultural cognition of the risks and benefits of nanotechnology.Nat. Nanotechnol.200942879010.1038/nnano.2008.341 19197308
    [Google Scholar]
  88. SiegristM. CousinM.E. KastenholzH. WiekA. Public acceptance of nanotechnology foods and food packaging: The influence of affect and trust.Appetite200749245946610.1016/j.appet.2007.03.002 17442455
    [Google Scholar]
  89. SiegristM. StampfliN. KastenholzH. KellerC. Perceived risks and perceived benefits of different nanotechnology foods and nanotechnology food packaging.Appetite200851228329010.1016/j.appet.2008.02.020
    [Google Scholar]
  90. DevasahayamS. Overview of an internationally integrated nanotechnology governance.Int J Metrol Qual Eng20178810.1051/ijmqe/2017002
    [Google Scholar]
  91. DevasahayamS. Nanotechnology and nanomedicine in market: A global perspective on regulatory issues.Characterization and Biology of Nanomaterials for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery.AmsterdamElsevier2019
    [Google Scholar]
  92. HodgeG.A. BowmanD. LudlowK. New global frontiers in regulation: The age of nanotechnology.United KingdomEdward Elgar Publishing2009
    [Google Scholar]
  93. HaleemA. JavaidM. SinghR.P. RabS. SumanR. Applications of nanotechnology in medical field: a brief review.Global. Health J.202372707710.1016/j.glohj.2023.02.008
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812316402240808101033
Loading
/content/journals/nanoasi/10.2174/0122106812316402240808101033
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test