Skip to content
2000
Volume 14, Issue 5
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Background

Poor solubility and low oral bioavailability are major challenges associated with the oral delivery of the antidiabetic drug (VR). Nanostructured lipid carriers (NLCs) have emerged as a promising strategy to overcome these limitations and improve the therapeutic efficacy of VR. This study investigated the potential of NLCs for VR delivery and explored the influence of formulation parameters on NLC properties and drug release behavior.

Methods

NLCs loaded with VR were prepared using the melt emulsion ultrafiltration technique. The effect of two key formulation variables – the ratio of liquid lipid to solid lipid and the concentration of the surfactant were investigated in terms of particle size, zeta potential, and drug encapsulation efficiency. The release profiles of the VR-NLC formulations were evaluated, and the optimal formulation was subjected to further analysis to investigate its release kinetics.

Results

The NLCs exhibited particle sizes ranging from 108.9 to 192.3 nm and all formulations possessed a negative zeta potential (-3.68 to -10.9 mV), indicating good stability and potential for resisting aggregation. Interestingly, the lowest solid lipid to liquid lipid ratio and the lowest surfactant concentration yielded the highest drug encapsulation efficiency, highlighting the complex interplay between these factors. All VR-NLC formulations exhibited a biphasic, time-dependent release pattern, suggesting an initial burst release followed by a sustained release phase. This biphasic profile is promising for achieving both rapid onset of action and long-lasting glycemic control, which are crucial aspects of effective diabetes management.

The optimized NLC formulation showed an release pattern that adhered to the Higuchi diffusion model, suggesting a controlled release mechanism where the drug diffuses steadily out of the NLC matrix. This finding indicates potentially predictable and consistent drug delivery .

Conclusion

This study demonstrates the potential of NLCs as a promising platform for the controlled oral delivery of VR. NLCs can overcome the inherent limitations of VR and provide a convenient and effective oral antidiabetic option for patients. Further research is needed to confirm the efficacy and safety of NLC-encapsulated VR using relevant animal models. This will pave the way for the development of a novel and potentially transformative treatment option for diabetes.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812306524240821055519
2024-08-30
2025-01-27
Loading full text...

Full text loading...

References

  1. HeW. WuM. HuangS. YinL. Matrix tablets for sustained release of repaglinide: Preparation, pharmacokinetics and hypoglycemic activity in beagle dogs.Int. J. Pharm.2015478129730710.1016/j.ijpharm.2014.11.059 25434592
    [Google Scholar]
  2. KramerC.K. ZinmanB. GrossJ.L. CananiL.H. RodriguesT.C. AzevedoM.J. RetnakaranR. Coronary artery calcium score prediction of all cause mortality and cardiovascular events in people with type 2 diabetes: systematic review and meta-analysis.BMJ2013346f165410.1136/bmj.f1654 23529983
    [Google Scholar]
  3. ZhuH. ZhangX. LiM.Z. XieJ. YangX.L. Prevalence of Type 2 diabetes and pre‐diabetes among overweight or obese children in Tianjin, China.Diabet. Med.201330121457146510.1111/dme.12269 23815511
    [Google Scholar]
  4. ChenY. WuC.M. DaiR.J. LiL. YuY.H. LiY. MengW.W. ZhangL. ZhangY. DengY.L. Combination of HPLC chromatogram and hypoglycemic effect identifies isoflavones as the principal active fraction of Belamcanda chinensis leaf extract in diabetes treatment.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20118795-637137810.1016/j.jchromb.2010.12.022 21239237
    [Google Scholar]
  5. UnuofinJ.O. LebeloS.L. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: An updated review.Oxid. Med. Cell. Longev.20202020135689310.1155/2020/1356893
    [Google Scholar]
  6. MaceT.A. WareM.B. KingS.A. LoftusS. FarrenM.R. McMichaelE. ScovilleS. GeraghtyC. YoungG. CarsonW.E.III ClintonS.K. LesinskiG.B. Soy isoflavones and their metabolites modulate cytokine-induced natural killer cell function.Sci. Rep.2019915068507210.1038/s41598‑019‑41687‑z 30911044
    [Google Scholar]
  7. YaoY. YangX. TianJ. LiuC. ChengX. RenG. Antioxidant and antidiabetic activities of black mung bean (Vigna radiata L.).J. Agric. Food Chem.201361348104810910.1021/jf401812z 23947804
    [Google Scholar]
  8. TangD. DongY. RenH. LiL. HeC. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata).Chem. Cent. J.201481410.1186/1752‑153X‑8‑4 24386928
    [Google Scholar]
  9. SwidanS.A. GhonaimH.M. SamyA.M. GhorabM.M. Efficacy and in-vitro cytotoxicity of nanostructured lipid carriers for paclitaxel delivery.J. Appl. Pharm. Sci.201669182610.7324/JAPS.2016.60903
    [Google Scholar]
  10. TamayoJ.W. DavidE. EspirituR. Preparation and characterization of liprotides prepared from protein extracts of mung beans (Vigna radiata (L.)).ChemRxiv202410.26434/chemrxiv‑2024‑7kdxp
    [Google Scholar]
  11. HusniP. DewiE.M. Formulation of peel-off gel mask containing mung bean (Vigna radiata (L.) Wilczek) extract.Indones. J. Pharm.201912465110.24198/idjp.v1i2.19894
    [Google Scholar]
  12. PawarP. ManiyarM. MoreV. ShindeK. African.J. Biol. Sci.631127113510.48047/AFJBS.6.Si3.2024.1127‑1135
    [Google Scholar]
  13. WhitnerT.C. BaileyH.S. Melting point determination of lard substitutes.J. Oil Fat Ind.1922510303210.1007/BF03040032
    [Google Scholar]
  14. GabaB. FazilM. KhanS. AliA. BabootaS. AliJ. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride.Bull. Fac. Pharm. Cairo Univ.201553214715910.1016/j.bfopcu.2015.10.001
    [Google Scholar]
  15. FernandesA.V. PydiC.R. VermaR. JoseJ. KumarL. Design, preparation and in-vitro characterizations of fluconazole loaded nanostructured lipid carriers.Braz. J. Pharm. Sci.202056e1806910.1590/s2175‑97902019000318069
    [Google Scholar]
  16. NegiL.M. JaggiM. TalegaonkarS. Development of protocol for screening the formulation components and the assessment of common quality problems of nano-structured lipid carriers.Int. J. Pharm.20144611-240341010.1016/j.ijpharm.2013.12.006 24345574
    [Google Scholar]
  17. ManikandanS. JoseP.A. KaruppaiahA. RahmanH. The effect of physical stability and modified gastrointestinal tract behaviour of resveratrol-loaded NLCs encapsulated alginate beads.Naunyn Schmiedeberg's Arch. Pharmacol.2024Jun 15:1510.1007/s00210‑024‑03223‑3
    [Google Scholar]
  18. SharmaB. ChauhanI. SinghA.P. Development of NLC- based Sunscreen Gel of Lutein and its in-vitro and ex-vivo Characterisation.Drug Deliv. Lett.2023131698110.2174/2210303113666221227145210
    [Google Scholar]
  19. UpritS. Kumar SahuR. RoyA. PareA. Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia.Saudi Pharm. J.201321437938510.1016/j.jsps.2012.11.005 24227958
    [Google Scholar]
  20. PatelD. DasguptaS. DeyS. RamaniY.R. RayS. MazumderB. Nanostructured lipid carriers (NLC)-based gel for the topical delivery of aceclofenac: preparation, characterization, and in-vivo evaluation.Sci. Pharm.201280374976410.3797/scipharm.1202‑12 23008819
    [Google Scholar]
  21. CsányiE. SütőB. BerkóS. KozmaG. KukoveczÁ. Budai-SzűcsM. ErősG. KeményL. Sztojkov-IvanovA. GasparR. Development of ibuprofen-loaded nanostructured lipid carrier-based gels: characterization and investigation of in-vitro and in-vivo penetration through the skin.Int. J. Nanomedicine2016111201121210.2147/IJN.S99198 27099487
    [Google Scholar]
  22. AgrawalY. PetkarK.C. SawantK.K. Development, evaluation and clinical studies of Acitretin loaded nanostructured lipid carriers for topical treatment of psoriasis.Int. J. Pharm.20104011-29310210.1016/j.ijpharm.2010.09.007 20858539
    [Google Scholar]
  23. ShindeS. GhorpadeK. GattaniS.G. Design and development of boswellic acid loaded nanostructured lipid carrier based anti psoriatic nano gel for dermal delivery.World J. Pharm. Res.2019871045106110.20959/wjpr20197‑14858
    [Google Scholar]
  24. KabréJ.A.W. Dah-NouvlessounonD. Hama-BaF. AgonkounA. GuininF. SinaH. KohonouA. TchogouP. SenouM. SavadogoA. Baba-MoussaL. Mung bean (Vigna radiata (L.) R. wilczek) from burkina faso used as antidiabetic, antioxidant and antimicrobial agent.Plants20221124355610.3390/plants11243556 36559668
    [Google Scholar]
  25. AslanM. Deliorman OrhanD. OrhanN. SezikE. YesiladaE. In-vivo antidiabetic and antioxidant potential of Helichrysum plicatum ssp. plicatum capitulums in streptozotocin-induced-diabetic rats.J. Ethnopharmacol.20071091545910.1016/j.jep.2006.07.001 16949229
    [Google Scholar]
  26. SinghG. KumarP. KumarA. Characterization of Vigna radiata extract for its functional properties.Res. Crops201819118819210.3389/fpls.2019.01508
    [Google Scholar]
  27. SenthilkumarS.R. SivakumarT. Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities.Int. J. Pharm. Pharm. Sci.201466461465
    [Google Scholar]
  28. GilaniS.J. JumahM.N. ZafarA. ImamS.S. YasirM. KhalidM. AlshehriS. GhuneimM.M. AlbohairyF.M. Formulation and evaluation of nano lipid carrier-based ocular gel system: Optimization to antibacterial activity.Gels20228525510.3390/gels8050255 35621552
    [Google Scholar]
  29. MalikD.S. KaurG. Nanostructured gel for topical delivery of azelaic acid: Designing, characterization, and in-vitro evaluation.J. Drug Deliv. Sci. Technol.20184712313610.1016/j.jddst.2018.07.008
    [Google Scholar]
  30. NiculaeG. BadeaN. MegheaA. OpreaO. LacatusuI. Coencapsulation of butyl-methoxydibenzoylmethane and octocrylene into lipid nanocarriers: UV performance, photostability and in-vitro release.Photochem. Photobiol.20138951085109410.1111/php.12117 23789784
    [Google Scholar]
  31. ImranM. IqubalM.K. ImtiyazK. SaleemS. MittalS. RizviM.M.A. AliJ. BabootaS. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in-vitro and ex-vivo study for the treatment of skin cancer.Int. J. Pharm.202058711970510.1016/j.ijpharm.2020.119705 32738456
    [Google Scholar]
  32. LacatusuI. BadeaN. MurariuA. MegheaA. The encapsulation effect of UV molecular absorbers into biocompatible lipid nanoparticles.Nanoscale Res. Lett.2011617310.1186/1556‑276X‑6‑73 21711592
    [Google Scholar]
  33. BhaskarK. Krishna MohanC. LingamM. Prabhakar ReddyV. VenkateswarluV. Madhusudan RaoY. Development of nitrendipine controlled release formulations based on SLN and NLC for topical delivery: in-vitro and ex-vivo characterization.Drug Dev. Ind. Pharm.200834771972510.1080/03639040701842485 18612912
    [Google Scholar]
  34. JosephJ. B N, V.H.; D, R.D. Experimental optimization of Lornoxicam liposomes for sustained topical delivery.Eur. J. Pharm. Sci.2018112385110.1016/j.ejps.2017.10.032 29111151
    [Google Scholar]
  35. SharmaB. ChauhanI. TiwariR.K. Development of NLC-based sunscreen gel of green tea extract and its in-vitro characterization.Curr. Bioact. Compd.2024Jun 1 205314210.2174/0115734072260785230920113339
    [Google Scholar]
  36. FriedewaldW.T. LevyR.I. FredricksonD.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge.Clin. Chem.197218649950210.1093/clinchem/18.6.499 4337382
    [Google Scholar]
  37. AkhtarM.S. RafiullahM. HossainM.A. AliM. Antidiabetic activity of Cichorium intybus L. Water extract against streptozotocin-induced diabetic rats. Journal of Umm Al-Qura University for Appl.Sci.20239456557110.1007/s43994‑023‑00066‑1
    [Google Scholar]
  38. Global diabetes cases to soar from 529 million to 1.3 billion by 2050.Available from: https://www.healthdata.org/news-events/newsroom/news-releases/global-diabetes-cases-soar-529-million-13-billion-2050 (accessed on 30-7-2024)
/content/journals/nanoasi/10.2174/0122106812306524240821055519
Loading
/content/journals/nanoasi/10.2174/0122106812306524240821055519
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test