Skip to content
2000
Volume 14, Issue 4
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Introduction

Nanoparticles are used in industrial products, such as textiles, to induce novel properties, such as antibacterial, antistatic, UV blocking, self-cleaning properties, wrinkle resistance, and water and oil repellent. Moreover, using enzymes (protease, lipase, amylase, and cellulase) is widespread in detergent industries for washing conditions.

Methods

This research examines the interactions between metal (Ag) and metal oxide nanoparticles (TiO and ZnO NPs) and amylase, cellulase, protease, and lipase as detergent enzymes and their impacts on enzyme activity. Using a central composite design, a total of 320 experiments under different conditions were conducted to determine the extent of change in enzyme activity. Results indicated that lipase had the lowest activity under interaction with silver nanoparticles, while cellulase and protease were most affected by interactions with Ag NPs and a-TiO.

Results

The surface response of the examined parameters showed the most effect from the interaction time and temperature and the enzyme/nanoparticle ratio and temperature parameters. This research result demonstrated that physical, chemical, and biological differences existed between nanoparticle and enzyme interface.

Conclusion

The findings can be used to improve the interaction between nanoparticles and detergent enzymes in washing conditions, aiming to retain their traits.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812309716240610112654
2024-06-18
2024-11-26
Loading full text...

Full text loading...

References

  1. MohajeraniA. BurnettL. SmithJ.V. KurmusH. MilasJ. ArulrajahA. HorpibulsukS. Abdul KadirA. Nanoparticles in construction materials and other applications, and implications of nanoparticle use.Materials20191219305210.3390/ma12193052 31547011
    [Google Scholar]
  2. GuptaR. XieH. Nanoparticles in daily life: Applications, toxicity and regulations.J. Environ. Pathol. Toxicol. Oncol.20183720923010.1615/JEnvironPatholToxicolOncol.2018026009
    [Google Scholar]
  3. JosephT. Kar MahapatraD. EsmaeiliA. PiszczykŁ. HasaninM. KattaliM. HaponiukJ. ThomasS. Nanoparticles: Taking a unique position in medicine.Nanomaterials202313357410.3390/nano13030574 36770535
    [Google Scholar]
  4. MaoB.H. TsaiJ.C. ChenC.W. YanS.J. WangY.J. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy.Nanotoxicology20161081021104010.1080/17435390.2016.1189614 27240148
    [Google Scholar]
  5. MourdikoudisS. PallaresR.M. ThanhN.T.K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties.Nanoscale20181027128711293410.1039/C8NR02278J 29926865
    [Google Scholar]
  6. HanW. YuY. LiN. WangL. Application and safety assessment for nano-composite materials in food packaging.Chin. Sci. Bull.201156121216122510.1007/s11434‑010‑4326‑6
    [Google Scholar]
  7. SinghS. HasanM.R. SharmaP. NarangJ. Graphene nanomaterials: The wondering material from synthesis to applications.Sensors Int.2022310019010.1016/j.sintl.2022.100190
    [Google Scholar]
  8. JoudehN. LinkeD. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists.J. Nanobiotechnology202220126210.1186/s12951‑022‑01477‑8 35672712
    [Google Scholar]
  9. ZhangN. XiongG. LiuZ. Toxicity of metal-based nanoparticles: Challenges in the nano era.Front. Bioeng. Biotechnol.202210100157210.3389/fbioe.2022.1001572 36619393
    [Google Scholar]
  10. SinghP. AliS.W. KaleR.D. Antimicrobial Nanomaterials as Advanced Coatings for Self-Sanitizing of Textile Clothing and Personal Protective Equipment.ACS Omega2023898159817110.1021/acsomega.2c06343 36910928
    [Google Scholar]
  11. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  12. EliaV. MarrariL.A. NapoliE. Aqueous nanostructures in water induced by electromagnetic fields emitted by EDS.J. Therm. Anal. Calorim.2012107284385110.1007/s10973‑011‑1484‑y
    [Google Scholar]
  13. SinghR. Rabiei DolatabadiZ. TripathiN. Recent progress of filtration mechanism to fabricate the effective COVID-masks: A review.J. Composit. Comp.2021321822910.52547/jcc.3.4.3
    [Google Scholar]
  14. NikolovaM.P. JoshiP.B. ChavaliM.S. Updates on Biogenic Metallic and Metal Oxide Nanoparticles: Therapy, Drug Delivery and Cytotoxicity.Pharmaceutics2023156165010.3390/pharmaceutics15061650 37376098
    [Google Scholar]
  15. TahaT.B. BarzinjyA.A. HussainF.H.S. NurtayevaT. Nanotechnology and Computer Science: Trends and advances.Memories - Materials, Devices, Circuits and Systems2022210001110.1016/j.memori.2022.100011
    [Google Scholar]
  16. KumarN. ChauhanN.S. Nano-Biocatalysts: Potential Biotechnological Applications.Indian J. Microbiol.202161444144810.1007/s12088‑021‑00975‑x 34744199
    [Google Scholar]
  17. ChandraP. Microbial lipases and their industrial applications: A comprehensive review.Microb Cell Fact202019169
    [Google Scholar]
  18. MaghrabyY.R. El-ShabasyR.M. IbrahimA.H. AzzazyH.M.E.S. Enzyme Immobilization Technologies and Industrial Applications.ACS Omega2023865184519610.1021/acsomega.2c07560 36816672
    [Google Scholar]
  19. FalchE.A. Industrial enzymes — Developments in production and application.Biotechnol. Adv.19919464365810.1016/0734‑9750(91)90736‑F 14542053
    [Google Scholar]
  20. HauthalH.G. Basics, ingredients, detergents, product safety and sustainability.Tenside Surfactants Deterg.200845304210.3139/113.100361
    [Google Scholar]
  21. García-ÁlvarezR. Vallet-RegíM. Hard and soft protein corona of nanomaterials: Analysis and relevance.Nanomaterials (Basel)202111488810.3390/nano11040888 33807228
    [Google Scholar]
  22. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  23. LiuN. TangM. DingJ. The interaction between nanoparticles-protein corona complex and cells and its toxic effect on cells.Chemosphere202024512562410.1016/j.chemosphere.2019.125624 31864050
    [Google Scholar]
  24. BashiriG. PadillaM.S. SwingleK.L. ShepherdS.J. MitchellM.J. WangK. Nanoparticle protein corona: From structure and function to therapeutic targeting.Lab Chip20232361432146610.1039/D2LC00799A 36655824
    [Google Scholar]
  25. Abarca-CabreraL. Fraga-GarcíaP. BerensmeierS. Bio-nano interactions: Binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles.Biomater. Res.20212511210.1186/s40824‑021‑00212‑y 33883044
    [Google Scholar]
  26. DuránN. SilveiraC.P. DuránM. MartinezD.S.T. Silver nanoparticle protein corona and toxicity: A mini-review.J. Nanobiotechnol.20151315510.1186/s12951‑015‑0114‑4 26337542
    [Google Scholar]
  27. MahmoudiM. LandryM.P. MooreA. CoreasR. The protein corona from nanomedicine to environmental science.Nat. Rev. Mater.20238742243810.1038/s41578‑023‑00552‑2 37361608
    [Google Scholar]
  28. PearsonR.M. JuettnerV.V. HongS. Biomolecular corona on nanoparticles: a survey of recent literature and its implications in targeted drug delivery.Front Chem.2014210810.3389/fchem.2014.00108 25506050
    [Google Scholar]
  29. HuangW. XiaoG. ZhangY. MinW. Research progress and application opportunities of nanoparticle–protein corona complexes.Biomed. Pharmacother.202113911154110.1016/j.biopha.2021.111541 33848776
    [Google Scholar]
  30. TangZ. XiaoY. KongN. LiuC. ChenW. HuangX. XuD. OuyangJ. FengC. WangC. WangJ. ZhangH. TaoW. Nano-bio interfaces effect of two-dimensional nanomaterials and their applications in cancer immunotherapy.Acta Pharm. Sin. B202111113447346410.1016/j.apsb.2021.05.004 34900529
    [Google Scholar]
  31. MishraR.K. AhmadA. VyawahareA. AlamP. KhanT.H. KhanR. Biological effects of formation of protein corona onto nanoparticles.Int. J. Biol. Macromol.202117511810.1016/j.ijbiomac.2021.01.152 33508360
    [Google Scholar]
  32. PederzoliF. TosiG. VandelliM.A. BellettiD. ForniF. RuoziB. Protein corona and nanoparticles: how can we investigate on?Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201796e146710.1002/wnan.1467 28296346
    [Google Scholar]
  33. CharbgooF. NejabatM. AbnousK. SoltaniF. TaghdisiS.M. AlibolandiM. Thomas ShierW. SteeleT.W.J. RamezaniM. Gold nanoparticle should understand protein corona for being a clinical nanomaterial.J. Control. Release2018272395310.1016/j.jconrel.2018.01.002 29305922
    [Google Scholar]
  34. WangH. ShangL. MaffreP. HohmannS. KirschhöferF. Brenner-WeißG. NienhausG.U. The nature of a hard protein corona forming on quantum dots exposed to human blood serum.Small201612425836584410.1002/smll.201602283 27606563
    [Google Scholar]
  35. AlshameriA.W. OwaisM. 2022, Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: A review.,Open Nano.2022810007710.1016/j.onano.2022.100077
    [Google Scholar]
  36. ZhaoY. ChuQ. ShiX. ZhengX. ShenX. ZhangY. Toxicity testing of four silver nanoparticle-coated dental castings in 3-D LO2 cell cultures.J. Zhejiang Univ. Sci. B201819215916710.1631/jzus.B1600482 29405043
    [Google Scholar]
  37. YuZ. WangW. KongF. LinM. MustaphaA. Cellulose nanofibril/silver nanoparticle composite as an active food packaging system and its toxicity to human colon cells.Int. J. Biol. Macromol.201912988789410.1016/j.ijbiomac.2019.02.084 30776442
    [Google Scholar]
  38. PandeyV.K. IslamR.U. ShamsR. DarA.H. A comprehensive review on the application of essential oils as bioactive compounds in Nano-emulsion based edible coatings of fruits and vegetables.Appl. Food Res.20222110004210.1016/j.afres.2022.100042
    [Google Scholar]
  39. Russ AlgarW. JeenT. MasseyM. Small surface, big effects, and big challenges: Toward understanding enzymatic activity at the inorganic nanoparticle–substrate interface.Langmuir201935227067709110.1021/acs.langmuir.8b02733
    [Google Scholar]
  40. AloulouA. RodriguezJ.A. FernandezS. van OosterhoutD. PuccinelliD. CarrièreF. Exploring the specific features of interfacial enzymology based on lipase studies.Biochim. Biophys. Acta Mol. Cell Biol. Lipids200617619995101310.1016/j.bbalip.2006.06.009 16931141
    [Google Scholar]
  41. SaptarshiS.R. DuschlA. LopataA.L. Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle.J. Nanobiotechnol.20131112610.1186/1477‑3155‑11‑26 23870291
    [Google Scholar]
  42. ParkS.J. Protein–nanoparticle interaction: Corona formation and conformational changes in proteins on nanoparticles.Int. J. Nanomedicine2020155783580210.2147/IJN.S254808 32821101
    [Google Scholar]
  43. EisazadehB. MirzajaniF. SefidbakhtY. How is the effect of silver nanoparticles and lipase/cellulase enzymes on each other?Iran. J. Sci. Technol. Trans. A Sci.2020441273510.1007/s40995‑020‑00820‑8
    [Google Scholar]
  44. TomakA. YilanciogluB. WinklerD. KarakusC.O. Protein corona formation on silver nanoparticles under different conditions.Colloids Surf. A Physicochem. Eng. Asp.202265112966610.1016/j.colsurfa.2022.129666
    [Google Scholar]
  45. WeberC. SimonJ. MailänderV. MorsbachS. LandfesterK. Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins.Acta Biomater.20187621722410.1016/j.actbio.2018.05.057 29885856
    [Google Scholar]
  46. BreznicaP. KoliqiR. DakaA. A review of the current understanding of nanoparticles protein corona composition.Med. Pharm. Rep.202093434235010.15386/mpr‑1756 33225259
    [Google Scholar]
  47. AlizadehN. SalimiA. Multienzymes activity of metals and metal oxide nanomaterials: Applications from biotechnology to medicine and environmental engineering.J. Nanobiotechnol.202119113110.1186/s12951‑021‑00771‑1
    [Google Scholar]
  48. HeinzH. PramanikC. HeinzO. DingY. MishraR.K. MarchonD. FlattR.J. Estrela-LopisI. LlopJ. MoyaS. ZioloR.F. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications.Surf. Sci. Rep.201772115810.1016/j.surfrep.2017.02.001
    [Google Scholar]
  49. JainA. SinghS.K. AryaS.K. KunduS.C. KapoorS. Protein nanoparticles: Promising platforms for drug delivery applications.ACS Biomater. Sci. Eng.20184123939396110.1021/acsbiomaterials.8b01098 33418796
    [Google Scholar]
  50. KhoshnevisanK. VakhshitehF. BarkhiM. BaharifarH. Poor-AkbarE. ZariN. StamatisH. BordbarA-K. Immobilization of cellulase enzyme onto magnetic nanoparticles: Applications and recent advances.Molecular Catalysis2017442667310.1016/j.mcat.2017.09.006
    [Google Scholar]
  51. ZhuR.R. WangW.R. SunX.Y. LiuH. WangS.L. Enzyme activity inhibition and secondary structure disruption of nano-TiO2 on pepsin.Toxicol. In Vitro20102461639164710.1016/j.tiv.2010.06.002 20541600
    [Google Scholar]
  52. WengY. YangG. LiY. XuL. ChenX. SongH. ZhaoC.X. Alginate-based materials for enzyme encapsulation.Adv. Colloid Interface Sci.202331810295710.1016/j.cis.2023.102957 37392664
    [Google Scholar]
  53. DikG. BakarB. UluA. AteşB. Propelling of enzyme activity by using different triggering strategies: Applications and perspectives.Ind. Eng. Chem. Res.20236236141111412910.1021/acs.iecr.3c01678
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812309716240610112654
Loading
/content/journals/nanoasi/10.2174/0122106812309716240610112654
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): amylase; cellulase; Corona; lipase; metal oxide nanoparticles; protease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test