Skip to content
2000
Volume 14, Issue 5
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Fungal infections have been more common during the past few years as a result of an increase in the population of immunocompromised people, including those with cancer, HIV/AIDS, and organ transplant recipients. It has been reported that fungal infection is brought on by different pathogens. The main focus of this review is the use of nanosized plant components to stop fungal infections for the pharmaceutical industry and research projects. According to research about 40 million people have fungal infections. Echinocandins, griseofulvin, azoles, allylamines, and flucytosine are only a few antifungal medications used in clinical settings to treat fungal infections. Skin infections caused by fungi are among the most prevalent dermatological issues of today. Fungal infections at the skin's surface or under the skin's surface may harm the skin, keratinous tissues, and mucous membranes. Therefore, there is a high need for producing an antifungal agent that may act selectively on new targets while having minor side effects and can belong to a variety of structural classes. Natural goods offer limitless prospects for innovative medicine development due to their typically unrivaled chemical variety, whether in the form of pure phyto-compounds or standardized plant extracts. Plants have been an excellent source of medicine since the beginning of time. When compared to synthetically produced medications, phytochemicals from various plant species have been versicolor as a more potent source of therapy. Novel cell targets and antifungal chemicals, as well as new methods for the delivery of drugs based on nanotechnology, are all currently being studied.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812329611240913161126
2024-10-15
2025-01-27
Loading full text...

Full text loading...

References

  1. EpsteinJ.B. Antifungal therapy in oropharyngeal mycotic infections.Oral Surg. Oral Med. Oral Pathol.1990691324110.1016/0030‑4220(90)90265‑T 2404226
    [Google Scholar]
  2. DreizenS. Oral candidiasis.Am. J. Med.1984774D2833 6496525
    [Google Scholar]
  3. Budtz-JörgensenE. Etiology, pathogenesis, therapy, and prophylaxis of oral yeast infections.Acta Odontol. Scand.1990481616910.3109/00016359009012735 2181812
    [Google Scholar]
  4. GrollA. ShahP. MentzelC. SchneiderM. JustnueblingG. HuebnerK. Trends in the postmortem epidemiology of invasive fungal infections at a University Hospital.J. Infect.1996331233210.1016/S0163‑4453(96)92700‑0 8842991
    [Google Scholar]
  5. DenningD.W. EvansE.G.V. KibblerC.C. RichardsonM.D. RobertsM.M. RogersT.R. WarnockD.W. WarrenR.E. Guidelines for the investigation of invasive fungal infections in haematological malignancy and solid organ transplantation.Eur. J. Clin. Microbiol. Infect. Dis.199716642443610.1007/BF02471906 9248745
    [Google Scholar]
  6. KaushikK. AgarwalS.H. The role of herbal antifungal agents for the management of fungal diseases: A systematic review.Asian J. Pharm. Clin. Res.2019127344010.22159/ajpcr.2019.v12i7.33831
    [Google Scholar]
  7. SathyanG. RitschelW.A. HussainA.S. Transdermal delivery of tacrine: I. Identification of a suitable delivery vehicle.Int. J. Pharm.19951141758310.1016/0378‑5173(94)00214‑P
    [Google Scholar]
  8. GüngörS. New Formulation Strategies in Topical Antifungal Therapy.J. Cosmet. Dermatol. Sci. Appl.201331A5665
    [Google Scholar]
  9. GondaA. ZhaoN. ShahJ.V. CalvelliH.R. KantamneniH. FrancisN.L. GanapathyV. Engineering tumor-targeting nanoparticles as vehicles for precision nanomedicine.Med One201944 31592196
    [Google Scholar]
  10. ÖzçelikB. AslanM. OrhanI. KaraogluT. Antibacterial, antifungal, and antiviral activities of the lipophylic extracts of Pistacia vera.Microbiol. Res.2005160215916410.1016/j.micres.2004.11.002 15881833
    [Google Scholar]
  11. KumarMishra Medicinal Plants Having Antifungal Properties. Medicinal Plants - Use in Prevention and Treatment of DiseasesInTechOpen: London2020
    [Google Scholar]
  12. CanavanT.N. ElewskiB.E. Identifying signs of tinea pedis: A key to understanding clinical variables.J. Drugs Dermatol.20151410s42s47 26461834
    [Google Scholar]
  13. HayR.J. AdriaansB.M. Rooks Textbook of Dermatology.8th edHoboken, New JerseyWiley2010
    [Google Scholar]
  14. BormanA.M. CampbellC.K. FraserM. JohnsonE.M. Analysis of the dermatophyte species isolated in the British Isles between 1980 and 2005 and review of worldwide dermatophyte trends over the last three decades. Med Microbiol.2006441e11
    [Google Scholar]
  15. MignonB. TabartJ. BaldoA. Immunization and dermatophytes.Curr. Opin. Infect. Dis.200821213414010.1097/QCO.0b013e3282f55de6
    [Google Scholar]
  16. VosT. FlaxmanA.D. NaghaviM. LozanoR. MichaudC. EzzatiM. ShibuyaK. SalomonJ.A. AbdallaS. AboyansV. AbrahamJ. AckermanI. AggarwalR. AhnS.Y. AliM.K. AlMazroaM.A. AlvaradoM. AndersonH.R. AndersonL.M. AndrewsK.G. AtkinsonC. BaddourL.M. BahalimA.N. Barker-ColloS. BarreroL.H. BartelsD.H. BasáñezM-G. BaxterA. BellM.L. BenjaminE.J. BennettD. BernabéE. BhallaK. BhandariB. BikbovB. AbdulhakA.B. BirbeckG. BlackJ.A. BlencoweH. BloreJ.D. BlythF. BolligerI. BonaventureA. BoufousS. BourneR. BoussinesqM. BraithwaiteT. BrayneC. BridgettL. BrookerS. BrooksP. BrughaT.S. Bryan-HancockC. BucelloC. BuchbinderR. BuckleG. BudkeC.M. BurchM. BurneyP. BursteinR. CalabriaB. CampbellB. CanterC.E. CarabinH. CarapetisJ. CarmonaL. CellaC. CharlsonF. ChenH. ChengA.T-A. ChouD. ChughS.S. CoffengL.E. ColanS.D. ColquhounS. ColsonK.E. CondonJ. ConnorM.D. CooperL.T. CorriereM. CortinovisM. de VaccaroK.C. CouserW. CowieB.C. CriquiM.H. CrossM. DabhadkarK.C. DahiyaM. DahodwalaN. Damsere-DerryJ. DanaeiG. DavisA. De LeoD. DegenhardtL. DellavalleR. DelossantosA. DenenbergJ. DerrettS. Des JarlaisD.C. DharmaratneS.D. DheraniM. Diaz-TorneC. DolkH. DorseyE.R. DriscollT. DuberH. EbelB. EdmondK. ElbazA. AliS.E. ErskineH. ErwinP.J. EspindolaP. EwoigbokhanS.E. FarzadfarF. FeiginV. FelsonD.T. FerrariA. FerriC.P. FèvreE.M. FinucaneM.M. FlaxmanS. FloodL. ForemanK. ForouzanfarM.H. FowkesF.G.R. FranklinR. FransenM. FreemanM.K. GabbeB.J. GabrielS.E. GakidouE. GanatraH.A. GarciaB. GaspariF. GillumR.F. GmelG. GosselinR. GraingerR. GroegerJ. GuilleminF. GunnellD. GuptaR. HaagsmaJ. HaganH. HalasaY.A. HallW. HaringD. HaroJ.M. HarrisonJ.E. HavmoellerR. HayR.J. HigashiH. HillC. HoenB. HoffmanH. HotezP.J. HoyD. HuangJ.J. IbeanusiS.E. JacobsenK.H. JamesS.L. JarvisD. JasrasariaR. JayaramanS. JohnsN. JonasJ.B. KarthikeyanG. KassebaumN. KawakamiN. KerenA. KhooJ-P. KingC.H. KnowltonL.M. KobusingyeO. KorantengA. KrishnamurthiR. LallooR. LaslettL.L. LathleanT. LeasherJ.L. LeeY.Y. LeighJ. LimS.S. LimbE. LinJ.K. LipnickM. LipshultzS.E. LiuW. LoaneM. OhnoS.L. LyonsR. MaJ. MabweijanoJ. MacIntyreM.F. MalekzadehR. MallingerL. ManivannanS. MarcenesW. MarchL. MargolisD.J. MarksG.B. MarksR. MatsumoriA. MatzopoulosR. MayosiB.M. McAnultyJ.H. McDermottM.M. McGillN. McGrathJ. Medina-MoraM.E. MeltzerM. MemishZ.A. MensahG.A. MerrimanT.R. MeyerA-C. MiglioliV. MillerM. MillerT.R. MitchellP.B. MocumbiA.O. MoffittT.E. MokdadA.A. MonastaL. MonticoM. Moradi-LakehM. MoranA. MorawskaL. MoriR. MurdochM.E. MwanikiM.K. NaidooK. NairM.N. NaldiL. NarayanK.M.V. NelsonP.K. NelsonR.G. NevittM.C. NewtonC.R. NolteS. NormanP. NormanR. O’DonnellM. O’HanlonS. OlivesC. OmerS.B. OrtbladK. OsborneR. OzgedizD. PageA. PahariB. PandianJ.D. RiveroA.P. PattenS.B. PearceN. PadillaR.P. Perez-RuizF. PericoN. PesudovsK. PhillipsD. PhillipsM.R. PierceK. PionS. PolanczykG.V. PolinderS. PopeC.A.III PopovaS. PorriniE. PourmalekF. PrinceM. PullanR.L. RamaiahK.D. RanganathanD. RazaviH. ReganM. RehmJ.T. ReinD.B. RemuzziG. RichardsonK. RivaraF.P. RobertsT. RobinsonC. De LeònF.R. RonfaniL. RoomR. RosenfeldL.C. RushtonL. SaccoR.L. SahaS. SampsonU. Sanchez-RieraL. SanmanE. SchwebelD.C. ScottJ.G. Segui-GomezM. ShahrazS. ShepardD.S. ShinH. ShivakotiR. SilberbergD. SinghD. SinghG.M. SinghJ.A. SingletonJ. SleetD.A. SliwaK. SmithE. SmithJ.L. StapelbergN.J.C. SteerA. SteinerT. StolkW.A. StovnerL.J. SudfeldC. SyedS. TamburliniG. TavakkoliM. TaylorH.R. TaylorJ.A. TaylorW.J. ThomasB. ThomsonW.M. ThurstonG.D. TleyjehI.M. TonelliM. TowbinJ.A. TruelsenT. TsilimbarisM.K. UbedaC. UndurragaE.A. van der WerfM.J. van OsJ. VavilalaM.S. VenketasubramanianN. WangM. WangW. WattK. WeatherallD.J. WeinstockM.A. WeintraubR. WeisskopfM.G. WeissmanM.M. WhiteR.A. WhitefordH. WiersmaS.T. WilkinsonJ.D. WilliamsH.C. WilliamsS.R.M. WittE. WolfeF. WoolfA.D. WulfS. YehP-H. ZaidiA.K.M. ZhengZ-J. ZoniesD. LopezA.D. MurrayC.J.L. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010.Lancet201238098592163219610.1016/S0140‑6736(12)61729‑2 23245607
    [Google Scholar]
  17. Braun-FalcoO. PlewigG. WolffH.H. WinkelmannR.K. Dermatology.Berlin/Heidelberg, GermanySpringer Science & Business Media201311
    [Google Scholar]
  18. ArnoldH.L. OdomR. WilliamJ. Andrews’ Diseases of the Skin.8th edPhiladelphiaW.B. Saunders1990
    [Google Scholar]
  19. SemelJ.D. GoldinH. Association of athlete’s foot with cellulitis of the lower extremities: Diagnostic value of bacterial cultures of ipsilateral interdigital space samples.Clin. Infect. Dis.19962351162116410.1093/clinids/23.5.1162 8922818
    [Google Scholar]
  20. KobayashiG.S. Disease Mechanisms of Fungi.Medical Microbiology.Galveston, TexasUniversity of Texas Medical Branch at Galveston1996
    [Google Scholar]
  21. VelegrakiA. CafarchiaC. GaitanisG. IattaR. BoekhoutT. Malassezia infections in humans and animals: Pathophysiology, detection, and treatment.PLoS Pathog.2015111e100452310.1371/journal.ppat.1004523 25569140
    [Google Scholar]
  22. PfallerM.A. JonesR.N. MesserS.A. EdmondM.B. WenzelR.P. National surveillance of nosocomial bloodstream infection due to species of Candida other than Candida albicans: Frequency of occurrence and antifungal susceptibility in the SCOPE Program. SCOPE Participant Group. Surveillance and Control of Pathogens of Epidemiologic.Diagn. Microbiol. Infect. Dis.19983132733210.1016/S0732‑8893(97)00240‑X 9597393
    [Google Scholar]
  23. PfallerM.A. JonesR.N. MesserS.A. EdmondM.B. WenzelR.P. National surveillance of nosocomial bloodstream infection due to species of Candida other than Candida albicans: Frequency of occurrence and antifungal susceptibility in the SCOPE Program.Diagn. Microbiol. Infect. Dis.199830212112910.1016/S0732‑8893(97)00192‑2 9554180
    [Google Scholar]
  24. BodeyG.P. BuckleyM. SatheY.S. FreireichE.J. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia.Ann. Intern. Med.196664232834010.7326/0003‑4819‑64‑2‑328 5216294
    [Google Scholar]
  25. MurtazaG. MukhtarM. SarfrazA. A review: Antifungal potentials of medicinal plants.J. Biores. Manag.201522410.35691/JBM.5102.0018
    [Google Scholar]
  26. JelenG. TennstedtD. Contact dermatitis from topical imidazole antifungals: 15 new cases.Contact Dermat.198921161110.1111/j.1600‑0536.1989.tb04677.x 2530045
    [Google Scholar]
  27. DornM. ScherwitzC. LentzeI. PlewigG. In-vitro -Testung und klinische Prüfung.MMW Munch. Med. Wochenschr.197511716687692 805931
    [Google Scholar]
  28. KotrekhovaL.P. The effective use of isoconazole nitrate and diflucortolone valerate cream in the treatment of inguino‐femoral skin fold mycosis.Mycoses200851s4Suppl. 4293110.1111/j.1439‑0507.2008.01612.x 18783562
    [Google Scholar]
  29. GuptaA.K. DaigleD. FoleyK.A. Drug safety assessment of oral formulations of ketoconazole.Expert Opin. Drug Saf.201514232533410.1517/14740338.2015.983071 25409549
    [Google Scholar]
  30. DeFeliceR. JohnsonD.G. GalgianiJ.N. Gynecomastia with ketoconazole.Antimicrob. Agents Chemother.19811961073107410.1128/AAC.19.6.1073 6267997
    [Google Scholar]
  31. HeykantsJ. Van PeerA. Van de VeldeV. Van RooyP. MeuldermansW. LavrijsenK. WoestenborghsR. Van CutsemJ. CauwenberghG. The clinical pharmacokinetics of itraconazole: An overview.Mycoses198932s1Suppl. 1678710.1111/j.1439‑0507.1989.tb02296.x 2561187
    [Google Scholar]
  32. SzymańskiM. ChmielewskaS. CzyżewskaU. MalinowskaM. TylickiA. Echinocandins – structure, mechanism of action and use in antifungal therapy.J. Enzyme Inhib. Med. Chem.202237187689410.1080/14756366.2022.2050224 35296203
    [Google Scholar]
  33. SigeraL.S.M. DenningD.W. Flucytosine and its clinical usage.Ther. Adv. Infect. Dis.2023106138710.1177/20499361231161387 37051439
    [Google Scholar]
  34. PengD.S. LoC.H. TsengY.L. KuoS.L. ChiangC.P. ChiangM.L. Efficacy of oral nystatin treatment for patients with oral mucosal dysesthesia but without objective oral mucosal manifestations and necessity of Candida culture test before oral nystatin treatment.J. Dent. Sci.20221741802181310.1016/j.jds.2022.08.005 36299322
    [Google Scholar]
  35. MoseleyR.H. Antifungal agents. Hepatoxicity of antimicrobials and antifungal agents.Drug-induced liver disease3rd ed.; Kaplowitz, N.; DeLeve, L.D., Eds.; Elsevier: Amsterdam201347047310.1016/B978‑0‑12‑387817‑5.00026‑1
    [Google Scholar]
  36. ReinelD. ClarkeC. Comparative efficacy and safety of amorolfine nail lacquer 5% in onychomycosis, once-weekly versus twice-weekly.Clin. Exp. Dermatol.199217s1Suppl. 1444910.1111/j.1365‑2230.1992.tb00278.x 1458665
    [Google Scholar]
  37. United States. Environmental Protection Agency. Health Effects Assessment Summary Tables (Heast).1992Available From: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=2877
  38. Practo. Budamate 200 Transcaps.2028 Available From: https://www.practo.com/medicine-info/budamate-200-transcaps-46251
  39. ThirupL. JohnsenK. TorsvikV. SpliidN.H. JacobsenC.S. Effects of fenpropimorph on bacteria and fungi during decomposition of barley roots.Soil Biol. Biochem.200133111517152410.1016/S0038‑0717(01)00067‑0
    [Google Scholar]
  40. DrewR.H. Polyenes for prevention and treatment of invasive fungal infections. Antifungal Therapy.2nd edBoca Raton, FloridaCRC Press201910.1201/9780429402012‑10
    [Google Scholar]
  41. SaundersJ. MakiK. KoskiR. NyboS.E. Tavaborole, efinaconazole, and luliconazole: Three new antimycotic agents for the treatment of dermatophytic fungi.J. Pharm. Pract.201730662163010.1177/0897190016660487 27488125
    [Google Scholar]
  42. SubissiA. MontiD. TogniG. MaillandF. Ciclopirox.Drugs201070162133215210.2165/11538110‑000000000‑00000 20964457
    [Google Scholar]
  43. RoyM.A. NugentF.W. AretzH.T. Micronodular cirrhosis after thiabendazole.Dig. Dis. Sci.198934693894110.1007/BF01540282 2721325
    [Google Scholar]
  44. FerreiraM.R.A. SantiagoR.R. LangassnerS.M.Z. Palazzo de MelloJ.C. SvidzinskiT.I.E. SoaresL.A.L. Antifungal activity of medicinal plants from Northeastern Brazil.J. Med. Plants Res.20137403008301310.5897/JMPR2013.5035
    [Google Scholar]
  45. KoroishiA.M. FossS.R. CortezD.A.G. Ueda-NakamuraT. NakamuraC.V. Dias FilhoB.P. In vitro antifungal activity of extracts and neolignans from Piper regnellii against dermatophytes.J. Ethnopharmacol.2008117227027710.1016/j.jep.2008.01.039 18394835
    [Google Scholar]
  46. ManojlovicN.T. SolujicS. SukdolakS. MilosevM. Antifungal activity of Rubia tinctorum, Rhamnus frangula and Caloplaca cerina.Fitoterapia200576224424610.1016/j.fitote.2004.12.002 15752641
    [Google Scholar]
  47. DaburR. ChhillarA.K. YadavV. KamalP.K. GuptaJ. SharmaG.L. In vitro antifungal activity of 2-(3,4-dimethyl-2,5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate, a dihydropyrrole derivative.J. Med. Microbiol.200554654955210.1099/jmm.0.45968‑0 15888463
    [Google Scholar]
  48. EndoK. KannoE. OshimaY. Structures of antifungal diarylheptenones, gingerenones A, B, C and isogingerenone B, isolated from the rhizomes of Zingiber officinale.Phytochemistry199029379779910.1016/0031‑9422(90)80021‑8
    [Google Scholar]
  49. KimK.Y. DavidsonP.M. ChungH.J. Antibacterial activity in extracts of Camellia japonica L. petals and its application to a model food system.J. Food Prot.20016481255126010.4315/0362‑028X‑64.8.1255 11510672
    [Google Scholar]
  50. InghamJ.L. TaharaS. HarborneJ.B. Fungitoxic isoflavones from Lupinus albus and other Lupinus species.Z. Naturforsch. C J. Biosci.1983383-419420010.1515/znc‑1983‑3‑407
    [Google Scholar]
  51. PortilloA. VilaR. FreixaB. AdzetT. CañigueralS. Antifungal activity of Paraguayan plants used in traditional medicine.J. Ethnopharmacol.2001761939810.1016/S0378‑8741(01)00214‑8 11378288
    [Google Scholar]
  52. KobayashiK. NishinoC. TomitaH. FukushimaM. Antifungal activity of pisiferic acid derivatives against the rice blast fungus.Phytochemistry198726123175317910.1016/S0031‑9422(00)82465‑6
    [Google Scholar]
  53. ItoT. KumazawaK. Antifungal substances from mechanically damaged cherry leaves (Prumus yedoensis matsumura).Biosci. Biotechnol. Biochem.19925610165510.1271/bbb.56.1655
    [Google Scholar]
  54. JainN. ValliK.S. DeviV.K. Importance of novel drug delivery systems in herbal medicines.Pharmacogn. Rev.201047273110.4103/0973‑7847.65322 22228938
    [Google Scholar]
  55. López-BascónM.A. De CastroM.L. Soxhlet extraction. Liquid-Phase Extraction: Handbooks in Separation Science.AmsterdamElsevier202010.1016/B978‑0‑12‑816911‑7.00011‑6
    [Google Scholar]
  56. PrakashB. KujurA. YadavA. KumarA. SinghP.P. DubeyN.K. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system.Food Control2018898911110.1016/j.foodcont.2018.01.018
    [Google Scholar]
  57. BeyatricksK.J. KumarK.S. SuchitraD. JainabN.H. AnitaA. Recent microsphere formulations and its applications in herbal drugs-a review.Int J Pharm Dev Technol20144015862
    [Google Scholar]
  58. ChakrabortyK. ShivakumarA. RamachandranS. Nano-technology in herbal medicines: A review.Int. J. Herb. Med.201643212710.22271/flora.2016.v4.i3.05
    [Google Scholar]
  59. IndalkarY.R. PimpodkarN.V. GodaseA.S. GaikwadP.S. A compressive review on the study of nanotechnology for herbal drugs.Asian J. Pharmaceut. Res.20155420320710.5958/2231‑5691.2015.00031.3
    [Google Scholar]
  60. SharmaA.T. MitkareS.S. MoonR.S. Multicomponent herbal therapy: A review.Int. J. Pharm. Sci. Rev. Res.20116185187
    [Google Scholar]
  61. KesarwaniK. GuptaR. MukerjeeA. Bioavailability enhancers of herbal origin: An overview.Asian Pac. J. Trop. Biomed.20133425326610.1016/S2221‑1691(13)60060‑X 23620848
    [Google Scholar]
  62. GoyalA. KumarS. NagpalM. SinghI. AroraS. Potential of novel drug delivery systems for herbal drugs.Indian J. Pharmaceut. Edu. Res.2011453225235
    [Google Scholar]
  63. ThapaR.K. KhanG.M. Parajuli-BaralK. ThapaP. Herbal Medicine Incorporated Nanoparticles: Advancements in Herbal Treatment.Asian J. Biomed. Pharmaceu. Sci.2013324714
    [Google Scholar]
  64. PrasadM. LambeU.P. BrarB. ShahI. J, M.; Ranjan, K.; Rao, R.; Kumar, S.; Mahant, S.; Khurana, S.K.; Iqbal, H.M.N.; Dhama, K.; Misri, J.; Prasad, G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world.Biomed. Pharmacother.201897971521153710.1016/j.biopha.2017.11.026 29793315
    [Google Scholar]
  65. LinC.H. ChenC.H. LinZ.C. FangJ.Y. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers.Yao Wu Shi Pin Fen Xi2017252219234 28911663
    [Google Scholar]
  66. SenS. ChakrabortyR. Toward the integration and advancement of herbal medicine: A focus on traditional Indian medicine.Botanics201513334410.2147/BTAT.S66308
    [Google Scholar]
  67. TeliD. SatasiaR. PatelV. NairR. KhatriR. GalaD. BalarP.C. PatelK. SharmaA. VadodariyaP. ChavdaV.P. Nature meets technology: Harnessing nanotechnology to unleash the power of phytochemicals.Clin. Trad. Med. Pharmacol.20245220013910.1016/j.ctmp.2024.200139
    [Google Scholar]
  68. GuptaV.K. KararP.K. RameshS. MisraS.P. GuptaA. Nanoparticle formulation for hydrophilic & hydrophobic drugs.Int J Res Pharm Sci201012163169
    [Google Scholar]
  69. ElzoghbyA.O. SamyW.M. ElgindyN.A. Protein-based nanocarriers as promising drug and gene delivery systems.J. Control. Release20121611384910.1016/j.jconrel.2012.04.036 22564368
    [Google Scholar]
  70. RatnamD.V. AnkolaD.D. BhardwajV. SahanaD.K. KumarM.N.V.R. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective.J. Control. Release2006113318920710.1016/j.jconrel.2006.04.015 16790290
    [Google Scholar]
  71. AllémannE. GurnyR. DoelkerE. Drug-loaded nanoparticles: Preparation methods and drug targeting issues.Eur. J. Pharm. Biopharm.1993395173191
    [Google Scholar]
  72. BriggerI. DubernetC. CouvreurP. Nanoparticles in cancer therapy and diagnosis.Adv. Drug Deliv. Rev.20126464243610.1016/j.addr.2012.09.006 12204596
    [Google Scholar]
  73. GrefR. MinamitakeY. PeracchiaM.T. TrubetskoyV. TorchilinV. LangerR. Biodegradable long-circulating polymeric nanospheres.Science199426351531600160310.1126/science.8128245 8128245
    [Google Scholar]
  74. SachanA.K. GuptaA. A review on nanotized herbal drugs.Int. J. Pharm. Sci. Res.201563961
    [Google Scholar]
  75. VermaH. PrasadS.B. YashwantS.H. Herbal drug delivery system: A modern era prospective.Int J Current Pharma Rev Res2013488101
    [Google Scholar]
  76. FréchetJ.M. Dendrimers and supramolecular chemistry.PNAS200299847824787
    [Google Scholar]
  77. MinK.H. ParkK. KimY.S. BaeS.M. LeeS. JoH.G. ParkR.W. KimI.S. JeongS.Y. KimK. KwonI.C. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy.J. Control. Release20081273208218
    [Google Scholar]
  78. Zeisser-LabouèbeM. LangeN. GurnyR. DelieF. Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer.Int. J. Pharm.20063261-217418110.1016/j.ijpharm.2006.07.012 16930882
    [Google Scholar]
  79. BombardelliE. PatriG.F. Complex compounds of bioflavonoids with phospholipids, their preparation and use, and pharmaceutical and cosmetic compositions containing them.US Patent 5043323A1991
  80. BombardelliE. SpeltaM. Phospholipid-polyphenol complexes: A new concept in skin care ingredients.Cosmet. Toilet.199110636976
    [Google Scholar]
  81. BombardelliE. MustichG. Bilobalide phospholipide complexes, their applications and formulations containing them. EP Patent 0441279A11991
  82. BhattacharyaS. Phytosomes: Emerging strategy in delivery of herbal drugs and nutraceuticals.Pharm. Times2009413912
    [Google Scholar]
  83. RaviG.S. ChandurV. ShabarayaA.R. SanjayK. Phytosomes: An advanced herbal drug delivery system. Int. J. Pharmaceut. Res.Biomed. Sci.201543415432
    [Google Scholar]
  84. KareparambanJ.A. NikamP.H. JadhavA.P. KadamV.J. Phytosome: A novel revolution in herbal drugs.IJRPC201222299310
    [Google Scholar]
  85. DeshpandeP.K. PathakA.K. GothalwalR. Phytosomes: A noval drug delivery system for phytoconstituents.J. New Biol. Rep.201433212220
    [Google Scholar]
  86. PawarH.A. BhangaleB.D. Phytosome as a novel biomedicine: A microencapsulated drug delivery system.J. Bioanal. Biomed.201557
    [Google Scholar]
  87. SinghR.P. ParpaniS. NarkeR. ChavanR. Phytosome: Recent advance research for novel drug delivery system.Asian J. Pharmaceut. Res. Develop.201411529
    [Google Scholar]
  88. KarpuzM. GunayM.S. OzerA.Y. Liposomes and phytosomes for phytoconstituents.Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents.AmsterdamElsevier2020
    [Google Scholar]
  89. AlharbiW.S. AlmughemF.A. AlmehmadyA.M. JarallahS.J. AlsharifW.K. AlzahraniN.M. AlshehriA.A. Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals.Pharmaceutics2021139147510.3390/pharmaceutics13091475 34575551
    [Google Scholar]
  90. Hari PriyaV.M. KumaranA. Recent trends in phytosome nanocarriers for improved bioavailability and uptake of herbal drugs.Ulum-i Daruyi202329329831910.34172/PS.2023.6
    [Google Scholar]
  91. El-SamaligyM.S. AfifiN.N. MahmoudE.A. Increasing bioavailability of silymarin using a buccal liposomal delivery system: Preparation and experimental design investigation.Int. J. Pharm.20063081-214014810.1016/j.ijpharm.2005.11.006 16356669
    [Google Scholar]
  92. ElsamaligyM. AfifiN. MahmoudE. Evaluation of hybrid liposomes-encapsulated silymarin regarding physical stability and in vivo performance.Int. J. Pharm.20063191-212112910.1016/j.ijpharm.2006.04.023 16837151
    [Google Scholar]
  93. RaneS. PrabhakarB. Formulation and evaluation of pH-sensitive, long circulating liposomes for paclitaxel delivery.Int. J. Pharm. Tech. Res.20091914917
    [Google Scholar]
  94. AbhinavM. NehaJ. AnneG. BhartiV. Role of novel drug delivery systems in bioavailability enhancement: At a glance.Int. J. Drug Deliv. Technol.20166172610.25258/ijddt.v6i1.8884
    [Google Scholar]
  95. GuimarãesD. Cavaco-PauloA. NogueiraE. Design of liposomes as drug delivery system for therapeutic applications.Int. J. Pharm.202160112057112057110.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  96. RaufM.A. Stability and release of bioactives from liposomes. Liposomal Encapsulation in Food Science and Technology.AmsterdamElsevier2023
    [Google Scholar]
  97. NatarajanJ.V. NugrahaC. NgX.W. VenkatramanS. Sustained-release from nanocarriers: A review.J. Control. Release201419319312213810.1016/j.jconrel.2014.05.029 24862321
    [Google Scholar]
  98. RommasiF. EsfandiariN. Liposomal nanomedicine: Applications for drug delivery in cancer therapy.Nanoscale Res. Lett.20211619510.1186/s11671‑021‑03553‑8 34032937
    [Google Scholar]
  99. PasarinD. GhizdareanuA.I. EnascutaC.E. MateiC.B. BilbieC. Paraschiv-PaladaL. VeresP.A. Coating materials to increase the stability of liposomes.Polymers (Basel)202315378210.3390/polym15030782 36772080
    [Google Scholar]
  100. IngvarssonP.T. YangM. NielsenH.M. RantanenJ. FogedC. Stabilization of liposomes during drying.Expert Opin. Drug Deliv.20118337538810.1517/17425247.2011.553219 21294603
    [Google Scholar]
  101. SubhanM.A. YalamartyS.S.K. FilipczakN. ParveenF. TorchilinV.P. Recent advances in tumor targeting via EPR effect for cancer treatment.J. Pers. Med.202111657110.3390/jpm11060571 34207137
    [Google Scholar]
  102. JadhavV. BhogaleV. Novel drug delivery system in herbal.Int. J. Pharma Wave.20151285103
    [Google Scholar]
  103. YinY.M. CuiF.D. MuC.F. ChoiM.K. KimJ.S. ChungS.J. ShimC.K. KimD.D. Docetaxel microemulsion for enhanced oral bioavailability: Preparation and in vitro and in vivo evaluation.J. Control. Release20091402869410.1016/j.jconrel.2009.08.015 19709639
    [Google Scholar]
  104. PascoaH. DinizD.G.A. FlorentinoI.F. CostaE.A. BaraM.T.F. Microemulsion based on Pterodon emarginatus oil and its anti-inflammatory potential.Braz. J. Pharm. Sci.201551111712510.1590/S1984‑82502015000100013
    [Google Scholar]
  105. YadavM. BhatiaV.J. DoshiG. ShastriK. Novel techniques in herbal drug delivery systems.Int. J. Pharm. Sci. Rev. Res.20142828389
    [Google Scholar]
  106. GhulaxeC. VermaR. A review on transdermal drug delivery system.Pharma Innov.2015437
    [Google Scholar]
  107. MishraK.K. KaurC.D. VermaS. SahuA.K. DashD.K. KashyapP. MishraS.P. Transethosomes and nanoethosomes: Recent approach on transdermal drug delivery system.Nanomedicine (Lond.)20191323354
    [Google Scholar]
  108. SachanR. ParasharT. SinghV. SinghG. TyagiS. PatelC. GuptaA. Drug carrier transfersomes: A novel tool for transdermal drug delivery system. Int. J. Res. Develop.Pharm. Life Sci.201322309316
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812329611240913161126
Loading
/content/journals/nanoasi/10.2174/0122106812329611240913161126
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test