Skip to content
2000
image of Nanoparticulate Herbal Formulation for the Management of Fungal Infection

Abstract

Fungal infections have been more common during the past few years as a result of an increase in the population of immunocompromised people, including those with cancer, HIV/AIDS, and organ transplant recipients. It has been reported that fungal infection is brought on by different pathogens. The main focus of this review is the use of nanosized plant components to stop fungal infections for the pharmaceutical industry and research projects. According to research about 40 million people have fungal infections. Echinocandins, griseofulvin, azoles, allylamines, and flucytosine are only a few antifungal medications used in clinical settings to treat fungal infections. Skin infections caused by fungi are among the most prevalent dermatological issues of today. Fungal infections at the skin's surface or under the skin's surface may harm the skin, keratinous tissues, and mucous membranes. Therefore, there is a high need for producing an antifungal agent that may act selectively on new targets while having minor side effects and can belong to a variety of structural classes. Natural goods offer limitless prospects for innovative medicine development due to their typically unrivaled chemical variety, whether in the form of pure phyto-compounds or standardized plant extracts. Plants have been an excellent source of medicine since the beginning of time. When compared to synthetically produced medications, phytochemicals from various plant species have been versicolor as a more potent source of therapy. Novel cell targets and antifungal chemicals, as well as new methods for the delivery of drugs based on nanotechnology, are all currently being studied.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812329611240913161126
2024-10-18
2024-11-26
Loading full text...

Full text loading...

References

  1. Epstein J.B. Antifungal therapy in oropharyngeal mycotic infections. Oral Surg. Oral Med. Oral Pathol. 1990 69 1 32 41 10.1016/0030‑4220(90)90265‑T 2404226
    [Google Scholar]
  2. Dreizen S. Oral candidiasis. Am. J. Med. 1984 77 4D 28 33 6496525
    [Google Scholar]
  3. Budtz-Jörgensen E. Etiology, pathogenesis, therapy, and prophylaxis of oral yeast infections. Acta Odontol. Scand. 1990 48 1 61 69 10.3109/00016359009012735 2181812
    [Google Scholar]
  4. Groll A. Shah P. Mentzel C. Schneider M. Justnuebling G. Huebner K. Trends in the postmortem epidemiology of invasive fungal infections at a University Hospital. J. Infect. 1996 33 1 23 32 10.1016/S0163‑4453(96)92700‑0 8842991
    [Google Scholar]
  5. Denning D.W. Evans E.G.V. Kibbler C.C. Richardson M.D. Roberts M.M. Rogers T.R. Warnock D.W. Warren R.E. Guidelines for the investigation of invasive fungal infections in haematological malignancy and solid organ transplantation. Eur. J. Clin. Microbiol. Infect. Dis. 1997 16 6 424 436 10.1007/BF02471906 9248745
    [Google Scholar]
  6. Kaushik K. Agarwal S.H. The role of herbal antifungal agents for the management of fungal diseases: A systematic review. Asian J. Pharm. Clin. Res. 2019 12 7 34 40 10.22159/ajpcr.2019.v12i7.33831
    [Google Scholar]
  7. Sathyan G. Ritschel W.A. Hussain A.S. Transdermal delivery of tacrine: I. Identification of a suitable delivery vehicle. Int. J. Pharm. 1995 114 1 75 83 10.1016/0378‑5173(94)00214‑P
    [Google Scholar]
  8. Güngör S. New Formulation Strategies in Topical Antifungal Therapy.. J. Cosmet. Dermatol. Sci. Appl. 2013 3 1A 56 65
    [Google Scholar]
  9. Gonda A. Zhao N. Shah J.V. Calvelli H.R. Kantamneni H. Francis N.L. Ganapathy V. Engineering tumor-targeting nanoparticles as vehicles for precision nanomedicine. Med One 2019 4 4 31592196
    [Google Scholar]
  10. Özçelik B. Aslan M. Orhan I. Karaoglu T. Antibacterial, antifungal, and antiviral activities of the lipophylic extracts of Pistacia vera. Microbiol. Res. 2005 160 2 159 164 10.1016/j.micres.2004.11.002 15881833
    [Google Scholar]
  11. Kumar Mishra Medicinal Plants Having Antifungal Properties. Medicinal Plants - Use in Prevention and Treatment of Diseases London InTechOpen 2020
    [Google Scholar]
  12. Canavan T.N. Elewski B.E. Identifying Signs of Tinea Pedis: A Key to Understanding Clinical Variables. J. Drugs Dermatol. 2015 14 10 s42 s47 26461834
    [Google Scholar]
  13. Hay R.J. Adriaans B.M. Rooks Textbook of Dermatology. 8th ed. Hoboken, New Jersey Wiley 2010
    [Google Scholar]
  14. Borman A.M. Campbell C.K. Fraser M. Johnson E.M. Analysis of the dermatophyte species isolated in the British Isles between 1980 and 2005 and review of worldwide dermatophyte trends over the last three decades. Med Microbiol. 2006 44 1e11
    [Google Scholar]
  15. Mignon B. Tabart J. Baldo A. Immunization and dermatophytes. Curr Opin Infect Dis. 2008 21 2 134 40 10.1097/QCO.0b013e3282f55de6
    [Google Scholar]
  16. Vos T. Flaxman A.D. Naghavi M. Lozano R. Michaud C. Ezzati M. Shibuya K. Salomon J.A. Abdalla S. Aboyans V. Abraham J. Ackerman I. Aggarwal R. Ahn S.Y. Ali M.K. AlMazroa M.A. Alvarado M. Anderson H.R. Anderson L.M. Andrews K.G. Atkinson C. Baddour L.M. Bahalim A.N. Barker-Collo S. Barrero L.H. Bartels D.H. Basáñez M-G. Baxter A. Bell M.L. Benjamin E.J. Bennett D. Bernabé E. Bhalla K. Bhandari B. Bikbov B. Abdulhak A.B. Birbeck G. Black J.A. Blencowe H. Blore J.D. Blyth F. Bolliger I. Bonaventure A. Boufous S. Bourne R. Boussinesq M. Braithwaite T. Brayne C. Bridgett L. Brooker S. Brooks P. Brugha T.S. Bryan-Hancock C. Bucello C. Buchbinder R. Buckle G. Budke C.M. Burch M. Burney P. Burstein R. Calabria B. Campbell B. Canter C.E. Carabin H. Carapetis J. Carmona L. Cella C. Charlson F. Chen H. Cheng A.T-A. Chou D. Chugh S.S. Coffeng L.E. Colan S.D. Colquhoun S. Colson K.E. Condon J. Connor M.D. Cooper L.T. Corriere M. Cortinovis M. de Vaccaro K.C. Couser W. Cowie B.C. Criqui M.H. Cross M. Dabhadkar K.C. Dahiya M. Dahodwala N. Damsere-Derry J. Danaei G. Davis A. De Leo D. Degenhardt L. Dellavalle R. Delossantos A. Denenberg J. Derrett S. Des Jarlais D.C. Dharmaratne S.D. Dherani M. Diaz-Torne C. Dolk H. Dorsey E.R. Driscoll T. Duber H. Ebel B. Edmond K. Elbaz A. Ali S.E. Erskine H. Erwin P.J. Espindola P. Ewoigbokhan S.E. Farzadfar F. Feigin V. Felson D.T. Ferrari A. Ferri C.P. Fèvre E.M. Finucane M.M. Flaxman S. Flood L. Foreman K. Forouzanfar M.H. Fowkes F.G.R. Franklin R. Fransen M. Freeman M.K. Gabbe B.J. Gabriel S.E. Gakidou E. Ganatra H.A. Garcia B. Gaspari F. Gillum R.F. Gmel G. Gosselin R. Grainger R. Groeger J. Guillemin F. Gunnell D. Gupta R. Haagsma J. Hagan H. Halasa Y.A. Hall W. Haring D. Haro J.M. Harrison J.E. Havmoeller R. Hay R.J. Higashi H. Hill C. Hoen B. Hoffman H. Hotez P.J. Hoy D. Huang J.J. Ibeanusi S.E. Jacobsen K.H. James S.L. Jarvis D. Jasrasaria R. Jayaraman S. Johns N. Jonas J.B. Karthikeyan G. Kassebaum N. Kawakami N. Keren A. Khoo J-P. King C.H. Knowlton L.M. Kobusingye O. Koranteng A. Krishnamurthi R. Lalloo R. Laslett L.L. Lathlean T. Leasher J.L. Lee Y.Y. Leigh J. Lim S.S. Limb E. Lin J.K. Lipnick M. Lipshultz S.E. Liu W. Loane M. Ohno S.L. Lyons R. Ma J. Mabweijano J. MacIntyre M.F. Malekzadeh R. Mallinger L. Manivannan S. Marcenes W. March L. Margolis D.J. Marks G.B. Marks R. Matsumori A. Matzopoulos R. Mayosi B.M. McAnulty J.H. McDermott M.M. McGill N. McGrath J. Medina-Mora M.E. Meltzer M. Memish Z.A. Mensah G.A. Merriman T.R. Meyer A-C. Miglioli V. Miller M. Miller T.R. Mitchell P.B. Mocumbi A.O. Moffitt T.E. Mokdad A.A. Monasta L. Montico M. Moradi-Lakeh M. Moran A. Morawska L. Mori R. Murdoch M.E. Mwaniki M.K. Naidoo K. Nair M.N. Naldi L. Narayan K.M.V. Nelson P.K. Nelson R.G. Nevitt M.C. Newton C.R. Nolte S. Norman P. Norman R. O’Donnell M. O’Hanlon S. Olives C. Omer S.B. Ortblad K. Osborne R. Ozgediz D. Page A. Pahari B. Pandian J.D. Rivero A.P. Patten S.B. Pearce N. Padilla R.P. Perez-Ruiz F. Perico N. Pesudovs K. Phillips D. Phillips M.R. Pierce K. Pion S. Polanczyk G.V. Polinder S. Pope C.A. III Popova S. Porrini E. Pourmalek F. Prince M. Pullan R.L. Ramaiah K.D. Ranganathan D. Razavi H. Regan M. Rehm J.T. Rein D.B. Remuzzi G. Richardson K. Rivara F.P. Roberts T. Robinson C. De Leòn F.R. Ronfani L. Room R. Rosenfeld L.C. Rushton L. Sacco R.L. Saha S. Sampson U. Sanchez-Riera L. Sanman E. Schwebel D.C. Scott J.G. Segui-Gomez M. Shahraz S. Shepard D.S. Shin H. Shivakoti R. Silberberg D. Singh D. Singh G.M. Singh J.A. Singleton J. Sleet D.A. Sliwa K. Smith E. Smith J.L. Stapelberg N.J.C. Steer A. Steiner T. Stolk W.A. Stovner L.J. Sudfeld C. Syed S. Tamburlini G. Tavakkoli M. Taylor H.R. Taylor J.A. Taylor W.J. Thomas B. Thomson W.M. Thurston G.D. Tleyjeh I.M. Tonelli M. Towbin J.A. Truelsen T. Tsilimbaris M.K. Ubeda C. Undurraga E.A. van der Werf M.J. van Os J. Vavilala M.S. Venketasubramanian N. Wang M. Wang W. Watt K. Weatherall D.J. Weinstock M.A. Weintraub R. Weisskopf M.G. Weissman M.M. White R.A. Whiteford H. Wiersma S.T. Wilkinson J.D. Williams H.C. Williams S.R.M. Witt E. Wolfe F. Woolf A.D. Wulf S. Yeh P-H. Zaidi A.K.M. Zheng Z-J. Zonies D. Lopez A.D. Murray C.J.L. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012 380 9859 2163 2196 10.1016/S0140‑6736(12)61729‑2 23245607
    [Google Scholar]
  17. Braun-Falco O. Plewig G. Wolff H.H. Winkelmann R.K. Dermatology. Berlin/Heidelberg, Germany Springer Science & Business Media 2013 11
    [Google Scholar]
  18. Arnold H.L. Odom R. William J. Andrews’ Diseases of the Skin. 8th ed Philadelphia W.B. Saunders 1990
    [Google Scholar]
  19. Semel J.D. Goldin H. Association of athlete’s foot with cellulitis of the lower extremities: Diagnostic value of bacterial cultures of ipsilateral interdigital space samples. Clin. Infect. Dis. 1996 23 5 1162 1164 10.1093/clinids/23.5.1162 8922818
    [Google Scholar]
  20. Kobayashi G.S. Disease Mechanisms of Fungi. Medical Microbiology Galveston, Texas University of Texas Medical Branch at Galveston 1996
    [Google Scholar]
  21. Velegraki A. Cafarchia C. Gaitanis G. Iatta R. Boekhout T. Malassezia infections in humans and animals: Pathophysiology, detection, and treatment. PLoS Pathog. 2015 11 1 e1004523 10.1371/journal.ppat.1004523 25569140
    [Google Scholar]
  22. Pfaller M.A. Jones R.N. Messer S.A. Edmond M.B. Wenzel R.P. National surveillance of nosocomial bloodstream infection due to species of Candida other than Candida albicans: Frequency of occurrence and antifungal susceptibility in the SCOPE Program. SCOPE Participant Group. Surveillance and Control of Pathogens of Epidemiologic. Diagn. Microbiol. Infect. Dis. 1998 31 327 332 10.1016/S0732‑8893(97)00240‑X 9597393
    [Google Scholar]
  23. Pfaller M.A. Jones R.N. Messer S.A. Edmond M.B. Wenzel R.P. National surveillance of nosocomial bloodstream infection due to species of Candida other than Candida albicans: Frequency of occurrence and antifungal susceptibility in the SCOPE Program. Diagn. Microbiol. Infect. Dis. 1998 30 2 121 129 10.1016/S0732‑8893(97)00192‑2 9554180
    [Google Scholar]
  24. Bodey G.P. Buckley M. Sathe Y.S. Freireich E.J. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann. Intern. Med. 1966 64 2 328 340 10.7326/0003‑4819‑64‑2‑328 5216294
    [Google Scholar]
  25. Murtaza G. Mukhtar M. Sarfraz A. A review: Antifungal potentials of medicinal plants. J. Biores. Manag. 2015 2 2 4 10.35691/JBM.5102.0018
    [Google Scholar]
  26. Jelen G. Tennstedt D. Contact dermatitis from topical imidazole antifungals: 15 new cases. Contact Dermat. 1989 21 1 6 11 10.1111/j.1600‑0536.1989.tb04677.x 2530045
    [Google Scholar]
  27. Dorn M. Scherwitz C. Lentze I. Plewig G. In-vitro-Testung und klinische Prüfung. MMW Munch. Med. Wochenschr. 1975 117 16 687 692 805931
    [Google Scholar]
  28. Kotrekhova L.P. The effective use of isoconazole nitrate and diflucortolone valerate cream in the treatment of inguino‐femoral skin fold mycosis. Mycoses 2008 51 s4 Suppl. 4 29 31 10.1111/j.1439‑0507.2008.01612.x 18783562
    [Google Scholar]
  29. Gupta A.K. Daigle D. Foley K.A. Drug safety assessment of oral formulations of ketoconazole. Expert Opin. Drug Saf. 2015 14 2 325 334 10.1517/14740338.2015.983071 25409549
    [Google Scholar]
  30. DeFelice R. Johnson D.G. Galgiani J.N. Gynecomastia with Ketoconazole. Antimicrob. Agents Chemother. 1981 19 6 1073 1074 10.1128/AAC.19.6.1073 6267997
    [Google Scholar]
  31. Heykants J. Van Peer A. Van de Velde V. Van Rooy P. Meuldermans W. Lavrijsen K. Woestenborghs R. Van Cutsem J. Cauwenbergh G. The clinical pharmacokinetics of itraconazole: An overview. Mycoses 1989 32 s1 Suppl. 1 67 87 10.1111/j.1439‑0507.1989.tb02296.x 2561187
    [Google Scholar]
  32. Szymański M. Chmielewska S. Czyżewska U. Malinowska M. Tylicki A. Echinocandins – structure, mechanism of action and use in antifungal therapy. J. Enzyme Inhib. Med. Chem. 2022 37 1 876 894 10.1080/14756366.2022.2050224 35296203
    [Google Scholar]
  33. Sigera L.S.M. Denning D.W. Flucytosine and its clinical usage. Ther. Adv. Infect. Dis. 2023 10 61387 10.1177/20499361231161387 37051439
    [Google Scholar]
  34. Peng D.S. Lo C.H. Tseng Y.L. Kuo S.L. Chiang C.P. Chiang M.L. Efficacy of oral nystatin treatment for patients with oral mucosal dysesthesia but without objective oral mucosal manifestations and necessity of Candida culture test before oral nystatin treatment. J. Dent. Sci. 2022 17 4 1802 1813 10.1016/j.jds.2022.08.005 36299322
    [Google Scholar]
  35. Moseley R.H. Antifungal agents. Hepatoxicity of antimicrobials and antifungal agents. Drug-induced liver disease. 3rd ed. Kaplowitz N. DeLeve L.D. Amsterdam Elsevier 2013 470 473 10.1016/B978‑0‑12‑387817‑5.00026‑1
    [Google Scholar]
  36. Reinel D. Clarke C. Comparative efficacy and safety of amorolfine nail lacquer 5% in onychomycosis, once-weekly versus twice-weekly. Clin. Exp. Dermatol. 1992 17 s1 Suppl. 1 44 49 10.1111/j.1365‑2230.1992.tb00278.x 1458665
    [Google Scholar]
  37. United States. Environmental Protection Agency Health Effects Assessment Summary Tables (Heast). 1992 Available From: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=2877
  38. Practo Budamate 200 Transcaps. 2028 Available From: https://www.practo.com/medicine-info/budamate-200-transcaps-46251
  39. Thirup L. Johnsen K. Torsvik V. Spliid N.H. Jacobsen C.S. Effects of fenpropimorph on bacteria and fungi during decomposition of barley roots. Soil Biol. Biochem. 2001 33 11 1517 1524 10.1016/S0038‑0717(01)00067‑0
    [Google Scholar]
  40. Drew R.H. Polyenes for prevention and treatment of invasive fungal infections. Antifungal Therapy 2nd ed. Boca Raton, Florida CRC Press 2019 10.1201/9780429402012‑10
    [Google Scholar]
  41. Saunders J. Maki K. Koski R. Nybo S.E. Tavaborole, efinaconazole, and luliconazole: Three new antimycotic agents for the treatment of dermatophytic fungi. J. Pharm. Pract. 2017 30 6 621 630 10.1177/0897190016660487 27488125
    [Google Scholar]
  42. Subissi A. Monti D. Togni G. Mailland F. Ciclopirox. Drugs 2010 70 16 2133 2152 10.2165/11538110‑000000000‑00000 20964457
    [Google Scholar]
  43. Roy M.A. Nugent F.W. Aretz H.T. Micronodular cirrhosis after thiabendazole. Dig. Dis. Sci. 1989 34 6 938 941 10.1007/BF01540282 2721325
    [Google Scholar]
  44. Ferreira M.R.A. Santiago R.R. Langassner S.M.Z. Palazzo de Mello J.C. Svidzinski T.I.E. Soares L.A.L. Antifungal activity of medicinal plants from Northeastern Brazil. J. Med. Plants Res. 2013 7 40 3008 3013 10.5897/JMPR2013.5035
    [Google Scholar]
  45. Koroishi A.M. Foss S.R. Cortez D.A.G. Ueda-Nakamura T. Nakamura C.V. Dias Filho B.P. In vitro antifungal activity of extracts and neolignans from Piper regnellii against dermatophytes. J. Ethnopharmacol. 2008 117 2 270 277 10.1016/j.jep.2008.01.039 18394835
    [Google Scholar]
  46. Manojlovic N.T. Solujic S. Sukdolak S. Milosev M. Antifungal activity of Rubia tinctorum, Rhamnus frangula and Caloplaca cerina. Fitoterapia 2005 76 2 244 246 10.1016/j.fitote.2004.12.002 15752641
    [Google Scholar]
  47. Dabur R. Chhillar A.K. Yadav V. Kamal P.K. Gupta J. Sharma G.L. In vitro antifungal activity of 2-(3,4-dimethyl-2,5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate, a dihydropyrrole derivative. J. Med. Microbiol. 2005 54 6 549 552 10.1099/jmm.0.45968‑0 15888463
    [Google Scholar]
  48. Endo K. Kanno E. Oshima Y. Structures of antifungal diarylheptenones, gingerenones A, B, C and isogingerenone B, isolated from the rhizomes of Zingiber officinale. Phytochemistry 1990 29 3 797 799 10.1016/0031‑9422(90)80021‑8
    [Google Scholar]
  49. Kim K.Y. Davidson P.M. Chung H.J. Antibacterial activity in extracts of Camellia japonica L. petals and its application to a model food system. J. Food Prot. 2001 64 8 1255 1260 10.4315/0362‑028X‑64.8.1255 11510672
    [Google Scholar]
  50. Ingham J.L. Tahara S. Harborne J.B. Fungitoxic isoflavones from Lupinus albus and other Lupinus species. Z. Naturforsch. C J. Biosci. 1983 38 3-4 194 200 10.1515/znc‑1983‑3‑407
    [Google Scholar]
  51. Portillo A. Vila R. Freixa B. Adzet T. Cañigueral S. Antifungal activity of Paraguayan plants used in traditional medicine. J. Ethnopharmacol. 2001 76 1 93 98 10.1016/S0378‑8741(01)00214‑8 11378288
    [Google Scholar]
  52. Kobayashi K. Nishino C. Tomita H. Fukushima M. Antifungal activity of pisiferic acid derivatives against the rice blast fungus. Phytochemistry 1987 26 12 3175 3179 10.1016/S0031‑9422(00)82465‑6
    [Google Scholar]
  53. Ito T. Kumazawa K. Antifungal substances from mechanically damaged cherry leaves (Prumus yedoensis matsumura). Biosci. Biotechnol. Biochem. 1992 56 10 1655 10.1271/bbb.56.1655
    [Google Scholar]
  54. Jain N. Valli K.S. Devi V.K. Importance of novel drug delivery systems in herbal medicines. Pharmacogn. Rev. 2010 4 7 27 31 10.4103/0973‑7847.65322 22228938
    [Google Scholar]
  55. López-Bascón M.A. De Castro M.L. Soxhlet extraction. Liquid-Phase Extraction: Handbooks in Separation Science Amsterdam Elsevier 2020 10.1016/B978‑0‑12‑816911‑7.00011‑6
    [Google Scholar]
  56. Prakash B. Kujur A. Yadav A. Kumar A. Singh P.P. Dubey N.K. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control 2018 89 89 1 11 10.1016/j.foodcont.2018.01.018
    [Google Scholar]
  57. Beyatricks K.J. Kumar K.S. Suchitra D. Jainab N.H. Anita A. Recent microsphere formulations and its applications in herbal drugs-a review. Int J Pharm Dev Technol 2014 4 01 58 62
    [Google Scholar]
  58. Chakraborty K. Shivakumar A. Ramachandran S. Nano-technology in herbal medicines: A review. Int. J. Herb. Med. 2016 4 3 21 27 10.22271/flora.2016.v4.i3.05
    [Google Scholar]
  59. Indalkar Y.R. Pimpodkar N.V. Godase A.S. Gaikwad P.S. A compressive review on the study of nanotechnology for herbal drugs. Asian J. Pharmaceut. Res. 2015 5 4 203 207 10.5958/2231‑5691.2015.00031.3
    [Google Scholar]
  60. Sharma A.T. Mitkare S.S. Moon R.S. Multicomponent herbal therapy: A review. Int. J. Pharm. Sci. Rev. Res. 2011 6 185 187
    [Google Scholar]
  61. Kesarwani K. Gupta R. Mukerjee A. Bioavailability enhancers of herbal origin: An overview. Asian Pac. J. Trop. Biomed. 2013 3 4 253 266 10.1016/S2221‑1691(13)60060‑X 23620848
    [Google Scholar]
  62. Goyal A. Kumar S. Nagpal M. Singh I. Arora S. Potential of novel drug delivery systems for herbal drugs. Indian J. Pharmaceut. Edu. Res. 2011 45 3 225 35
    [Google Scholar]
  63. Thapa R.K. Khan G.M. Parajuli-Baral K. Thapa P. Herbal Medicine Incorporated Nanoparticles: Advancements in Herbal Treatment. Asian J. Biomed. Pharmaceu. Sci. 2013 3 24 7 14
    [Google Scholar]
  64. Prasad M. Lambe U.P. Brar B. Shah I. J M. Ranjan K. Rao R. Kumar S. Mahant S. Khurana S.K. Iqbal H.M.N. Dhama K. Misri J. Prasad G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed. Pharmacother. 2018 97 97 1521 1537 10.1016/j.biopha.2017.11.026 29793315
    [Google Scholar]
  65. Lin C.H. Chen C.H. Lin Z.C. Fang J.Y. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. Yao Wu Shi Pin Fen Xi 2017 25 2 219 234 28911663
    [Google Scholar]
  66. Sen S. Chakraborty R. Toward the integration and advancement of herbal medicine: A focus on traditional Indian medicine. Botanics 2015 13 33 44 10.2147/BTAT.S66308
    [Google Scholar]
  67. Teli D. Satasia R. Patel V. Nair R. Khatri R. Gala D. Balar P.C. Patel K. Sharma A. Vadodariya P. Chavda V.P. Nature meets technology: Harnessing nanotechnology to unleash the power of phytochemicals. Clin. Trad. Med. Pharmacol. 2024 5 2 200139 10.1016/j.ctmp.2024.200139
    [Google Scholar]
  68. Gupta V.K. Karar P.K. Ramesh S. Misra S.P. Gupta A. Nanoparticle formulation for hydrophilic & hydrophobic drugs. Int J Res Pharm Sci 2010 1 2 163 169
    [Google Scholar]
  69. Elzoghby A.O. Samy W.M. Elgindy N.A. Protein-based nanocarriers as promising drug and gene delivery systems. J. Control. Release 2012 161 1 38 49 10.1016/j.jconrel.2012.04.036 22564368
    [Google Scholar]
  70. Ratnam D.V. Ankola D.D. Bhardwaj V. Sahana D.K. Kumar M.N.V.R. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J. Control. Release 2006 113 3 189 207 10.1016/j.jconrel.2006.04.015 16790290
    [Google Scholar]
  71. Allémann E. Gurny R. Doelker E. Drug-loaded nanoparticles: Preparation methods and drug targeting issues. Eur. J. Pharm. Biopharm. 1993 39 5 173 191
    [Google Scholar]
  72. Brigger I. Dubernet C. Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 2012 64 64 24 36 10.1016/j.addr.2012.09.006 12204596
    [Google Scholar]
  73. Gref R. Minamitake Y. Peracchia M.T. Trubetskoy V. Torchilin V. Langer R. Biodegradable long-circulating polymeric nanospheres. Science 1994 263 5153 1600 1603 10.1126/science.8128245 8128245
    [Google Scholar]
  74. Sachan A.K. Gupta A. A review on nanotized herbal drugs. Int. J. Pharm. Sci. Res. 2015 6 3 961
    [Google Scholar]
  75. Verma H. Prasad S.B. Yashwant S.H. Herbal drug delivery system: A modern era prospective. Int J Current Pharma Rev Res 2013 4 88 101
    [Google Scholar]
  76. Fréchet J.M. Dendrimers and supramolecular chemistry. PNAS 2002 99 8 4782 7
    [Google Scholar]
  77. Min K.H. Park K. Kim Y.S. Bae S.M. Lee S. Jo H.G. Park R.W. Kim I.S. Jeong S.Y. Kim K. Kwon I.C. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J. Cont. Release 2008 127 3 208 18
    [Google Scholar]
  78. Zeisser-Labouèbe M. Lange N. Gurny R. Delie F. Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer. Int. J. Pharm. 2006 326 1-2 174 181 10.1016/j.ijpharm.2006.07.012 16930882
    [Google Scholar]
  79. Bombardelli E. Patri G.F. Complex compounds of bioflavonoids with phospholipids, their preparation and use, and pharmaceutical and cosmetic compositions containing them. US Patent 5043323A 1991
  80. Bombardelli E. Spelta M. Phospholipid-polyphenol complexes: A new concept in skin care ingredients. Cosmet. Toilet. 1991 106 3 69 76
    [Google Scholar]
  81. Bombardelli E. Mustich G. Bilobalide phospholipide complexes, their applications and formulations containing them. EP Patent 0441279A1 1991
  82. Bhattacharya S. Phytosomes: Emerging strategy in delivery of herbal drugs and nutraceuticals. Pharm. Times 2009 41 3 9 12
    [Google Scholar]
  83. Ravi G.S. Chandur V. Shabaraya A.R. Sanjay K. Phytosomes: An advanced herbal drug delivery system. Int. J. Pharmaceut. Res. Bio-Sci. 2015 4 3 415 432
    [Google Scholar]
  84. Kareparamban J.A. Nikam P.H. Jadhav A.P. Kadam V.J. Phytosome: A novel revolution in herbal drugs. IJRPC 2012 2 2 299 310
    [Google Scholar]
  85. Deshpande P.K. Pathak A.K. Gothalwal R. Phytosomes: A noval drug delivery system for phytoconstituents. J. New Biol. Rep. 2014 3 3 212 220
    [Google Scholar]
  86. Pawar H.A. Bhangale B.D. Phytosome as a novel biomedicine: A microencapsulated drug delivery system. J. Bioanal. Biomed. 2015 5 7
    [Google Scholar]
  87. Singh R.P. Parpani S. Narke R. Chavan R. Phytosome: Recent advance research for novel drug delivery system. Asian J. Pharmaceut. Res. Develop. 2014 1 15 29
    [Google Scholar]
  88. Karpuz M Gunay M.S. Ozer A.Y. Liposomes and phytosomes for phytoconstituents. Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents Amsterdam Elsevier 2020
    [Google Scholar]
  89. Alharbi W.S. Almughem F.A. Almehmady A.M. Jarallah S.J. Alsharif W.K. Alzahrani N.M. Alshehri A.A. Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals. Pharmaceutics 2021 13 9 1475 10.3390/pharmaceutics13091475 34575551
    [Google Scholar]
  90. Hari Priya V.M. Kumaran A. Recent trends in phytosome nanocarriers for improved bioavailability and uptake of herbal drugs. Ulum-i Daruyi 2023 29 3 298 319 10.34172/PS.2023.6
    [Google Scholar]
  91. El-Samaligy M.S. Afifi N.N. Mahmoud E.A. Increasing bioavailability of silymarin using a buccal liposomal delivery system: Preparation and experimental design investigation. Int. J. Pharm. 2006 308 1-2 140 148 10.1016/j.ijpharm.2005.11.006 16356669
    [Google Scholar]
  92. Elsamaligy M. Afifi N. Mahmoud E. Evaluation of hybrid liposomes-encapsulated silymarin regarding physical stability and in vivo performance. Int. J. Pharm. 2006 319 1-2 121 129 10.1016/j.ijpharm.2006.04.023 16837151
    [Google Scholar]
  93. Rane S. Prabhakar B. Formulation and evaluation of pH-sensitive, long circulating liposomes for paclitaxel delivery. Int. J. Pharm. Tech. Res. 2009 1 914 917
    [Google Scholar]
  94. Abhinav M. Neha J. Anne G. Bharti V. Role of novel drug delivery systems in bioavailability enhancement: At a glance. Int. J. Drug Deliv. Technol. 2016 6 1 7 26 10.25258/ijddt.v6i1.8884
    [Google Scholar]
  95. Guimarães D. Cavaco-Paulo A. Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021 601 120571 120571 10.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  96. Rauf M.A. Stability and release of bioactives from liposomes. Liposomal Encapsulation in Food Science and Technology Amsterdam Elsevier 2023
    [Google Scholar]
  97. Natarajan J.V. Nugraha C. Ng X.W. Venkatraman S. Sustained-release from nanocarriers: A review. J. Control. Release 2014 193 193 122 138 10.1016/j.jconrel.2014.05.029 24862321
    [Google Scholar]
  98. Rommasi F. Esfandiari N. Liposomal nanomedicine: Applications for drug delivery in cancer therapy. Nanoscale Res. Lett. 2021 16 1 95 10.1186/s11671‑021‑03553‑8 34032937
    [Google Scholar]
  99. Pasarin D. Ghizdareanu A.I. Enascuta C.E. Matei C.B. Bilbie C. Paraschiv-Palada L. Veres P.A. Coating materials to increase the stability of liposomes. Polymers (Basel) 2023 15 3 782 10.3390/polym15030782 36772080
    [Google Scholar]
  100. Ingvarsson P.T. Yang M. Nielsen H.M. Rantanen J. Foged C. Stabilization of liposomes during drying. Expert Opin. Drug Deliv. 2011 8 3 375 388 10.1517/17425247.2011.553219 21294603
    [Google Scholar]
  101. Subhan M.A. Yalamarty S.S.K. Filipczak N. Parveen F. Torchilin V.P. Recent advances in tumor targeting via EPR effect for cancer treatment. J. Pers. Med. 2021 11 6 571 10.3390/jpm11060571 34207137
    [Google Scholar]
  102. Jadhav V. Bhogale V. Novel drug delivery system in herbal. Int. J. Pharma Wave. 2015 1 2 85 103
    [Google Scholar]
  103. Yin Y.M. Cui F.D. Mu C.F. Choi M.K. Kim J.S. Chung S.J. Shim C.K. Kim D.D. Docetaxel microemulsion for enhanced oral bioavailability: Preparation and in vitro and in vivo evaluation. J. Control. Release 2009 140 2 86 94 10.1016/j.jconrel.2009.08.015 19709639
    [Google Scholar]
  104. Pascoa H. Diniz D.G.A. Florentino I.F. Costa E.A. Bara M.T.F. Microemulsion based on Pterodon emarginatus oil and its anti-inflammatory potential. Braz. J. Pharm. Sci. 2015 51 1 117 125 10.1590/S1984‑82502015000100013
    [Google Scholar]
  105. Yadav M. Bhatia V.J. Doshi G. Shastri K. Novel techniques in herbal drug delivery systems. Int. J. Pharm. Sci. Rev. Res. 2014 28 2 83 89
    [Google Scholar]
  106. Ghulaxe C. Verma R. A review on transdermal drug delivery system. Pharma Innov. 2015 4 37
    [Google Scholar]
  107. Mishra K.K. Kaur C.D. Verma S. Sahu A.K. Dash D.K. Kashyap P. Mishra S.P. Transethosomes and nanoethosomes: Recent approach on transdermal drug delivery system. Nanomedicine (Lond.) 2019 13 2 33 54
    [Google Scholar]
  108. Sachan R. Parashar T. Singh V. Singh G. Tyagi S. Patel C. Gupta A. Drug carrier transfersomes: A novel tool for transdermal drug delivery system. Int. J. Res. Develop. Pharm. Life Sci. 2013 2 2 309 316
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812329611240913161126
Loading
/content/journals/nanoasi/10.2174/0122106812329611240913161126
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test