Skip to content
2000
Volume 22, Issue 7
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Schiff bases have been known for 160 years and there is a multitude of information about them. This review focuses on their classification. The examples were classified based on the number of azomethine groups (mono-, bis-, tris-, tetrakis-, oligo-, and polymer Schiff bases) and the nature of their chain (cyclic and acyclic Schiff bases). Many imines are synthesized by condensing carbonyl compounds with amines and the mechanism of this reaction has been described. The main types of isomerism found at Schiff bases are geometric isomerism, atropizomerism, and imine-enamine tautomerism. After obtaining them they can be spectrally characterized using FT-IR, UV-Vis, 1H NMR, 13C NMR, and mass spectrum and they were presented.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298326751241031103603
2025-01-13
2025-09-01
The full text of this item is not currently available.

References

  1. SchiffH. Mittheilungen aus dem universitats-laboratorium in pisa (a report from the university laboratory in pisa).Justus Liebigs Ann. Chem.186413111811910.1002/jlac.18641310113
    [Google Scholar]
  2. SchiffU. Sopra una nova serie di basi organiche (On a New Series of Organic Bases).Giori. Sci. Nat. Econ.18662201257
    [Google Scholar]
  3. BlasiusC.K. HeinrichN.F. VasilenkoV. GadeL.H. Tackling N-alkyl imines with 3D metal catalysis: Highly enantioselective iron-catalyzed synthesis of α-chiral amines.Angew. Chem. Int. Ed.20205937159741597710.1002/anie.202006557 32453491
    [Google Scholar]
  4. LiX. LiY. ShuJ. FuX. WuL. ShiT. HuW. Rh2(Ph3COO)3(OAc)/Chiral phosphoric acid cocatalyzed N-alkyl imines-involved multicomponent reactions yielding N-(anthrancen-9-ylmethyl) isoserines as drug intermediates.Org. Lett.202224478633863810.1021/acs.orglett.2c03368 36410001
    [Google Scholar]
  5. GuilleminJ.C. NasraouiW. GazzehH. Synthesis of N -unsubstituted cycloalkylimines containing a 4 to 8-membered ring.Chem. Commun. (Camb.)201955395647565010.1039/C9CC01755K 31025994
    [Google Scholar]
  6. NosovaE.V. BatanovaO.A. LipunovaG.N. KotovskayaS.K. SlepukhinP.A. KravchenkoM.A. CharushinV.N. Synthesis and antitubercular evaluation of fluorinated 2-cycloalkylimino substituted 1,3-benzothiazin-4-ones.J. Fluor. Chem.2019220697710.1016/j.jfluchem.2019.02.009
    [Google Scholar]
  7. GoudN.S. GhouseM.S. VishnuJ. PranayJ. AlvalaR. TallaV. QureshiI.A. AlvalaM. Synthesis and biological evaluation of novel heterocyclic imines linked coumarin-thiazole hybrids as anticancer agents.Anticancer. Agents Med. Chem.201919455756610.2174/1871520619666190207140120 30734685
    [Google Scholar]
  8. HofmannK.P. LambT.D. Rhodopsin, light-sensor of vision.Prog. Retin. Eye Res.20239310111610118410.1016/j.preteyeres.2022.101116 36273969
    [Google Scholar]
  9. Álvarez-RodríguezS. López-GonzálezD. ReigosaM.J. AranitiF. Sánchez-MoreirasA.M. Ultrastructural and hormonal changes related to harmaline-induced treatment in Arabidopsis thaliana (L.) Heynh. root meristem.Plant Physiol. Biochem.2022179788910.1016/j.plaphy.2022.03.022 35325658
    [Google Scholar]
  10. SteenbekeM. SpeeckaertR. DesmedtS. GlorieuxG. DelangheJ.R. SpeeckaertM.M. The role of advanced glycation end products and its soluble receptor in kidney diseases.Int. J. Mol. Sci.2022237343910.3390/ijms23073439 35408796
    [Google Scholar]
  11. JaffeE.K. The remarkable character of porphobilinogen synthase.Acc. Chem. Res.201649112509251710.1021/acs.accounts.6b00414 27783504
    [Google Scholar]
  12. da SilvaC.M. da SilvaD.L. ModoloL.V. AlvesR.B. de ResendeM.A. MartinsC.V.B. de FátimaÂ. Schiff bases: A short review of their antimicrobial activities.J. Adv. Res.2011211810.1016/j.jare.2010.05.004
    [Google Scholar]
  13. GuoZ. XingR. LiuS. ZhongZ. JiX. WangL. LiP. Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan.Carbohydr. Res.2007342101329133210.1016/j.carres.2007.04.006 17485075
    [Google Scholar]
  14. BarbosaH.F.G. AttjiouiM. LeitãoA. MoerschbacherB.M. CavalheiroÉ.T.G. Characterization, solubility and biological activity of amphihilic biopolymeric Schiff bases synthesized using chitosans.Carbohydr. Polym.201922011110.1016/j.carbpol.2019.05.037 31196526
    [Google Scholar]
  15. WangZ. TangP. ChenS. XingY. YinC. FengJ. JiangF. Fully biobased sustainable elastomers derived from chitin, lignin, and plant oil via grafting strategy and Schiff-base chemistry.Carbohydr. Polym.202330512057712057610.1016/j.carbpol.2023.120577 36737210
    [Google Scholar]
  16. HechtS.S. McInteeE.J. WangM. New DNA adducts of crotonaldehyde and acetaldehyde.Toxicology20011661-2313610.1016/S0300‑483X(01)00436‑X 11518608
    [Google Scholar]
  17. PetersonC.M. NguyenL.B. Clinical implications of acetaldehyde adducts with hemoglobin.Prog. Clin. Biol. Res.19851831930 3901019
    [Google Scholar]
  18. SalaspuroM. Acetaldehyde and gastric cancer.J. Dig. Dis.2011122515910.1111/j.1751‑2980.2011.00480.x 21401890
    [Google Scholar]
  19. TiollaisR. BougetH. HuetJ. Le PennecA. Sur une nouvelle méthode de synthèse des dérivés du thiazolé-5.Bull. Soc. Chim. Fr.19471947708
    [Google Scholar]
  20. PervaizM. ShahinM. EjazA. QuratulainR. SaeedZ. AshrafA. Rashad Mahmood KhanR. Majid BukhariS. UllahS. YounasU. An overview of Aniline-Based Schiff base metal Complexes: Synthesis, characterization and biological activities - a review.Inorg. Chem. Commun.202415911185110.1016/j.inoche.2023.111851
    [Google Scholar]
  21. EjelonuB.C. OyeneyinO.E. OlagboyeS.A. AkeleO.E. Synthesis, characterization and antimicrobial properties of transition metal complexes of aniline and sulphadiazine Schiff bases as mixed ligands.J. Chem. Pharm. Res.20181056773
    [Google Scholar]
  22. GoyatG. GargS. VermaK.K. Complexes of tellurium(IV) with isatin-aniline Schiff base.Chem. Sci. Trans.201652479487
    [Google Scholar]
  23. KuddushiM.M. MalekM.A. PatidarV. PatelM. PatelR. DaveR. Synthesis and characterization of Schiff base aniline with 5-bromo -2- hydroxyl benzaldehyde and their metal complexes.Int. J. Recent Sci. Res.2018942602626030
    [Google Scholar]
  24. MirH. AhmedD. Synthesis of Schiff bases of acetophenone with aniline and its different chloro-substituted derivatives, and study of their antioxidant, enzyme inhibitory and antimicrobial properties.J. Chem. Soc. Pak.2016385981989
    [Google Scholar]
  25. HamakerC.G. ObertsB.P. Synthesis and crystal structures of the bis-Schiff bases of 2-(methylthio)aniline with isophthaldehyde, terephthaldehyde, and para-diacetylbenzene.J. Chem. Crystallogr.2006361173574210.1007/s10870‑006‑9128‑y
    [Google Scholar]
  26. VijayalakshmiS. KalyanaramanS. Non-linear optical analyses of nitro aniline derived Schiff bases of 9-anthraldehyde.Opt. Mater.201335344044310.1016/j.optmat.2012.09.013
    [Google Scholar]
  27. PatelV. TrivediP. GohelH. KhetaniD. Synthesis and characterization of Schiff base of p-chloro aniline and their metal complexes and their evaluation for antibacterial activity.Int. J. Adv. Pharm. Biol. Chem.2014349991003
    [Google Scholar]
  28. RajimonK.J. ElangovanN. Amir KhairbekA. ThomasR. Schiff bases from chlorine substituted anilines and salicylaldehyde: Synthesis, characterization, fluorescence, thermal features, biological studies and electronic structure investigations.J. Mol. Liq.202337012105510.1016/j.molliq.2022.121055
    [Google Scholar]
  29. NawazH. AkhterZ. YameenS. SiddiqiH.M. MirzaB. RifatA. Synthesis and biological evaluations of some Schiff-base esters of ferrocenyl aniline and simple aniline.J. Organomet. Chem.2009694142198220310.1016/j.jorganchem.2009.02.032
    [Google Scholar]
  30. IbrahimM.N. SharifS.A.I. EL-Tajory, A.N.; Elamari, A.A. Synthesis and antibacterial activities of some Schiff bases.J. Chem.20118121221610.1155/2011/258340
    [Google Scholar]
  31. AsiriA.M. BadahdahK.O. Synthesis of some new anils: Part 1. Reaction of 2-hydroxy-benzaldehyde and 2-hydroxy-naphthaldehyde with 2-aminopyridene and 2-aminopyrazine.Molecules20071281796180410.3390/12081796 17960088
    [Google Scholar]
  32. BaoL. ZhaoC. LiS. ZhuY. Benzalaniline from nitrobenzene and benzaldehyde catalyzed efficiently by an atomically precise palladium nanocluster.Chin. J. Catal.201940101499150410.1016/S1872‑2067(19)63423‑6
    [Google Scholar]
  33. KraichevaI. BogomilovaA. TsachevaI. MomekovG. TroevK. Synthesis, NMR characterization and in vitro antitumor evaluation of new aminophosphonic acid diesters.Eur. J. Med. Chem.20094483363336710.1016/j.ejmech.2009.03.017 19361895
    [Google Scholar]
  34. Fernández-GJ.M. del Rio-PortillaF. Quiroz-GarcíaB. ToscanoR.A. SalcedoR. The structures of some ortho-hydroxy Schiff base ligands.J. Mol. Struct.20015611-319720710.1016/S0022‑2860(00)00915‑7
    [Google Scholar]
  35. PessoaJ.C. CavacoI. CorreiaI. DuarteM.T. GillardR.D. HenriquesR.T. HigesF.J. MadeiraC. TomazI. Preparation and characterisation of new oxovanadium(IV) Schiff base complexes derived from amino acids and aromatic o-hydroxyaldehydes.Inorg. Chim. Acta1999293111110.1016/S0020‑1693(99)00196‑6
    [Google Scholar]
  36. KizilkayaH. DagB. AralT. GencN. ErenlerR. Synthesis, characterization, and antioxidant activity of heterocyclic Schiff bases.J. Chin. Chem. Soc. (Taipei)20206791696170110.1002/jccs.202000161
    [Google Scholar]
  37. ZaheerM. ShahA. AkhterZ. QureshiR. MirzaB. TauseefM. BolteM. Synthesis, characterization, electrochemistry and evaluation of biological activities of some ferrocenyl Schiff bases.Appl. Organomet. Chem.2011251616910.1002/aoc.1690
    [Google Scholar]
  38. RehmanW. BalochM.K. MuhammadB. BadshahA. KhanK.M. Characteristic spectral studies and in vitro antifungal activity of some Schiff bases and their organotin (VI) complexes.Chin. Sci. Bull.200449211912210.1360/03wb0174
    [Google Scholar]
  39. ChenD. MartellA.E. Dioxygen affinities of synthetic cobalt Schiff base complexes.Inorg. Chem.19872671026103010.1021/ic00254a013
    [Google Scholar]
  40. KleijA.W. KuilM. TookeD.M. LutzM. SpekA.L. ReekJ.N.H. Zn(II)-salphen complexes as versatile building blocks for the construction of supramolecular box assemblies.Chemistry200511164743475010.1002/chem.200500227 15912543
    [Google Scholar]
  41. ZoubiW.A. Biological activities of Schiff bases and their complexes: A review of recent works.Int. J. Org. Chem. (Irvine)201333739510.4236/ijoc.2013.33A008
    [Google Scholar]
  42. HosseiniM. MertensS.F.L. GhorbaniM. ArshadiM.R. Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media.Mater. Chem. Phys.200378380080810.1016/S0254‑0584(02)00390‑5
    [Google Scholar]
  43. SakıyanI. LoğoğluE. ArslanS. SariN. ŞakiyanN. Antimicrobial activities of N-(2-hydroxy-1-naphthalidene)-amino acid(glycine, alanine, phenylalanine, histidine, tryptophane) Schiff bases and their manganese(III) complexes.Biometals200417211512010.1023/B:BIOM.0000018380.34793.df 15088937
    [Google Scholar]
  44. MorsyN.M. HassanA.S. HafezT.S. MahranM.R.H. SadaweI.A. GbajA.M. Synthesis, antitumor activity, enzyme assay, DNA binding and molecular docking of Bis-Schiff bases of pyrazoles.J. Indian Chem. Soc.2021181475910.1007/s13738‑020‑02004‑y
    [Google Scholar]
  45. KhojastehR. Jalali MatinS. Synthesis, characterization and crystal structure of Cd(II) complex with potentially heptadentate Schiff base ligand.Rev. Roum. Chim.20166128387
    [Google Scholar]
  46. MustaphaA. GaniS.M. Synthesis and characterization of multimetallic Fe(II) and Mn(II) using N4O3 potentially heptadentate ligand.ChemSearch J.2014515660
    [Google Scholar]
  47. KanesatoM. NgassapaF.N. YokoyamaT. Crystal structure of a samarium(III) complex of tripodal tris(((5-chlorosalicylidene) amino)ethyl)amine.Anal. Sci.200117347347410.2116/analsci.17.473 11990634
    [Google Scholar]
  48. MalekA. DeyG.C. NasreenA. ChowdhuryT.A. AlyeaE.C. Potentially heptadentate ligands derived from Tris(2-aminoethyl)-amine(tren).Synth. React. Inorg. Met.-Org. Chem.19799214515510.1080/00945717908059261
    [Google Scholar]
  49. RahmatabadiF.D. KhojastehR.R. FardH.K. TadayonF. Synthesis, characterization, and antibacterial activities of some metal complexes with tripodal Schiff base ligand derived from pyrrole-2-carboxaldehyde.Eur. Chem. Commun.20202558759410.33945/SAMI/ECC.2020.5.4
    [Google Scholar]
  50. IşıklanM. PramanikA. FronczekF. HossainnM.A. Tris{2-[(3-thien-yl)methyl-idene-amino]eth-yl}amine.Acta Crystallogr.2010661127392740
    [Google Scholar]
  51. KocZ.E. UcanH.I. Complexes of iron(III) salen and saloph Schiff bases with bridging 2,4,6-tris(2,5-dicarboxyphenylimino-4-formylphenoxy)-1,3,5-triazine and 2,4,6-tris(4-carboxypheny-limino-4′-formylphenoxy)-1,3,5-triazine.Trans. Met. Chem. (Weinh.)200732559760210.1007/s11243‑007‑0213‑7
    [Google Scholar]
  52. Abbasi TyulaY. GoudarziafsharH. YousefiS. DušekM. EignerV. Template synthesis, characterization and antibacterial activity of d10 (Zn2+, Cd2+, Hg2+) Schiff base complexes: A novel supramolecular Cd2+ complex with two 1D helical chains, and its Hirshfeld surface analysis.J. Mol. Struct.2023127213405110.1016/j.molstruc.2022.134051
    [Google Scholar]
  53. ChenH. CroninJ.A. ArcherR.D. Synthesis and characterization of linear cerium(IV) Schiff-base coordination polymers.Macromolecules19942782174218010.1021/ma00086a029
    [Google Scholar]
  54. ChenH. ArcherR.D. Synthesis and characterization of N,N′,N′',N′”-tetrasalicylidene-3,3′-diaminobenzidine Schiff-base coordination polyelectrolytes of yttrium(III), lanthanum(III), gadolinium(III), and ytterbium(III).Macromolecules19952851609161710.1021/ma00109a038
    [Google Scholar]
  55. ChenH. ArcherR.D. Synthesis and characterization of linear luminescent Schiff-base polyelectrolytes with europium(III) in the backbone 1a.Macromolecules19962961957196410.1021/ma951470u
    [Google Scholar]
  56. MoorsR. VögtleF. Dendrimere polyamine.Chem. Ber.199312692133213510.1002/cber.19931260925
    [Google Scholar]
  57. YıldızM. KılıçZ. HökelekT. Intramolecular hydrogen bonding and tautomerism in Schiff bases. Part I. Structure of 1,8-di[N-2-oxyphenyl-salicylidene]-3,6-dioxaoctane.J. Mol. Struct.1998441111010.1016/S0022‑2860(97)00291‑3
    [Google Scholar]
  58. LeungA.C.W. MacLachlanM.J. Schiff base complexes in macromolecules.J. Inorg. Organomet. Polym. Mater.2007171578910.1007/s10904‑006‑9092‑1
    [Google Scholar]
  59. LiX. ZongL. LiW. WangY. WangJ. JianX. Synthesis and characterization of Schiff base polymers via metal coordination and its application in infrared stealth coating.Polymers (Basel)202214214563457610.3390/polym14214563 36365557
    [Google Scholar]
  60. KorupojuS.R. ZachariasP.S. New optically active hexaaza triphenolic macrocycles: Synthesis, molecular structure and crystal packing features.Chem. Commun. (Camb.)1998121267126810.1039/a802201a
    [Google Scholar]
  61. WonD.H. LeeC.H. Thiophene-containing Schiff-base macrocycles: Intermediate compounds between macroaromatics and azamacrocycles.Tetrahedron Lett.200142101969197210.1016/S0040‑4039(01)00093‑4
    [Google Scholar]
  62. BértoloE. BastidaR. De BlasA. FentonD. LodeiroC. MacíasA. RodríguezA. Rodríguez-BlasT. Lanthanide(III) nitrate complexes of two 17-membered N3O2-donor macrocycles.J. Incl. Phenom. Macrocycl. Chem.1999351/219119810.1023/A:1008182512371
    [Google Scholar]
  63. Radecka-ParyzekW. Patroniak-KrzyminiewskaV. The template synthesis and characterization of the new macrocyclic Schiff base complexes of scandium(III) and yttrium(III) ions.Pol. J. Chem.19956914
    [Google Scholar]
  64. BorisovaN.E. ReshetovaM.D. UstynyukY.A. Metal-free methods in the synthesis of macrocyclic Schiff bases.Chem. Rev.20071071467910.1021/cr0683616 17212470
    [Google Scholar]
  65. BullitaE. CasellatoU. OssolaF. TomasinP. VigatoP.A. RussoU. Synthesis, X-ray structural determination and Mössbauer characterization of Schiff bases bearing ferrocene groups, their reduced analogues and related complexes.Inorg. Chim. Acta1999287211713310.1016/S0020‑1693(98)00413‑7
    [Google Scholar]
  66. ArulmuruganS. Biological activities of Schiff base and its complexes: A review.Rasayan J. Chem.201033385410
    [Google Scholar]
  67. BayrakH. DemirbasA. DemirbasN. KaraogluS.A. Synthesis of some new 1,2,4-triazoles starting from isonicotinic acid hydrazide and evaluation of their antimicrobial activities.Eur. J. Med. Chem.200944114362436610.1016/j.ejmech.2009.05.022 19647352
    [Google Scholar]
  68. ShakirM. AzimY. ChishtiH.T.N. ParveenS. Synthesis, characterization of complexes of Co(II), Ni(II), Cu(II) and Zn(II) with 12-membered Schiff base tetraazamacrocyclic ligand and the study of their antimicrobial and reducing power.Spectrochim. Acta A Mol. Biomol. Spectrosc.200665249049610.1016/j.saa.2005.11.029 16522375
    [Google Scholar]
  69. KuhnertN. Lopez-PeriagoA. RossignoloG.M. The synthesis and conformation of oxygenated trianglimine macrocycles.Org. Biomol. Chem.20053352453710.1039/b414747m 15678193
    [Google Scholar]
  70. GuerrieroP. VigatoP.A. FentonD.E. HellierP.C. AbildgaardF. LedJ.J. ChristensenS.B. Synthesis and application of macrocyclic and macroacyclic Schiff bases.Acta Chem. Scand.1992461025104610.3891/acta.chem.scand.46‑1025
    [Google Scholar]
  71. BrookerS. KellyR.J. Synthesis and structure of dilead(II) and dimanganese(II) complexes of macrocycles derived from 3,6-diformylpyridazine.J. Chem. Soc.19961021172122
    [Google Scholar]
  72. McKeeV. ShepardW.B. X-Ray structural analysis of a tetra-manganess(II) complex of a new (4 × 4) Schiff-base macrocycle incorporating a cubane-like Mn4 (alkoxy)4 core.J. Chem. Soc. Chem. Commun.1985315815910.1039/C39850000158
    [Google Scholar]
  73. HuiJ.K.H. MacLachlanM.J. [6 + 6] Schiff-base macrocycles with 12 imines: Giant analogues of cyclohexane.Chem. Commun. (Camb.)200623232480248210.1039/b603985e 16758022
    [Google Scholar]
  74. AmendolaV. FabbrizziL. ManganoC. PallaviciniP. ZemaM. A di-copper(II) bis-tren cage with thiophene spacers as receptor for anions in aqueous solution.Inorg. Chim. Acta2002337707410.1016/S0020‑1693(02)01029‑0
    [Google Scholar]
  75. FabbrizziL. Beauty in chemistry: Making artistic molecules with Schiff bases.J. Org. Chem.20208519122121222610.1021/acs.joc.0c01420 32864964
    [Google Scholar]
  76. AlibrandiG. AmendolaV. BergamaschiG. FabbrizziL. LicchelliM. Bistren cryptands and cryptates: Versatile receptors for anion inclusion and recognition in water.Org. Biomol. Chem.201513123510352410.1039/C4OB02618G 25645726
    [Google Scholar]
  77. NgwenyaM.P. MartellA.E. ReibenspiesJ. Template synthesis of a novel macrobicyclic ligand and the crystal structure of its unique dinuclear copper(I) complex.J. Chem. Soc. Chem. Commun.199017171207120810.1039/c39900001207
    [Google Scholar]
  78. FoxO.D. RollsT.D. BeerP.D. DrewM.G.B. The binding of difunctional neutral guest molecules by novel bis(tripyrrolyl) cryptands.Chem. Commun. (Camb.)200117171632163310.1039/b104077b 12240417
    [Google Scholar]
  79. MatsumotoT. Simple one–pot synthesis of hexakis(2-alkoxy-1,5-phenyleneimine) macrocycles by precipitation–driven cyclization.Macromol20244112210.3390/macromol4010001
    [Google Scholar]
  80. DaliaS.A. AfsanF. HossainS. KhanN. ZakariaC.M. ZahanK. AliM. A short review on chemistry of Schiff base metal complexes and their catalytic application.Int. J. Chem. Stud.20186328592866
    [Google Scholar]
  81. ChakrabortiA.K. BhagatS. RudrawarS. Magnesium perchlorate as an efficient catalyst for the synthesis of imines and phenylhydrazones.Tetrahedron Lett.200445417641764410.1016/j.tetlet.2004.08.097
    [Google Scholar]
  82. SinghR. Template synthesis of Ni(II) macrocyclic complexes: Characterization and biological activities.J. Pharm. Neg.2022136953962
    [Google Scholar]
  83. SaidM.A. Al-HarbiW.S. ShanmugamM. AljohaniF.S. BouqellahN.A. Al-KaffN.S. Synthesis, XRD, HAS, in silico molecular docking studies and biological assessment of novel Schiff base compounds as anti-cancer and antimicrobial agents.J. Taibah Univ. Sci.20201411590160310.1080/16583655.2020.1849492
    [Google Scholar]
  84. BjørgoJ. BoydD.R. WatsonC.G. JenningsW.B. Equilibrium distribution of E–Z-ketimine isomers.J. Chem. Soc., Perkin Trans., 219742775776210.1039/P29740000757
    [Google Scholar]
  85. BuchananG.W. DawsonB.A. Aromatic imine stereochemistry as studied by 13C and 1H NMR of 15N‐enriched materials.Org. Magn. Reson.198013429329810.1002/mrc.1270130416
    [Google Scholar]
  86. CurtinD.Y. HausserJ.W. Effects of structural changes on the interconversion of stereoisomeric imines. Isoelectronic models for vinyl anions.J. Am. Chem. Soc.196183163474348110.1021/ja01477a029
    [Google Scholar]
  87. MinkinV.I. ZhdanovY.A. MedyantzevaE.A. OstroumovY.A. The problem of acoplanarity of aromatic azomethines.Tetrahedron19672393651366610.1016/0040‑4020(67)80011‑5
    [Google Scholar]
  88. HamorT.A. JenningsW.B. ProctorL.D. TolleyM.S. BoydD.R. MullanT. Imines and derivatives. Part 23. Anomalous 1H NMR spectrum of N-[1-(1-naphthyl)ethylidene]-1-phenyl-2-propylamine: Conformation in solution, atropisomerism and an X-ray crystal structure.J. Chem. Soc., Perkin Trans. 2199021253010.1039/p29900000025
    [Google Scholar]
  89. GarnovskiiA.D. NivorozhkinA.L. MinkinV.I. Ligand environment and the structure of schiff base adducts and tetracoordinated metal-chelates.Coord. Chem. Rev.19931261-216910.1016/0010‑8545(93)85032‑Y
    [Google Scholar]
  90. CimermanZ. MiljaniS. GaliN. Schiff bases derived from aminopyridines as spectrofluorimetric analytical reagents.Croat. Chem. Acta20007318195
    [Google Scholar]
  91. LedbetterJ.W. Spectroscopic evidence for the enol imine-keto enamine tautomerism of N-(o- and p-hydroxybenzylidene) anils in solution.J. Phys. Chem.1996722452249
    [Google Scholar]
  92. FilarowskiA. Intramolecular hydrogen bonding in o ‐hydroxyaryl Schiff bases.J. Phys. Org. Chem.200518868669810.1002/poc.940
    [Google Scholar]
  93. UddinN. RashidF. AliS. TirmiziS.A. AhmadI. ZaibS. ZubairM. DiaconescuP.L. TahirM.N. IqbalJ. HaiderA. Synthesis, characterization, and anticancer activity of Schiff bases.J. Biomol. Struct. Dyn.202038113246325910.1080/07391102.2019.1654924 31411114
    [Google Scholar]
  94. SönmezM. ÇelebiM. Berberİ. Synthesis, spectroscopic and biological studies on the new symmetric Schiff base derived from 2,6-diformyl-4-methylphenol with N-aminopyrimidine.Eur. J. Med. Chem.20104551935194010.1016/j.ejmech.2010.01.035 20163896
    [Google Scholar]
  95. AshrafM.A. MahmoodK. WajidA. MaahM.J. YusoffI. Synthesis, characterization and biological activity of Schiff bases.Int. Proc. Chem. Biol. Environ. Eng.2011106472
    [Google Scholar]
  96. IssaR.M. KhedrA.M. RizkH.F. UV–vis, IR and 1H NMR spectroscopic studies of some Schiff bases derivatives of 4-aminoantipyrine.Spectrochim. Acta A Mol. Biomol. Spectrosc.2005621-362162910.1016/j.saa.2005.01.026 16257767
    [Google Scholar]
  97. Abd-ElzaherM.M. Spectroscopic characterization of some tetradentate Schiff bases and their complexes with nickel, copper and zinc.J. Chin. Chem. Soc. (Taipei)200148215315810.1002/jccs.200100027
    [Google Scholar]
  98. ChengJ. WeiK. MaX. ZhouX. XiangH. Synthesis and photophysical properties of colorful Salen-type Schiff bases.J. Phys. Chem. C201311732165521656310.1021/jp403750q
    [Google Scholar]
  99. Al ZoubiW. Al-HamdaniA.A.S. AhmedS.D. KoY.G. Synthesis, characterization, and biological activity of Schiff bases metal complexes.J. Phys. Org. Chem.2018312e375210.1002/poc.3752
    [Google Scholar]
  100. PatelK.S. RinehartK.L. BailarJ.C. Mass spectral studies of Schiff’s bases and their metal complexes.Org. Mass Spectrom.19704S144145110.1002/oms.1210040145
    [Google Scholar]
  101. BłachutD. DanikiewiczW. OlejnikM. CzarnockiZ. Electron ionization mass spectrometry as a tool for the investigation of the ortho effect in fragmentation of some Schiff bases derived from amphetamine analogs.J. Mass Spectrom.200439896697210.1002/jms.633 15329849
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298326751241031103603
Loading
/content/journals/mroc/10.2174/0118756298326751241031103603
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): [m+n] synthesis; anil; imine; imine isomerism; Schiff base; spectral characteristic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test