Skip to content
2000
image of Classification, Synthesis, Isomerism, and Spectral Characterization of Schiff Bases

Abstract

Schiff bases have been known for 160 years and there is a multitude of information about them. This review focuses on their classification. The examples were classified based on the number of azomethine groups (mono-, bis-, tris-, tetrakis-, oligo-, and polymer Schiff bases) and the nature of their chain (cyclic and acyclic Schiff bases). Many imines are synthesized by condensing carbonyl compounds with amines and the mechanism of this reaction has been described. The main types of isomerism found at Schiff bases are geometric isomerism, atropizomerism, and imine-enamine tautomerism. After obtaining them they can be spectrally characterized using FT-IR, UV-Vis, 1H NMR, 13C NNR, and mass spectrum and they were presented.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298326751241031103603
2025-01-13
2025-07-09
Loading full text...

Full text loading...

References

  1. Schiff H. Mittheilungen aus dem Universitats-laboratorium in Pisa (A report from the University Laboratory in Pisa). Justus Liebigs Ann. Chem. 1864 131 118 119 10.1002/jlac.18641310113
    [Google Scholar]
  2. Schiff U. Sopra una nova serie di basi organiche (On a New Series of Organic Bases). Giori. Sci. Nat. Econ. 1866 2 201 257
    [Google Scholar]
  3. Blasius C.K. Heinrich N.F. Vasilenko V. Gade L.H. Tackling N-alkyl imines with 3d metal catalysis: Highly enantioselective iron-catalyzed synthesis of α-chiral amines. Angew. Chem. Int. Ed. 2020 59 37 15974 15977 10.1002/anie.202006557 32453491
    [Google Scholar]
  4. Li X. Li Y. Shu J. Fu X. Wu L. Shi T. Hu W. Rh2(Ph3COO)3(OAc)/Chiral phosphoric acid cocatalyzed N-alkyl imines-involved multicomponent reactions yielding N-(anthrancen-9-ylmethyl) isoserines as drug intermediates. Org. Lett. 2022 24 47 8633 8638 10.1021/acs.orglett.2c03368 36410001
    [Google Scholar]
  5. Guillemin J.C. Nasraoui W. Gazzeh H. Synthesis of N -unsubstituted cycloalkylimines containing a 4 to 8-membered ring. Chem. Commun. (Camb.) 2019 55 39 5647 5650 10.1039/C9CC01755K 31025994
    [Google Scholar]
  6. Nosova E.V. Batanova O.A. Lipunova G.N. Kotovskaya S.K. Slepukhin P.A. Kravchenko M.A. Charushin V.N. Synthesis and antitubercular evaluation of fluorinated 2-cycloalkylimino substituted 1,3-benzothiazin-4-ones. J. Fluor. Chem. 2019 220 69 77 10.1016/j.jfluchem.2019.02.009
    [Google Scholar]
  7. Goud N.S. Ghouse M.S. Vishnu J. Pranay J. Alvala R. Talla V. Qureshi I.A. Alvala M. Synthesis and biological evaluation of novel heterocyclic imines linked coumarin-thiazole hybrids as anticancer agents. Anticancer. Agents Med. Chem. 2019 19 4 557 566 10.2174/1871520619666190207140120 30734685
    [Google Scholar]
  8. Hofmann K.P. Lamb T.D. Rhodopsin, light-sensor of vision. Prog. Retin. Eye Res. 2023 93 101116 101184 10.1016/j.preteyeres.2022.101116 36273969
    [Google Scholar]
  9. Álvarez-Rodríguez S. López-González D. Reigosa M.J. Araniti F. Sánchez-Moreiras A.M. Ultrastructural and hormonal changes related to harmaline-induced treatment in Arabidopsis thaliana (L.) Heynh. root meristem. Plant Physiol. Biochem. 2022 179 78 89 10.1016/j.plaphy.2022.03.022 35325658
    [Google Scholar]
  10. Steenbeke M. Speeckaert R. Desmedt S. Glorieux G. Delanghe J.R. Speeckaert M.M. The role of advanced glycation end products and its soluble receptor in kidney diseases. Int. J. Mol. Sci. 2022 23 7 3439 10.3390/ijms23073439 35408796
    [Google Scholar]
  11. Jaffe E.K. The remarkable character of porphobilinogen synthase. Acc. Chem. Res. 2016 49 11 2509 2517 10.1021/acs.accounts.6b00414 27783504
    [Google Scholar]
  12. da Silva C.M. da Silva D.L. Modolo L.V. Alves R.B. de Resende M.A. Martins C.V.B. de Fátima Â. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res. 2011 2 1 1 8 10.1016/j.jare.2010.05.004
    [Google Scholar]
  13. Guo Z. Xing R. Liu S. Zhong Z. Ji X. Wang L. Li P. Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan. Carbohydr. Res. 2007 342 10 1329 1332 10.1016/j.carres.2007.04.006 17485075
    [Google Scholar]
  14. Barbosa H.F.G. Attjioui M. Leitão A. Moerschbacher B.M. Cavalheiro É.T.G. Characterization, solubility and biological activity of amphihilic biopolymeric Schiff bases synthesized using chitosans. Carbohydr. Polym. 2019 220 1 11 10.1016/j.carbpol.2019.05.037 31196526
    [Google Scholar]
  15. Wang Z. Tang P. Chen S. Xing Y. Yin C. Feng J. Jiang F. Fully biobased sustainable elastomers derived from chitin, lignin, and plant oil via grafting strategy and Schiff-base chemistry. Carbohydr. Polym. 2023 305 120577 120576 10.1016/j.carbpol.2023.120577 36737210
    [Google Scholar]
  16. Hecht S.S. McIntee E.J. Wang M. New DNA adducts of crotonaldehyde and acetaldehyde. Toxicology 2001 166 1-2 31 36 10.1016/S0300‑483X(01)00436‑X 11518608
    [Google Scholar]
  17. Peterson C.M. Nguyen L.B. Clinical implications of acetaldehyde adducts with hemoglobin. Prog. Clin. Biol. Res. 1985 183 19 30 3901019
    [Google Scholar]
  18. Salaspuro M. Acetaldehyde and gastric cancer. J. Dig. Dis. 2011 12 2 51 59 10.1111/j.1751‑2980.2011.00480.x 21401890
    [Google Scholar]
  19. Tiollais R. Bouget H. Huet J. Le Pennec A. Sur une nouvelle méthode de synthèse des dérivés du thiazolé-5. Bull. Soc. Chim. Fr. 1947 1947 708
    [Google Scholar]
  20. Pervaiz M. Shahin M. Ejaz A. Quratulain R. Saeed Z. Ashraf A. Rashad Mahmood Khan R. Majid Bukhari S. Ullah S. Younas U. An overview of Aniline-Based Schiff base metal Complexes: Synthesis, characterization and biological activities - a review. Inorg. Chem. Commun. 2024 159 111851 10.1016/j.inoche.2023.111851
    [Google Scholar]
  21. Ejelonu B.C. Oyeneyin O.E. Olagboye S.A. Akele O.E. Synthesis, characterization and antimicrobial properties of transition metal complexes of aniline and sulphadiazine Schiff bases as mixed ligands. J. Chem. Pharm. Res. 2018 10 5 67 73
    [Google Scholar]
  22. Goyat G. Garg S. Verma K.K. Complexes of tellurium(IV) with isatin-aniline Schiff base. Chem. Sci. Trans. 2016 5 2 479 487
    [Google Scholar]
  23. Kuddushi M.M. Malek M.A. Patidar V. Patel M. Patel R. Dave R. Synthesis and characterization of Schiff base aniline with 5-bromo -2- hydroxyl benzaldehyde and their metal complexes. Int. J. Recent Sci. Res. 2018 9 4 26026 26030
    [Google Scholar]
  24. Mir H. Ahmed D. Synthesis of Schiff bases of acetophenone with aniline and its different chloro-substituted derivatives, and study of their antioxidant, enzyme inhibitory and antimicrobial properties. J. Chem. Soc. Pak. 2016 38 5 981 989
    [Google Scholar]
  25. Hamaker C.G. Oberts B.P. Synthesis and crystal structures of the bis-Schiff bases of 2-(methylthio)aniline with isophthaldehyde, terephthaldehyde, and para-diacetylbenzene. J. Chem. Crystallogr. 2006 36 11 735 742 10.1007/s10870‑006‑9128‑y
    [Google Scholar]
  26. Vijayalakshmi S. Kalyanaraman S. Non-linear optical analyses of nitro aniline derived Schiff bases of 9-anthraldehyde. Opt. Mater. 2013 35 3 440 443 10.1016/j.optmat.2012.09.013
    [Google Scholar]
  27. Patel V. Trivedi P. Gohel H. Khetani D. Synthesis and characterization of Schiff base of p-chloro aniline and their metal complexes and their evaluation for antibacterial activity. Int. J. Adv. Pharm. Biol. Chem. 2014 3 4 999 1003
    [Google Scholar]
  28. Rajimon K.J. Elangovan N. Amir Khairbek A. Thomas R. Schiff bases from chlorine substituted anilines and salicylaldehyde: Synthesis, characterization, fluorescence, thermal features, biological studies and electronic structure investigations. J. Mol. Liq. 2023 370 121055 10.1016/j.molliq.2022.121055
    [Google Scholar]
  29. Nawaz H. Akhter Z. Yameen S. Siddiqi H.M. Mirza B. Rifat A. Synthesis and biological evaluations of some Schiff-base esters of ferrocenyl aniline and simple aniline. J. Organomet. Chem. 2009 694 14 2198 2203 10.1016/j.jorganchem.2009.02.032
    [Google Scholar]
  30. Ibrahim M.N. Sharif S.A.I. EL-Tajory A.N. Elamari A.A. Synthesis and antibacterial activities of some Schiff bases. J. Chem. 2011 8 1 212 216 10.1155/2011/258340
    [Google Scholar]
  31. Asiri A.M. Badahdah K.O. Synthesis of some new anils: Part 1. Reaction of 2-hydroxy-benzaldehyde and 2-hydroxynaphthaldehyde with 2-aminopyridene and 2-aminopyrazine. Molecules 2007 12 8 1796 1804 10.3390/12081796 17960088
    [Google Scholar]
  32. Bao L. Zhao C. Li S. Zhu Y. Benzalaniline from nitrobenzene and benzaldehyde catalyzed efficiently by an atomically precise palladium nanocluster. Chin. J. Catal. 2019 40 10 1499 1504 10.1016/S1872‑2067(19)63423‑6
    [Google Scholar]
  33. Kraicheva I. Bogomilova A. Tsacheva I. Momekov G. Troev K. Synthesis, NMR characterization and in vitro antitumor evaluation of new aminophosphonic acid diesters. Eur. J. Med. Chem. 2009 44 8 3363 3367 10.1016/j.ejmech.2009.03.017 19361895
    [Google Scholar]
  34. Fernández-G J.M. del Rio-Portilla F. Quiroz-García B. Toscano R.A. Salcedo R. The structures of some ortho-hydroxy Schiff base ligands. J. Mol. Struct. 2001 561 1-3 197 207 10.1016/S0022‑2860(00)00915‑7
    [Google Scholar]
  35. Pessoa J.C. Cavaco I. Correia I. Duarte M.T. Gillard R.D. Henriques R.T. Higes F.J. Madeira C. Tomaz I. Preparation and characterisation of new oxovanadium(IV) Schiff base complexes derived from amino acids and aromatic o-hydroxyaldehydes. Inorg. Chim. Acta 1999 293 1 1 11 10.1016/S0020‑1693(99)00196‑6
    [Google Scholar]
  36. Kizilkaya H. Dag B. Aral T. Genc N. Erenler R. Synthesis, characterization, and antioxidant activity of heterocyclic Schiff bases. J. Chin. Chem. Soc. (Taipei) 2020 67 9 1696 1701 10.1002/jccs.202000161
    [Google Scholar]
  37. Zaheer M. Shah A. Akhter Z. Qureshi R. Mirza B. Tauseef M. Bolte M. Synthesis, characterization, electrochemistry and evaluation of biological activities of some ferrocenyl Schiff bases. Appl. Organomet. Chem. 2011 25 1 61 69 10.1002/aoc.1690
    [Google Scholar]
  38. Rehman W. Baloch M.K. Muhammad B. Badshah A. Khan K.M. Characteristic spectral studies and in vitro antifungal activity of some Schiff bases and their organotin (?) complexes. Chin. Sci. Bull. 2004 49 2 119 122 10.1360/03wb0174
    [Google Scholar]
  39. Chen D. Martell A.E. Dioxygen affinities of synthetic cobalt Schiff base complexes. Inorg. Chem. 1987 26 7 1026 1030 10.1021/ic00254a013
    [Google Scholar]
  40. Kleij A.W. Kuil M. Tooke D.M. Lutz M. Spek A.L. Reek J.N.H. Zn(II)-salphen complexes as versatile building blocks for the construction of supramolecular box assemblies. Chemistry 2005 11 16 4743 4750 10.1002/chem.200500227 15912543
    [Google Scholar]
  41. Zoubi W.A. Biological activities of Schiff bases and their complexes: A review of recent works. Int. J. Org. Chem. (Irvine) 2013 3 3 73 95 10.4236/ijoc.2013.33A008
    [Google Scholar]
  42. Hosseini M. Mertens S.F.L. Ghorbani M. Arshadi M.R. Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media. Mater. Chem. Phys. 2003 78 3 800 808 10.1016/S0254‑0584(02)00390‑5
    [Google Scholar]
  43. Sakıyan I. Loğoğlu E. Arslan S. Sari N. Şakiyan N. Antimicrobial activities of N-(2-hydroxy-1-naphthalidene)-amino acid(glycine, alanine, phenylalanine, histidine, tryptophane) Schiff bases and their manganese(III) complexes. Biometals 2004 17 2 115 120 10.1023/B:BIOM.0000018380.34793.df 15088937
    [Google Scholar]
  44. Morsy N.M. Hassan A.S. Hafez T.S. Mahran M.R.H. Sadawe I.A. Gbaj A.M. Synthesis, antitumor activity, enzyme assay, DNA binding and molecular docking of Bis-Schiff bases of pyrazoles. J. Indian Chem. Soc. 2021 18 1 47 59 10.1007/s13738‑020‑02004‑y
    [Google Scholar]
  45. Khojasteh R. Jalali Matin S. Synthesis, characterization and crystal structure of Cd(II) complex with potentially heptadentate Schiff base ligand. Rev. Roum. Chim. 2016 61 2 83 87
    [Google Scholar]
  46. Mustapha A. Gani S.M. Synthesis and characterization of multimetallic Fe(II) and Mn(II) using N4O3 potentially heptadentate ligand. ChemSearch J. 2014 5 1 56 60
    [Google Scholar]
  47. Kanesato M. Ngassapa F.N. Yokoyama T. Crystal Structure of a Samarium(III) Complex of Tripodal Tris(((5-chlorosalicylidene)amino)ethyl)amine. Anal. Sci. 2001 17 3 473 474 10.2116/analsci.17.473 11990634
    [Google Scholar]
  48. Malek A. Dey G.C. Nasreen A. Chowdhury T.A. Alyea E.C. Potentially Heptadentate Ligands Derived from Tris(2-aminoethyl)amine(tren). Synth. React. Inorg. Met.-Org. Chem. 1979 9 2 145 155 10.1080/00945717908059261
    [Google Scholar]
  49. Rahmatabadi F.D. Khojasteh R.R. Fard H.K. Tadayon F. Synthesis, characterization, and antibacterial activities of some metal complexes with tripodal Schiff base ligand derived from pyrrole-2-carboxaldehyde. Eurasian Chemical Communications 2020 2 5 587 594 10.33945/SAMI/ECC.2020.5.4
    [Google Scholar]
  50. Işıklan M. Pramanik A. Fronczek F. Hossainn M.A. Tris{2-[(3-thien-yl)methyl-idene-amino]eth-yl}amine. Acta Crystallogr. 2010 66 11 2739 2740
    [Google Scholar]
  51. Koc Z.E. Ucan H.I. Complexes of iron(III) salen and saloph Schiff bases with bridging 2,4,6-tris(2,5-dicarboxyphenylimino-4-formylphenoxy)-1,3,5-triazine and 2,4,6-tris(4-carboxyphenylimino-4′-formylphenoxy)-1,3,5-triazine. Trans. Met. Chem. (Weinh.) 2007 32 5 597 602 10.1007/s11243‑007‑0213‑7
    [Google Scholar]
  52. Abbasi Tyula Y. Goudarziafshar H. Yousefi S. Dušek M. Eigner V. Template synthesis, characterization and antibacterial activity of d10 (Zn2+, Cd2+, Hg2+) Schiff base complexes: A novel supramolecular Cd2+ complex with two 1D helical chains, and its Hirshfeld surface analysis. J. Mol. Struct. 2023 1272 134051 10.1016/j.molstruc.2022.134051
    [Google Scholar]
  53. Chen H. Cronin J.A. Archer R.D. Synthesis and Characterization of Linear Cerium(IV) Schiff-Base Coordination Polymers. Macromolecules 1994 27 8 2174 2180 10.1021/ma00086a029
    [Google Scholar]
  54. Chen H. Archer R.D. Synthesis and Characterization of N,N′,N′',N′''-Tetrasalicylidene-3,3′-diaminobenzidine Schiff-Base Coordination Polyelectrolytes of Yttrium(III), Lanthanum(III), Gadolinium(III), and Ytterbium(III). Macromolecules 1995 28 5 1609 1617 10.1021/ma00109a038
    [Google Scholar]
  55. Chen H. Archer R.D. Synthesis and Characterization of Linear Luminescent Schiff-Base Polyelectrolytes with Europium(III) in the Backbone 1a. Macromolecules 1996 29 6 1957 1964 10.1021/ma951470u
    [Google Scholar]
  56. Moors R. Vögtle F. Dendrimere Polyamine. Chem. Ber. 1993 126 9 2133 2135 10.1002/cber.19931260925
    [Google Scholar]
  57. Yıldız M. Kılıç Z. Hökelek T. Intramolecular hydrogen bonding and tautomerism in Schiff bases. Part I. Structure of 1,8-di[N-2-oxyphenyl-salicylidene]-3,6-dioxaoctane. J. Mol. Struct. 1998 441 1 1 10 10.1016/S0022‑2860(97)00291‑3
    [Google Scholar]
  58. Leung A.C.W. MacLachlan M.J. Schiff base complexes in macromolecules. J. Inorg. Organomet. Polym. Mater. 2007 17 1 57 89 10.1007/s10904‑006‑9092‑1
    [Google Scholar]
  59. Li X. Zong L. Li W. Wang Y. Wang J. Jian X. Synthesis and characterization of Schiff base polymers via metal coordination and its application in infrared stealth coating. Polymers (Basel) 2022 14 21 4563 4576 10.3390/polym14214563 36365557
    [Google Scholar]
  60. Korupoju S.R. Zacharias P.S. New optically active hexaaza triphenolic macrocycles: Synthesis, molecular structure and crystal packing features. Chem. Commun. (Camb.) 1998 12 1267 1268 10.1039/a802201a
    [Google Scholar]
  61. Won D.H. Lee C.H. Thiophene-containing Schiff-base macrocycles: Intermediate compounds between macroaromatics and azamacrocycles. Tetrahedron Lett. 2001 42 10 1969 1972 10.1016/S0040‑4039(01)00093‑4
    [Google Scholar]
  62. Bértolo E. Bastida R. De Blas A. Fenton D. Lodeiro C. Macías A. Rodríguez A. Rodríguez-Blas T. Lanthanide(III) nitrate complexes of two 17-membered N3O2-donor macrocycles. J. Incl. Phenom. Macrocycl. Chem. 1999 35 1/2 191 198 10.1023/A:1008182512371
    [Google Scholar]
  63. Radecka-Paryzek W. Patroniak-Krzyminiewska V. The template synthesis and characterization of the new macrocyclic Schiff base complexes of scandium(III) and yttrium(III) ions. Pol. J. Chem. 1995 69 1 4
    [Google Scholar]
  64. Borisova N.E. Reshetova M.D. Ustynyuk Y.A. Metal-free methods in the synthesis of macrocyclic schiff bases. Chem. Rev. 2007 107 1 46 79 10.1021/cr0683616 17212470
    [Google Scholar]
  65. Bullita E. Casellato U. Ossola F. Tomasin P. Vigato P.A. Russo U. Synthesis, X-ray structural determination and Mössbauer characterization of Schiff bases bearing ferrocene groups, their reduced analogues and related complexes. Inorg. Chim. Acta 1999 287 2 117 133 10.1016/S0020‑1693(98)00413‑7
    [Google Scholar]
  66. Arulmurugan S. Biological activities of Schiff base and its complexes: A review. Rasayan J. Chem. 2010 3 3 385 410
    [Google Scholar]
  67. Bayrak H. Demirbas A. Demirbas N. Karaoglu S.A. Synthesis of some new 1,2,4-triazoles starting from isonicotinic acid hydrazide and evaluation of their antimicrobial activities. Eur. J. Med. Chem. 2009 44 11 4362 4366 10.1016/j.ejmech.2009.05.022 19647352
    [Google Scholar]
  68. Shakir M. Azim Y. Chishti H.T.N. Parveen S. Synthesis, characterization of complexes of Co(II), Ni(II), Cu(II) and Zn(II) with 12-membered Schiff base tetraazamacrocyclic ligand and the study of their antimicrobial and reducing power. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2006 65 2 490 496 10.1016/j.saa.2005.11.029 16522375
    [Google Scholar]
  69. Kuhnert N. Lopez-Periago A. Rossignolo G.M. The synthesis and conformation of oxygenated trianglimine macrocycles. Org. Biomol. Chem. 2005 3 3 524 537 10.1039/b414747m 15678193
    [Google Scholar]
  70. Guerriero P. Vigato P.A. Fenton D.E. Hellier P.C. Abildgaard F. Led J.J. Christensen S.B. Synthesis and application of macrocyclic and macroacyclic Schiff bases. Acta Chem. Scand. 1992 46 1025 1046 10.3891/acta.chem.scand.46‑1025
    [Google Scholar]
  71. Brooker S. Kelly R.J. Synthesis and structure of dilead(II) and dimanganese(II) complexes of macrocycles derived from 3,6-diformylpyridazine. J. Chem. Soc. 1996 10 2117 2122
    [Google Scholar]
  72. McKee V. Shepard W.B. X-Ray structural analysis of a tetra-manganess( II ) complex of a new (4 × 4) Schiff-base macrocycle incorporating a cubane-like Mn 4 (alkoxy) 4 core. J. Chem. Soc. Chem. Commun. 1985 3 158 159 10.1039/C39850000158
    [Google Scholar]
  73. Hui J.K.H. MacLachlan M.J. [6 + 6] Schiff-base macrocycles with 12 imines: Giant analogues of cyclohexane. Chem. Commun. (Camb.) 2006 23 23 2480 2482 10.1039/b603985e 16758022
    [Google Scholar]
  74. Amendola V. Fabbrizzi L. Mangano C. Pallavicini P. Zema M. A di-copper(II) bis-tren cage with thiophene spacers as receptor for anions in aqueous solution. Inorg. Chim. Acta 2002 337 70 74 10.1016/S0020‑1693(02)01029‑0
    [Google Scholar]
  75. Fabbrizzi L. Beauty in chemistry: Making artistic molecules with Schiff bases. J. Org. Chem. 2020 85 19 12212 12226 10.1021/acs.joc.0c01420 32864964
    [Google Scholar]
  76. Alibrandi G. Amendola V. Bergamaschi G. Fabbrizzi L. Licchelli M. Bistren cryptands and cryptates: Versatile receptors for anion inclusion and recognition in water. Org. Biomol. Chem. 2015 13 12 3510 3524 10.1039/C4OB02618G 25645726
    [Google Scholar]
  77. Ngwenya M.P. Martell A.E. Reibenspies J. Template synthesis of a novel macrobicyclic ligand and the crystal structure of its unique dinuclear copper(I) complex. J. Chem. Soc. Chem. Commun. 1990 17 17 1207 1208 10.1039/c39900001207
    [Google Scholar]
  78. Fox O.D. Rolls T.D. Beer P.D. Drew M.G.B. The binding of difunctional neutral guest molecules by novel bis(tripyrrolyl) cryptands. Chem. Commun. (Camb.) 2001 17 17 1632 1633 10.1039/b104077b 12240417
    [Google Scholar]
  79. Matsumoto T. Simple one–pot synthesis of hexakis(2-alkoxy-1,5-phenyleneimine) macrocycles by precipitation–driven cyclization. Macromol 2024 4 1 1 22 10.3390/macromol4010001
    [Google Scholar]
  80. Dalia S.A. Afsan F. Hossain S. Khan N. Zakaria C.M. Zahan K. Ali M. A short review on chemistry of Schiff base metal complexes and their catalytic application. Int. J. Chem. Stud. 2018 6 3 2859 2866
    [Google Scholar]
  81. Chakraborti A.K. Bhagat S. Rudrawar S. Magnesium perchlorate as an efficient catalyst for the synthesis of imines and phenylhydrazones. Tetrahedron Lett. 2004 45 41 7641 7644 10.1016/j.tetlet.2004.08.097
    [Google Scholar]
  82. Singh R. Template synthesis of Ni(II) macrocyclic complexes: Characterization and biological activities. J. Pharm. Neg. 2022 13 6 953 962
    [Google Scholar]
  83. Said M.A. Al-Harbi W.S. Shanmugam M. Aljohani F.S. Bouqellah N.A. Al-Kaff N.S. Synthesis, XRD, HAS, in silico molecular docking studies and biological assessment of novel Schiff base compounds as anti-cancer and antimicrobial agents. J. Taibah Univ. Sci. 2020 14 1 1590 1603 10.1080/16583655.2020.1849492
    [Google Scholar]
  84. Bjørgo J. Boyd D.R. Watson C.G. Jennings W.B. Equilibrium distribution of E–Z-ketimine isomers. J. Chem. Soc., Perkin Trans. 2 1974 2 7 757 762 10.1039/P29740000757
    [Google Scholar]
  85. Buchanan G.W. Dawson B.A. Aromatic imine stereochemistry as studied by 13 C and 1 H NMR of 15 N‐enriched materials. Org. Magn. Reson. 1980 13 4 293 298 10.1002/mrc.1270130416
    [Google Scholar]
  86. Curtin D.Y. Hausser J.W. Effects of structural changes on the interconversion of stereoisomeric imines. Isoelectronic models for vinyl anions. J. Am. Chem. Soc. 1961 83 16 3474 3481 10.1021/ja01477a029
    [Google Scholar]
  87. Minkin V.I. Zhdanov Y.A. Medyantzeva E.A. Ostroumov Y.A. The problem of acoplanarity of aromatic azomethines. Tetrahedron 1967 23 9 3651 3666 10.1016/0040‑4020(67)80011‑5
    [Google Scholar]
  88. Hamor T.A. Jennings W.B. Proctor L.D. Tolley M.S. Boyd D.R. Mullan T. Imines and derivatives. Part 23. Anomalous 1H NMR spectrum of N-[1-(1-naphthyl)ethylidene]-1-phenyl-2-propylamine: Conformation in solution, atropisomerism and an X-ray crystal structure. J. Chem. Soc., Perkin Trans. 2 1990 2 1 25 30 10.1039/p29900000025
    [Google Scholar]
  89. Garnovskii A.D. Nivorozhkin A.L. Minkin V.I. Ligand environment and the structure of schiff base adducts and tetracoordinated metal-chelates. Coord. Chem. Rev. 1993 126 1-2 1 69 10.1016/0010‑8545(93)85032‑Y
    [Google Scholar]
  90. Cimerman Z. Miljani S. Gali N. Schiff bases derived from aminopyridines as spectrofluorimetric analytical reagents. Croat. Chem. Acta 2000 73 1 81 95
    [Google Scholar]
  91. Ledbetter J.W. Spectroscopic evidence for the enol imine-keto enamine tautomerism of N-(o- and p-hydroxybenzylidene) anils in solution. J. Phys. Chem. 1996 7 2245 2249
    [Google Scholar]
  92. Filarowski A. Intramolecular hydrogen bonding in o ‐hydroxyaryl Schiff bases. J. Phys. Org. Chem. 2005 18 8 686 698 10.1002/poc.940
    [Google Scholar]
  93. Uddin N. Rashid F. Ali S. Tirmizi S.A. Ahmad I. Zaib S. Zubair M. Diaconescu P.L. Tahir M.N. Iqbal J. Haider A. Synthesis, characterization, and anticancer activity of Schiff bases. J. Biomol. Struct. Dyn. 2020 38 11 3246 3259 10.1080/07391102.2019.1654924 31411114
    [Google Scholar]
  94. Sönmez M. Çelebi M. Berber İ. Synthesis, spectroscopic and biological studies on the new symmetric Schiff base derived from 2,6-diformyl-4-methylphenol with N-aminopyrimidine. Eur. J. Med. Chem. 2010 45 5 1935 1940 10.1016/j.ejmech.2010.01.035 20163896
    [Google Scholar]
  95. Ashraf M.A. Mahmood K. Wajid A. Maah M.J. Yusoff I. Synthesis, characterization and biological activity of Schiff bases. Int. Proc. Chem. Biol. Environ. Eng. 2011 10 6472
    [Google Scholar]
  96. Issa R.M. Khedr A.M. Rizk H.F. UV–vis, IR and 1H NMR spectroscopic studies of some Schiff bases derivatives of 4-aminoantipyrine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005 62 1-3 621 629 10.1016/j.saa.2005.01.026 16257767
    [Google Scholar]
  97. Abd-Elzaher M.M. Spectroscopic characterization of some tetradentate Schiff bases and their complexes with nickel, copper and zinc. J. Chin. Chem. Soc. (Taipei) 2001 48 2 153 158 10.1002/jccs.200100027
    [Google Scholar]
  98. Cheng J. Wei K. Ma X. Zhou X. Xiang H. Synthesis and photophysical properties of colorful Salen-type Schiff bases. J. Phys. Chem. C 2013 117 32 16552 16563 10.1021/jp403750q
    [Google Scholar]
  99. Al Zoubi W. Al-Hamdani A.A.S. Ahmed S.D. Ko Y.G. Synthesis, characterization, and biological activity of Schiff bases metal complexes. J. Phys. Org. Chem. 2018 31 2 e3752 10.1002/poc.3752
    [Google Scholar]
  100. Patel K.S. Rinehart K.L. Bailar J.C. Mass spectral studies of Schiff’s bases and their metal complexes. Org. Mass Spectrom. 1970 4 S1 441 451 10.1002/oms.1210040145
    [Google Scholar]
  101. Błachut D. Danikiewicz W. Olejnik M. Czarnocki Z. Electron ionization mass spectrometry as a tool for the investigation of the ortho effect in fragmentation of some Schiff bases derived from amphetamine analogs. J. Mass Spectrom. 2004 39 8 966 972 10.1002/jms.633 15329849
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298326751241031103603
Loading
/content/journals/mroc/10.2174/0118756298326751241031103603
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: anil ; spectral characteristic ; [m+n] synthesis ; imine ; Schiff base ; imine isomerism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test