Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Catalytic transformations have been observed in every reaction to provide a specific product and to formulate regio and stereo-selective adducts in well-defined pathways. Among various catalytic processes used in current chemistry, tandem catalysis has been proven to be an effective technology by applying the technology for better and time-saving ways of production. It has shown its usability in various fields of research like organic reactions, inorganic salt extractions, isolation, and purification of intermediates, photoprotection of dye, pigment, and polymer chemistry, specifically in paint industries, biological sequencing and natural product chemistry. Ideally, it is a single molecule conversation to the desired product (beneficial to both research and industries) with many competing effects in spatial arrangement with almost no major equipment in operation. The advantages of tandem catalysis in the field of chemistry (Organic/Bio-chemistry/Polymer chemistry ) by utilizing the positive side is a newer way for energetic and favourable technology.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298288651240103062430
2024-01-30
2025-06-22
Loading full text...

Full text loading...

References

  1. LiaoH.H. HsiaoC.C. AtodireseiI. RuepingM. Multiple hydrogen‐bond activation in asymmetric brønsted acid catalysis.Chemistry201824307718772310.1002/chem.20180067729722908
    [Google Scholar]
  2. ArdevinesS. Marqués-LópezE. HerreraR.P. Horizons in asymmetric organocatalysis: en route to the sustainability and new applications.Catalysts202212110111410.3390/catal12010101
    [Google Scholar]
  3. NikoshviliL.Z. MatveevaV.G. Recent progress in Pd-catalyzed tandem processes.Catalysts2023138121310.3390/catal13081213
    [Google Scholar]
  4. CorpasJ. Gomez-MendozaM. Ramírez-CárdenasJ. de la Peña O’SheaV.A. MauleónP. Gómez ArrayásR. CarreteroJ.C. One-metal/two-ligand for dual activation tandem catalysis: Photoinduced cu-catalyzed anti-hydroboration of alkynes.J. Am. Chem. Soc.202214428130061301710.1021/jacs.2c0580535786909
    [Google Scholar]
  5. Melián-CabreraI. CatalyticM. Catalytic materials: Concepts to understand the pathway to implementation.Ind. Eng. Chem. Res.20216051185451855910.1021/acs.iecr.1c02681
    [Google Scholar]
  6. WeiM. KuangY. DuanZ. LiH. The crucial role of catalyst wettability for hydrogenation of biomass and carbon dioxide over heterogeneous catalysts.Cell Rep. Phys. Sci.20234510134010137010.1016/j.xcrp.2023.101340
    [Google Scholar]
  7. LohrT.L. MarksT.J. Orthogonal tandem catalysis.Nat. Chem.20157647748210.1038/nchem.226225991525
    [Google Scholar]
  8. UtkarshC. SenthilK. HridyaA. SaiP. HariharanV. MathewP. Vishal venkatarangan, velmurugan paramasivam, “complex nanomaterials in catalysis for chemically significant applications: From synthesis and hydrocarbon processing to renewable energy applications”.Adv. Mater. Sci. Eng.20222022172
    [Google Scholar]
  9. ZhaoY. ShuaishuaiZ. XiaojingL. XiaoyuZ. JingXu. BijinX. YongW. XingpingX. XiaolinX. Aluminum porphyrin complex mediated auto-tandem catalysis for one-pot synthesis of block copolymers.J. Chin. Chem. Soc.202241122131
    [Google Scholar]
  10. CamposJ.F. Berteina-RaboinS. Tandem catalysis: Synthesis of nitrogen-containing heterocycles.Catalysts202010663168410.3390/catal10060631
    [Google Scholar]
  11. SchnitzerT. VantommeG. Synthesis of complex molecular systems—the foreseen role of organic chemists.ACS Cent. Sci.20206112060207010.1021/acscentsci.0c0097433274282
    [Google Scholar]
  12. BrownD.G. BoströmJ. Analysis of past and present synthetic methodologies on medicinal chemistry: Where have all the new reactions gone?J. Med. Chem.201659104443445810.1021/acs.jmedchem.5b0140926571338
    [Google Scholar]
  13. TrowbridgeA. WaltonS.M. GauntM.J. MatthewJ. GauntG. New strategies for the transition-metal catalyzed synthesis of aliphatic amines.Chem. Rev.202012052613269210.1021/acs.chemrev.9b0046232064858
    [Google Scholar]
  14. FoggD.E. dos SantosE.N. Tandem catalysis: A taxonomy and illustrative review.Coord. Chem. Rev.200424821-242365237910.1016/j.ccr.2004.05.012
    [Google Scholar]
  15. WangS. ZhelavskyiO. LeeJ. ArgüellesA.J. KhomutnykY.Y. MensahE. GuoH. HouraniR. ZimmermanP.M. NagornyP. ZimmermanN. PavelN. Studies of catalyst-controlled regioselective acetalization and its application to single-pot synthesis of differentially protected saccharides.J. Am. Chem. Soc.202114344185921860410.1021/jacs.1c0844834705439
    [Google Scholar]
  16. LeeK. JingY. WangY. YanN. A unified view on catalytic conversion of biomass and waste plastics.Nat. Rev. Chem.20226963565210.1038/s41570‑022‑00411‑837117711
    [Google Scholar]
  17. HorbaczewskyjC.S. FairlambI.J.S. IanJ. FairlambS. Pd-catalyzed cross-couplings: On the importance of the catalyst quantity descriptors, mol % and ppm.Org. Process Res. Dev.20222682240226910.1021/acs.oprd.2c0005136032362
    [Google Scholar]
  18. SunbalA. AlamzebM. OmerM. AbidO.U.R. UllahM. SohailM. UllahI. Chemical insights into the synthetic chemistry of five-membered saturated heterocycles—a transition metal–catalyzed approach.Front Chem.202311111185669118569410.3389/fchem.2023.118566937564110
    [Google Scholar]
  19. AfewerkiS. EdlundU. Combined catalysis: A powerful strategy for engineering multifunctional sustainable lignin-based materials.ACS Nano20231787093710810.1021/acsnano.3c0043637014848
    [Google Scholar]
  20. HunterA.C. MoghimiS.M. Smart polymers in drug delivery: A biological perspective.Polym. Chem.201781415110.1039/C6PY00676K
    [Google Scholar]
  21. PrajapatiS.K. JainA. JainA. JainS. Biodegradable polymers and constructs: A novel approach in drug delivery.Eur. Polym. J.201912010919110920710.1016/j.eurpolymj.2019.08.018
    [Google Scholar]
  22. WangY. ZhaoH. Tandem reactions combining biocatalysts and chemical catalysts for asymmetric synthesis.Catalysts201661219422510.3390/catal6120194
    [Google Scholar]
  23. OmidvarM. ZdartaJ. SigurdardóttirS.B. PineloM. Mimicking natural strategies to create multi-environment enzymatic reactors: From natural cell compartments to artificial polyelectrolyte reactors.Biotechnol. Adv.20225410779810781410.1016/j.biotechadv.2021.10779834265377
    [Google Scholar]
  24. MartínezS. VethL. LainerB. DydioP. Challenges and opportunities in multicatalysis.ACS Catal.20211173891391510.1021/acscatal.0c05725
    [Google Scholar]
  25. RamanS.K. BruléE. TschanM.J.L. ThomasC.M. ChristopheM. Tandem catalysis: A new approach to polypeptides and cyclic carbonates.Chem. Commun.20145089137731377610.1039/C4CC05730A25251079
    [Google Scholar]
  26. ZhouZ. MaxeinerK. NgD.Y.W. WeilT. Polymer chemistry in living cells.Acc. Chem. Res.202255202998300910.1021/acs.accounts.2c0042036178462
    [Google Scholar]
  27. LiR. KongW. AnZ. Controlling radical polymerization with biocatalysts.Macromolecules202356375176110.1021/acs.macromol.2c02307
    [Google Scholar]
  28. YangM. QiH. LiuF. RenY. PanX. ZhangL. LiuX. WangH. PangJ. ZhengM. WangA. ZhangT. One-pot production of cellulosic ethanol via tandem catalysis over a multifunctional Mo/Pt/WOx catalyst.Joule2019381937194810.1016/j.joule.2019.05.020
    [Google Scholar]
  29. LohrT.L. LiZ. MarksT.J. Thermodynamic strategies for C–O bond formation and cleavage via tandem catalysis.Acc. Chem. Res.201649582483410.1021/acs.accounts.6b0006927078085
    [Google Scholar]
  30. ClimentM.J. CormaA. IborraS. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals.Chem. Rev.201111121072113310.1021/cr100208421105733
    [Google Scholar]
  31. SongH. WangP. LiS. DengW. LiY. ZhangQ. WangY. Direct conversion of cellulose into ethanol catalysed by a combination of tungstic acid and zirconia-supported Pt nanoparticles.Chem. Commun.201955304303430610.1039/C9CC00619B30829352
    [Google Scholar]
  32. LiC. XuG. WangC. MaL. QiaoY. ZhangY. FuY. One-pot chemocatalytic transformation of cellulose to ethanol over Ru-WO x /HZSM-5.Green Chem.20192192234223910.1039/C9GC00719A
    [Google Scholar]
  33. YangC. ZhangF. LeiN. YangM. LiuF. MiaoZ. SunY. ZhaoX. WangA. Understanding the promotional effect of Au on Pt/WO 3 in hydrogenolysis of glycerol to 1,3-propanediol.Chin. J. Catal.20183981366137210.1016/S1872‑2067(18)63103‑1
    [Google Scholar]
  34. WangJ. LeiN. YangC. SuY. ZhaoX. WangA. Effect of promoters on the selective hydrogenolysis of glycerol over Pt/W-containing catalysts.Chin. J. Catal.20163791513151910.1016/S1872‑2067(16)62479‑8
    [Google Scholar]
  35. GuangyongX. XiangZ. TingchengL. LongL. GongyiL. AiqingZ. Preparation of linear low-density polyethylene from ethylene by tandem catalysis of iron and titanium non-metallocene catalysts.J. Mol. Catal. Chem.2014383121127
    [Google Scholar]
  36. (a VittoriaA. UrciuoliG. CostanzoS. TammaroD. CannavacciuoloF.D. PasquinoR. CipulloR. AuriemmaF. GrizzutiN. MaffettoneP.L. BusicoV. Extending the high-throughput experimentation (HTE) approach to catalytic olefin polymerizations: From catalysts to materials.Macromolecules202255125017502610.1021/acs.macromol.2c00813
    [Google Scholar]
  37. (b AluthgeD.C. SattlerA. Al-HarthiM.A. LabingerJ.A. BercawJ.E. LabingerE. BercawJ. Cosupported tandem catalysts for production of linear low-density polyethylene from an ethylene-only feed.ACS Catal.20166106581658410.1021/acscatal.6b02370
    [Google Scholar]
  38. (a LiJ. LiJ. HeR. LiuJ. LiuY. ChenL. HuangY. LiY. Selective synthesis of substituted pyridines and pyrimidines through cascade annulation of isopropene derivatives.Org. Lett.20222481620162510.1021/acs.orglett.2c0012435194989
    [Google Scholar]
  39. (b SchröderK. MatyjaszewskiK. NoonanK.J.T. MathersR.T. RobertT. MathersK. Towards sustainable polymer chemistry with homogeneous metal-based catalysts.Green Chem.20141641673168610.1039/C3GC42159G
    [Google Scholar]
  40. ČamdžićL. StacheE.E. Controlled radical polymerization of acrylates and isocyanides installs degradable functionality into novel copolymers.J. Am. Chem. Soc.202314537203112031810.1021/jacs.3c0459537669233
    [Google Scholar]
  41. ChenC. Designing catalysts for olefin polymerization and copolymerization: Beyond electronic and steric tuning.Nat. Rev. Chem.20182561410.1038/s41570‑018‑0003‑0
    [Google Scholar]
  42. ChuY.K. HuX.Q. ZhangY. LiuD-J. ZhangY-X. JianZ-B. Influence of backbone and axial substituent of catalyst on α-imino-ketone nickel mediated ethylene (Co)polymerization.Chin. J. Polym. Sci.202240546947710.1007/s10118‑022‑2691‑7
    [Google Scholar]
  43. ChenX.L. GaoJ. LiaoH. GaoH-Y. WuQ. Synthesis, characterization, and catalytic ethylene oligomerization of pyridine-imine palladium complexes.Chin. J. Polym. Sci.201836217618410.1007/s10118‑018‑2052‑8
    [Google Scholar]
  44. XieG. LiuG. LiL. LiT. ZhangA. FengJ. AiqingF. FengJ. Tandem catalysis of iron and titanium non-metallocene catalysts for the production of branched polyethylene.Catal. Commun.20144571010.1016/j.catcom.2013.10.029
    [Google Scholar]
  45. AtashrouzS. RahmaniM. NasernejadB. BalzadeZ. Kinetic prediction of molecular weight distribution in bimodal polyethylene from heterogeneous post-metallocene catalysis.Mater. Chem. Phys.202025512346612348210.1016/j.matchemphys.2020.123466
    [Google Scholar]
  46. WeiW. ThakurV.K. LiS. ChianellaI. Self-switchable polymer reactor with PNIPAM-PAm smart switch capable of tandem/simple catalysis.Polymer202123512426512427910.1016/j.polymer.2021.124265
    [Google Scholar]
  47. SiG. QiM. TanC. ChenC. Tandem catalysts combining polymer synthesis, postpolymerization modification, and vitrimer formation.Macromolecules202154136153616010.1021/acs.macromol.1c00716
    [Google Scholar]
  48. FogelM.S. KoideK. Recent progress on one-pot multisubstrate screening.Org. Process Res. Dev.20232771235124710.1021/acs.oprd.3c0012837529075
    [Google Scholar]
  49. HayashiY. Pot economy and one-pot synthesis.Chem. Sci.20167286688010.1039/C5SC02913A28791118
    [Google Scholar]
  50. RodenasT. PrietoG. Solid single‐atom catalysts in tandem catalysis: Lookout, opportunities and challenges.ChemCatChem20221423e20220105810.1002/cctc.20220105837063812
    [Google Scholar]
  51. MataJ.A. HahnF.E. PerisE. Heterometallic complexes, tandem catalysis and catalytic cooperativity.Chem. Sci.2014551723173210.1039/C3SC53126K
    [Google Scholar]
  52. DehuryN. MaityN. TripathyS.K. BassetJ.M. PatraS. Dinuclear tetrapyrazolyl palladium complexes exhibiting facile tandem transfer hydrogenation/suzuki coupling reaction of fluoroarylketone.ACS Catal.2016685535554010.1021/acscatal.6b01421
    [Google Scholar]
  53. SinghP. MishraS. SahooA. PatraS. A magnetically retrievable mixed-valent Fe3O4@SiO2/Pd0/PdII nanocomposite exhibiting facile tandem Suzuki coupling/transfer hydrogenation reaction.Sci. Rep.20211119305931610.1038/s41598‑021‑88528‑633927246
    [Google Scholar]
  54. SmithA.T. LaChanceA.M. ZengS. LiuB. SunL. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites.Nano Mater. Sci.201911314710.1016/j.nanoms.2019.02.004
    [Google Scholar]
  55. MoarefR. PourmahdianS. ZahediF. TehranchiM.M. Synthesis and characterization of nearly monodisperse superparamagnetic (Fe3O4/Poly(methyl methacrylate))-SiO2 nanoparticles with raspberry-like morphology.Polym. Compos.202230112
    [Google Scholar]
  56. Bahrami ReyhanS. AlaviS.M. SoudbarD. Investigation of catalytic reaction of ethylene dimerization to butene-1 by use of DCPDS as a modifier based on response surface methodology.Heliyon2023910e2048110.1016/j.heliyon.2023.e2048137822619
    [Google Scholar]
  57. Kord ForooshaniP. LeeB.P. Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein.J. Polym. Sci. A Polym. Chem.201755193310.1002/pola.2836827917020
    [Google Scholar]
  58. SunM. XiaoY. LiuK. YangX. LiuP. JieS. HuJ. ShiS. WangQ. LimK.H. LiuZ. LiB.G. WangW.J. Synthesis and characterization of polyolefin thermoplastic elastomers: A review.Can. J. Chem. Eng.202310194886490610.1002/cjce.24825
    [Google Scholar]
  59. ZhangH. QuanL. GaoA. TongY. ShiF. XuL. Thermal analysis and crystal structure of poly(acrylonitrile-co-itaconic acid) copolymers synthesized in water.Polymers202012122123510.3390/polym1201022131963164
    [Google Scholar]
  60. XuW. ZengM-T. LiuS.S. LiY.S. DongZ.B. Copper catalyzed synthesis of benzoxazoles and benzothiazoles via tandem manner.Tetrahedron Lett.201758454289429210.1016/j.tetlet.2017.09.089
    [Google Scholar]
  61. Nda-UmarU. RamliI. Taufiq-YapY. MuhamadE. An overview of recent research in the conversion of glycerol into biofuels, fuel additives and other bio-based chemicals.Catalysts201891156210.3390/catal9010015
    [Google Scholar]
  62. SamudralaS.P. KandasamyS. BhattacharyaS. One-pot synthesis of bio-fuel additives from glycerol and benzyl alcohol: Mesoporous MCM-41 supported iron (III) chloride as a highly efficient tandem catalyst.Renew. Energy202015688389210.1016/j.renene.2020.04.111
    [Google Scholar]
  63. JankowskaA. ChłopekA. KowalczykA. RutkowskaM. MichalikM. LiuS. ChmielarzL. Catalytic performance of spherical MCM-41 modified with copper and iron as catalysts of NH3-SCR process.Molecules20202523565110.3390/molecules2523565133266178
    [Google Scholar]
  64. ZhangW. MengC. LiuY. TangY. LiF. Auto‐tandem catalysis with ruthenium: From o ‐aminobenzamides and allylic alcohols to quinazolinones via redox isomerization/acceptorless dehydrogenation.Adv. Synth. Catal.2018360193751375910.1002/adsc.201800660
    [Google Scholar]
  65. WuX. CruzF.A. LuA. DongV.M. Tandem catalysis: Transforming alcohols to alkenes by oxidative dehydroxymethylation.J. Am. Chem. Soc.201814032101261013010.1021/jacs.8b0606930084247
    [Google Scholar]
  66. XieM. LiuX. ZhuY. ZhaoX. XiaY. LinL. FengX. Asymmetric synthesis of tetrahydroquinolines with quaternary stereocenters through the povarov reaction.Chemistry20111749138001380510.1002/chem.20110233322083970
    [Google Scholar]
  67. ParkerP.D. HouX. DongV.M. Reducing challenges in organic synthesis with stereoselective hydrogenation and tandem catalysis.J. Am. Chem. Soc.2021143186724674510.1021/jacs.1c0075033891819
    [Google Scholar]
  68. LiuY. DiaoH. HongG. EdwardJ. ZhangT. YangG. YangB.M. ZhaoY. Iridium-catalyzed enantioconvergent borrowing hydrogen annulation of racemic 1,4-diols with amines.J. Am. Chem. Soc.202314595007501610.1021/jacs.2c0995836802615
    [Google Scholar]
  69. ChenT. LiuW. GuW. NiuS. LanS. ZhaoZ. GongF. LiuJ. YangS. CotmanA.E. SongJ. FangX. Dynamic kinetic resolution of β-substituted α-diketones via asymmetric transfer hydrogenation.J. Am. Chem. Soc.2023145158559910.1021/jacs.2c1114936563320
    [Google Scholar]
  70. AdamsJ.P. BrownM.J.B. Diaz-RodriguezA. LloydR.C. RoibanG.D. Biocatalysis: A pharma perspective.Adv. Synth. Catal.2019361112421243210.1002/adsc.201900424
    [Google Scholar]
  71. KinnerA. NerkeP. SiedentopR. SteinmetzT. ClassenT. RosenthalK. NettM. PietruszkaJ. LützS. Recent advances in biocatalysis for drug synthesis.Biomedicines202210596498910.3390/biomedicines1005096435625702
    [Google Scholar]
  72. VerhoO. BäckvallJ.E. Chemoenzymatic dynamic kinetic resolution: A powerful tool for the preparation of enantiomerically pure alcohols and amines.J. Am. Chem. Soc.2015137123996400910.1021/jacs.5b0103125730714
    [Google Scholar]
  73. NakanoK. KitamuraM. Dynamic kinetic resolution (DKR).Separation of Enantiomers. M. Todd2014161216
    [Google Scholar]
  74. ChenZ. AotaY. NguyenH.M.H. DongV.M. Dynamic kinetic resolution of aldehydes by hydroacylation.Angew. Chem. Int. Ed.201958144705470910.1002/anie.20190054530740841
    [Google Scholar]
  75. YuntingL. PengboL. ShiqiG. ZihanW. PengqianL. JavierG. YanjunJ. Construction of chemoenzymatic cascade reactions for bridging chemocatalysis and biocatalysis: Principles, strategies and prospective.Chem. Eng. J.20214202127659127723
    [Google Scholar]
  76. Ríos-LombardíaN. Rodríguez-ÁlvarezM.J. MorísF. KouristR. CominoN. López-GallegoF. González-SabínJ. García-ÁlvarezJ. Design of sustainable one-pot chemoenzymatic organic transformations in deep eutectic solvents for the synthesis of 1,2-disubstituted aromatic olefins.Front. Chem.2020813913910.3389/fchem.2020.0013932211377
    [Google Scholar]
  77. JúniorA.A.T. LadeiraY.F.X. FrançaA.S. SouzaR.O.M.A. MoraesA.H. WojcieszakR. ItabaianaI.Jr MirandaA.S. Multicatalytic hybrid materials for biocatalytic and chemoenzymatic cascades—strategies for multicatalyst (Enzyme) co-immobilization.Catalysts202111893697110.3390/catal11080936
    [Google Scholar]
  78. WinklerC.K. SchrittwieserJ.H. KroutilW. WolfgangK. Power of biocatalysis for organic synthesis.ACS Cent. Sci.202171557110.1021/acscentsci.0c0149633532569
    [Google Scholar]
  79. WangY. RenH. ZhaoH. Expanding the boundary of biocatalysis: design and optimization of in vitro tandem catalytic reactions for biochemical production.Crit. Rev. Biochem. Mol. Biol.201853211512910.1080/10409238.2018.143120129411648
    [Google Scholar]
  80. KronK.J. Rodriguez-KatakuraA. ElhessenR. Mallikarjun SharadaS. Photoredox chemistry with organic catalysts: Role of computational methods.ACS Omega2021649332533326410.1021/acsomega.1c0578734926877
    [Google Scholar]
  81. SchwochertT.D. CruzC.L. WattersJ.W. ReynoldsE.W. NicewiczD.A. BrustadE.M. Design and evaluation of artificial hybrid photoredox biocatalysts.ChemBioChem202021213146315010.1002/cbic.20200036232529779
    [Google Scholar]
  82. TranN.H. HuynhN. ChavezG. NguyenA. DwaraknathS. NguyenT.A. NguyenM. CheruzelL. A series of hybrid P450 BM3 enzymes with different catalytic activity in the light-initiated hydroxylation of lauric acid.J. Inorg. Biochem.2012115505610.1016/j.jinorgbio.2012.05.01222922311
    [Google Scholar]
  83. NastriF. ChinoM. MaglioO. Bhagi-DamodaranA. LuY. LombardiA. Design and engineering of artificial oxygen-activating metalloenzymes.Chem. Soc. Rev.201645185020505410.1039/C5CS00923E27341693
    [Google Scholar]
  84. KeyH.M. DydioP. ClarkD.S. HartwigJ.F. Abiological catalysis by artificial haem proteins containing noble metals in place of iron.Nature2016534760853453710.1038/nature1796827296224
    [Google Scholar]
  85. EllisG.A. KleinW.P. Lasarte-AragonésG. ThakurM. WalperS.A. MedintzI.L. Artificial multienzyme scaffolds: Pursuing in vitro substrate channeling with an overview of current progress.ACS Catal.2019912108121086910.1021/acscatal.9b02413
    [Google Scholar]
  86. SirasaniG. TongL. BalskusE.P. A biocompatible alkene hydrogenation merges organic synthesis with microbial metabolism.Angew. Chem. Int. Ed.201453307785778810.1002/anie.20140314824916924
    [Google Scholar]
  87. ShwetaJ. KeerthiP. RonldJ. NagarajP. TejrajM. Recent advances and viability in biofuel production.Energy Convers. Manage.202110100070100087
    [Google Scholar]
  88. MullinsL. SullivanJ.A. Synthesis of a sustainable cellulose-derived biofuel through a 1-pot, 2-catalyst tandem reaction.Top. Catal.20206315-181434144510.1007/s11244‑020‑01252‑9
    [Google Scholar]
  89. LeeK. CorriganN. BoyerC. Polymerization induced microphase separation for the fabrication of nanostructured materials.Angew. Chem. Int. Ed.20236244e20230732910.1002/anie.20230732937429822
    [Google Scholar]
  90. LiuK. CorriganN. PostmaA. MoadG. BoyerC. A comprehensive platform for the design and synthesis of polymer molecular weight distributions.Macromolecules202053208867888210.1021/acs.macromol.0c01954
    [Google Scholar]
  91. AlperE. Yuksel OrhanO. CO2 utilization: Developments in conversion processes.Petroleum20173110912610.1016/j.petlm.2016.11.003
    [Google Scholar]
  92. PeterS.C. Reduction of CO2 to chemicals and fuels: A solution to global warming and energy crisis.ACS Energy Lett.2018371557156110.1021/acsenergylett.8b00878
    [Google Scholar]
  93. BurekB.O. DawoodA.W.H. HollmannF. LieseA. HoltmannD. Process intensification as game changer in enzyme catalysis.Front. catal.2022285870685871510.3389/fctls.2022.858706
    [Google Scholar]
  94. Fernandez RivasD. CintasP. On an intensification factor for green chemistry and engineering: The value of an operationally simple decision-making tool in process assessment.Sustain. Chem. Pharm.20222710065110067910.1016/j.scp.2022.100651
    [Google Scholar]
  95. GaoP. LiS. BuX. DangS. LiuZ. WangH. ZhongL. QiuM. YangC. CaiJ. WeiW. SunY. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst.Nat. Chem.20179101019102410.1038/nchem.279428937667
    [Google Scholar]
  96. LiuJ. GoetjenT.A. WangQ. KnappJ.G. WassonM.C. YangY. SyedZ.H. DelferroM. NotesteinJ.M. FarhaO.K. HuppJ.T. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization.Chem. Soc. Rev.20225131045109710.1039/D1CS00968K35005751
    [Google Scholar]
  97. ZhangY. HuangC. MiL. Metal–organic frameworks as acid- and/or base-functionalized catalysts for tandem reactions.Dalton Trans.20204942147231473010.1039/D0DT03025B33047777
    [Google Scholar]
  98. QinQ. WangD. ShaoZ. ZhangY. ZhangQ. LiX. HuangC. MiL. Sequentially regulating the structural transformation of copper metal–organic frameworks (Cu-MOFs) for controlling site-selective reaction.ACS Appl. Mater. Interfaces20221432368453685410.1021/acsami.2c0929035938901
    [Google Scholar]
  99. YangH. ChenY. DangC. HongA.N. FengP. BuX. Optimization of pore-space-partitioned metal–organic frameworks using the bioisosteric concept.J. Am. Chem. Soc.202214444202212022610.1021/jacs.2c0934936305830
    [Google Scholar]
  100. ChughtaiA.H. AhmadN. YounusH.A. LaypkovA. VerpoortF. Metal–organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations.Chem. Soc. Rev.201544196804684910.1039/C4CS00395K25958955
    [Google Scholar]
  101. GamboY. AdamuS. LuckyR.A. Ba-ShammakhM.S. HossainM.M. Tandem catalysis: A sustainable alternative for direct hydrogenation of CO2 to light olefins.Appl. Catal. A Gen.202264111865811866510.1016/j.apcata.2022.118658
    [Google Scholar]
  102. ZengL. CaoY. LiZ. DaiY. WangY. AnB. ZhangJ. LiH. ZhouY. LinW. WangC. Multiple cuprous centers supported on a titanium-based metal–organic framework catalyze CO 2 hydrogenation to ethylene.ACS Catal.20211118116961170510.1021/acscatal.1c01939
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298288651240103062430
Loading
/content/journals/mroc/10.2174/0118756298288651240103062430
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test