Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Cyclodepsipeptides, mainly derived from marine organisms and soil microorganisms, are amphiphilic molecules consisting of short oligopeptides with fatty acid tails attached to form a macrocyclic structure. Studies on the activity of cyclodepsipeptides have shown that they have cytotoxicity, antibacterial and anthelmintic effects, and are widely used in biological control, drug development, environmental remediation and disease treatment. Cyclodepsipeptides play a prominent role in the development of new drugs and drug lead compounds, especially as antibiotics with great medicinal potentiall, and are slowly seeping into the public consciousness. The biosynthesis of cyclodepsipeptides is mainly based on the synthesis of non-ribosomal peptide synthases, and selection of key regulatory enzymes for homologue regulation and biosynthetic strategies using genetic engineering and metabolic engineering approaches. The biosynthesis method is miniaturised, recyclable, and safer. The total synthesis methods of cyclodepsipeptides are mainly combined solid-liquid phase methods, which synthesise cyclodepsipeptides faster and are easy to purify. This paper reviews the biological activities of cyclodepsipeptides, their biosynthesis, and total synthesis.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298284383240110080227
2024-02-21
2025-05-22
Loading full text...

Full text loading...

References

  1. ConradoR. GomesT.C. RoqueG.S.C. De SouzaA.O. Overview of bioactive fungal secondary metabolites: Cytotoxic and antimicrobial compounds.Antibiotics20221111160410.3390/antibiotics1111160436421247
    [Google Scholar]
  2. ZhaoY. CartabiaA. LalaymiaI. DeclerckS. Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants.Mycorrhiza2022323-422125610.1007/s00572‑022‑01079‑035556179
    [Google Scholar]
  3. TeymuriM. Shams-GhahfarokhiM. Razzaghi-AbyanehM. Inhibitory effects and mechanism of antifungal action of the natural cyclic depsipeptide, aureobasidin A against Cryptococcus neoformans.Bioorg. Med. Chem. Lett.20214112801310.1016/j.bmcl.2021.12801333811994
    [Google Scholar]
  4. WangY. LaiY.S. ZhangY.H. Advances in the research on synthesis and bioactivity of cyclic peptide.Pro Pharm Sci.200810440446
    [Google Scholar]
  5. LiuS.X. Ou-YangS.Y. LuY.F. GuoC.L. DaiS.Y. LiC. YuT.Y. PeiY.H. Recent advances on cyclodepsipeptides: Biologically active compounds for drug research.Front. Microbiol.202314127692810.3389/fmicb.2023.127692837849925
    [Google Scholar]
  6. RibeiroR. PintoE. FernandesC. SousaE. Marine cyclic peptides: Antimicrobial activity and synthetic strategies.Mar. Drugs202220639710.3390/md2006039735736200
    [Google Scholar]
  7. KöcherS. ReschS. KessenbrockT. SchrappL. EhrmannM. KaiserM. From dolastatin 13 to cyanopeptolins, micropeptins, and lyngbyastatins: the chemical biology of Ahp-cyclodepsipeptides.Nat. Prod. Rep.202037216317410.1039/C9NP00033J31451830
    [Google Scholar]
  8. DongW.B. Research progress in natural APD-containing cyclic depsipeptide products.Int J Biologicals.201841630630910.3760/cma.j.issn.1673‑4211.2018.06.011
    [Google Scholar]
  9. BenzF. KnüselF. NüeschJ. TreichlerH. VoserW. NyfelerR. Keller-SchierleinW. Stoffwechselprodukte von Mikroorganismen 143. Mitteilung. Echinocandin B, ein neuartiges Polypeptid‐Antibioticum aus Aspergillus nidulans var. echinulatus : Isolierung und Bausteine.Helv. Chim. Acta19745782459247710.1002/hlca.197405708184613708
    [Google Scholar]
  10. MichonS. CavelierF. Salom-RoigX.J. Synthesis and biological activities of cyclodepsipeptides of aurilide family from marine origin.Mar. Drugs20211925510.3390/md1902005533498789
    [Google Scholar]
  11. SchneiderT. MüllerA. MiessH. GrossH. Cyclic lipopeptides as antibacterial agents – Potent antibiotic activity mediated by intriguing mode of actions.Int. J. Med. Microbiol.20143041374310.1016/j.ijmm.2013.08.00924119568
    [Google Scholar]
  12. ChengZ.G. LiL.M. LvY.N. Advances in solid-phase cyclization strategies for cyclic peptides.Pharm. Biotechnol.2021280664164710.19526/j.cnki.1005‑8915.20210619
    [Google Scholar]
  13. WangX.J. Yang.L. ChenL.G. Total synthesis of natural cyclic depsipetide-obyanamide. J. Org. Chem.20070810071012
    [Google Scholar]
  14. WangY. LaiY.S. ZhangY.H. Advances in the research on synthesis and bioactivity of cyclic peptides.Prog Pharm Sci.200810440446
    [Google Scholar]
  15. GeJ.A. LiuC. GongJ.G. LiuY.Q. Progress in the study of antimicrobial cyclic peptides.Chin. J. Biotechnol.20183811768310.13523/j.cb.20181110
    [Google Scholar]
  16. HuangY. LiJ. ChenS. LiuW. WuM. ZhuD. XieY. [Advances in the biosynthesis of cyclodipeptide type natural products derived from actinomycetes].Chin. J. Biotechnol.202339114497451638013180
    [Google Scholar]
  17. WangC. XuY. [Advances in engineering non-ribosomal peptide synthetase].Chin. J. Biotechnol.20213761845185734227280
    [Google Scholar]
  18. UeokaR. BhushanA. ProbstS.I. BrayW.M. LokeyR.S. LiningtonR.G. PielJ. Genome‐based identification of a plant‐associated marine bacterium as a rich natural product source.Angew. Chem. Int. Ed.20185744145191452310.1002/anie.20180567330025185
    [Google Scholar]
  19. MondalJ. SarkarR. SenP. GoswamiR.K. Total synthesis and stereochemical assignment of sunshinamide and its anticancer activity.Org. Lett.20202231188119210.1021/acs.orglett.0c0007031965806
    [Google Scholar]
  20. WangY.J. LiuC.Y. WangY.L. ZhangF.X. LuY.F. DaiS.Y. LiC. SunY. PeiY.H. Cytotoxic cyclodepsipeptides and cyclopentane derivatives from a plant-associated fungus Fusarium sp.J. Nat. Prod.202285112592260210.1021/acs.jnatprod.2c0055536288556
    [Google Scholar]
  21. LiuZ. SunY. TangM. SunP. WangA. HaoY. WangY. PeiY. Trichodestruxins A–D: Cytotoxic cyclodepsipeptides from the endophytic fungus Trichoderma harzianum.J. Nat. Prod.202083123635364110.1021/acs.jnatprod.0c0080833301677
    [Google Scholar]
  22. MedinaR.A. GoegerD.E. HillsP. MooberryS.L. HuangN. RomeroL.I. Ortega-BarríaE. GerwickW.H. McPhailK.L. Coibamide A, a potent antiproliferative cyclic depsipeptide from the Panamanian marine cyanobacterium Leptolyngbya sp.J. Am. Chem. Soc.2008130206324632510.1021/ja801383f18444611
    [Google Scholar]
  23. HauA.M. GreenwoodJ.A. LöhrC.V. SerrillJ.D. ProteauP.J. GanleyI.G. McPhailK.L. IshmaelJ.E. Coibamide A induces mTOR-independent autophagy and cell death in human glioblastoma cells.PLoS One201386e6525010.1371/journal.pone.006525023762328
    [Google Scholar]
  24. WuC. ChengZ. LuD. LiuK. ChengY. WangP. ZhouY. LiM. ShaoX. LiH. SuW. FangL. Novel N -methylated cyclodepsipeptide prodrugs for targeted cancer therapy.J. Med. Chem.2021642991100010.1021/acs.jmedchem.0c0138733417771
    [Google Scholar]
  25. ShiW. LuD. WuC. LiM. DingZ. LiY. ChenB. LinX. SuW. ShaoX. XiaZ. FangL. LiuK. LiH. Coibamide A kills cancer cells through inhibiting autophagy.Biochem. Biophys. Res. Commun.2021547525810.1016/j.bbrc.2021.01.11233592379
    [Google Scholar]
  26. LueschH. YoshidaW.Y. MooreR.E. PaulV.J. CorbettT.H. Total structure determination of apratoxin A, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscula.J. Am. Chem. Soc.2001123235418542310.1021/ja010453j11389621
    [Google Scholar]
  27. ZhangW. LiuG. YinR. LiY. Research progress of apratoxin A:A marine cyclicdepsipeptide with significant anti-cancer activity.Youji Huaxue201434347548410.6023/cjoc201310033
    [Google Scholar]
  28. PaateroA.O. KellosaloJ. DunyakB.M. AlmalitiJ. GestwickiJ.E. GerwickW.H. TauntonJ. PaavilainenV.O. Apratoxin kills cells by direct blockade of the sec61 protein translocation channel.Cell Chem. Biol.201623556156610.1016/j.chembiol.2016.04.00827203376
    [Google Scholar]
  29. TorresJ.P. LinZ. FentonD.S. LeavittL.U. NiuC. LamP.Y. RobesJ.M. PetersonR.T. ConcepcionG.P. HaygoodM.G. OliveraB.M. SchmidtE.W. Boholamide A, an APD-class, hypoxia-selective cyclodepsipeptide.J. Nat. Prod.20208341249125710.1021/acs.jnatprod.0c0003832186874
    [Google Scholar]
  30. JacobsenK.M. VilladsenN.L. TørringT. NielsenC.B. SalomónT. NielsenM.M. TsakosM. SibbersenC. ScaveniusC. NielsenR. ChristensenE.I. GuerraP.F. BrossP. PedersenJ.S. EnghildJ.J. JohannsenM. FrøkiærJ. OvergaardJ. HorsmanM.R. BuskM. PoulsenT. B. Cyclolipodepsipeptides target mitochondrial function in hypoxic cancer cells.Cell Chem Biol.2018251113371349,e12.10.1016/j.chembiol.2018.07.010
    [Google Scholar]
  31. MonteithG.R. DavisF.M. Roberts-ThomsonS.J. Calcium channels and pumps in cancer: Changes and consequences.J. Biol. Chem.201228738316663167310.1074/jbc.R112.34306122822055
    [Google Scholar]
  32. TerraccianoS. BrunoI. D’AmicoE. BifulcoG. ZampellaA. SepeV. SmithC.D. RiccioR. Synthetic and pharmacological studies on new simplified analogues of the potent actin-targeting Jaspamide.Bioorg. Med. Chem.200816136580658810.1016/j.bmc.2008.05.01918508272
    [Google Scholar]
  33. ZhouH. CongB. TianY. HeY. YangH. Characterization of novel cyclic lipopeptides produced by Bacillus sp. SY27F.Process Biochem.2019838320621310.1016/j.procbio.2019.04.015
    [Google Scholar]
  34. RouthuS.R. Nagarjuna CharyR. ShaikA.B. PrabhakarS. GaneshK.C. KamalA. Induction of apoptosis in lung carcinoma cells by antiproliferative cyclic lipopeptides from marine algicolous isolate Bacillus atrophaeus strain AKLSR1.Process Biochem.2019797914215410.1016/j.procbio.2018.12.010
    [Google Scholar]
  35. LuoD. PutraM. YeT. PaulV. LueschH. Isolation, structure elucidation and biological evaluation of lagunamide D: A new cytotoxic macrocyclic depsipeptide from marine cyanobacteria.Mar. Drugs20191728310.3390/md1702008330717076
    [Google Scholar]
  36. LuoD. RatnayakeR. AtanasovaK.R. PaulV.J. LueschH. Targeted and functional genomics approaches to the mechanism of action of lagunamide D, a mitochondrial cytotoxin from marine cyanobacteria.Biochem. Pharmacol.202321311560810.1016/j.bcp.2023.11560837201874
    [Google Scholar]
  37. LingL.L. SchneiderT. PeoplesA.J. SpoeringA.L. EngelsI. ConlonB.P. MuellerA. SchäberleT.F. HughesD.E. EpsteinS. JonesM. LazaridesL. SteadmanV.A. CohenD.R. FelixC.R. FettermanK.A. MillettW.P. NittiA.G. ZulloA.M. ChenC. LewisK. A new antibiotic kills pathogens without detectable resistance.Nature2015517753545545910.1038/nature1409825561178
    [Google Scholar]
  38. YangH. WierzbickiM. Du BoisD.R. NowickJ.S. X-ray crystallographic structure of a teixobactin derivative reveals amyloid-like assembly.J. Am. Chem. Soc.201814043140281403210.1021/jacs.8b0770930296063
    [Google Scholar]
  39. GuoC. MandalapuD. JiX. GaoJ. ZhangQ. Chemistry and biology of teixobactin.Chemistry201824215406542210.1002/chem.20170416728991382
    [Google Scholar]
  40. LiangM. LyuH.N. MaZ.Y. LiE.W. CaiL. YinW.B. Genomics-driven discovery of a new cyclodepsipeptide from the guanophilic fungus Amphichorda guana.Org. Biomol. Chem.20211991960196410.1039/D1OB00100K33599675
    [Google Scholar]
  41. ZhangL. WangY. HuangW. WeiY. JiangZ. KongL. WuA. HuZ. HuangH. XuQ. LiL. DengX. Biosynthesis and chemical diversification of verucopeptin leads to structural and functional versatility.Org. Lett.202022114366437110.1021/acs.orglett.0c0138732459492
    [Google Scholar]
  42. SunC. YangZ. ZhangC. LiuZ. HeJ. LiuQ. ZhangT. JuJ. MaJ. Genome mining of Streptomyces atratus SCSIO ZH16: Discovery of atratumycin and identification of its biosynthetic gene cluster.Org. Lett.20192151453145710.1021/acs.orglett.9b0020830746943
    [Google Scholar]
  43. LiuQ. LiuZ. SunC. ShaoM. MaJ. WeiX. ZhangT. LiW. JuJ. Discovery and biosynthesis of atrovimycin, an antitubercular and antifungal cyclodepsipeptide featuring vicinal-dihydroxylated cinnamic acyl chain.Org. Lett.20192182634263810.1021/acs.orglett.9b0061830958008
    [Google Scholar]
  44. BaiM. ZhongZ.J. LiX.J. PengY.H. XuL.X. Secondary metabolites of endophytic Fusarium sporotrichioides SC1608 from Eichhornia crassipes. Junwu Xuebao202140123223910.13346/j.mycosystema.200224
    [Google Scholar]
  45. GongA.D. LiH.P. YuanQ.S. SongX.S. YaoW. HeW.J. ZhangJ.B. LiaoY.C. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum.PLoS One2015102e011687110.1371/journal.pone.011687125689464
    [Google Scholar]
  46. ZhaoX. ZhouL. XuX. AiC. ZhaoP. YanL. JiangC. ShiJ. Recovery of Ag+ by cyclic lipopeptide iturin A and corresponding chain peptide: reaction mechanisms, kinetics, toxicity reduction, and applications.Sci. Total Environ.202176314298810.1016/j.scitotenv.2020.14298833129541
    [Google Scholar]
  47. ShanM.Y. MengF.Q. ZhouL.B. LuF.X. BieX.M. ZhaoH.Z. LuZ.X. Surfactin inhibits the growth of Propionibacterium acnes by destroying the cell wall and membrane.Lett. Appl. Microbiol.202173668469310.1111/lam.1357634607389
    [Google Scholar]
  48. ChenX. LuY. ShanM. ZhaoH. LuZ. LuY. A mini-review: Mechanism of antimicrobial action and application of surfactin.World J. Microbiol. Biotechnol.202238814310.1007/s11274‑022‑03323‑335718798
    [Google Scholar]
  49. ZhangL. SunC. Fengycins, cyclic lipopeptides from marine bacillus subtilis strains, kill the plant-pathogenic fungus magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation.Appl. Environ. Microbiol.20188418e00445-1810.1128/AEM.00445‑1829980550
    [Google Scholar]
  50. BieX. LuZ. LuF. Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID.J. Microbiol. Methods200979327227810.1016/j.mimet.2009.09.01319781583
    [Google Scholar]
  51. JinQ. XiaoM. Novel antimicrobial peptides: Surfactin, iturin and fengycin.J Microb. Infect.20181315664
    [Google Scholar]
  52. ZhuH.J. WuS.L. TangS.J. XuJ. HeY.L. RenZ.H. LiuE. Isolation, identification and characterization of biopotential cyclic lipopeptides from Bacillus subtilis strain JN005 and its antifungal activity against rice pathogen Magnaporthe oryzae.Biol. Control.202318210524110.1016/j.biocontrol.2023.105241
    [Google Scholar]
  53. LiuJ. LiuM. WangJ. YaoJ.M. PanR.R. YuZ.L. Enhancement of the Gibberella zeae growth inhibitory lipopeptides from a Bacillus subtilis mutant by ion beam implantation.Appl. Microbiol. Biotechnol.200569222322810.1007/s00253‑005‑1981‑715838674
    [Google Scholar]
  54. ChengW. RenJ. JingD. WangC. WangC. Anti-tumor role of Bacillus subtilis fmbJ-derived fengycin on human colon cancer HT29 cell line.Neoplasma201663221522210.4149/206_150518N27026774143
    [Google Scholar]
  55. TawfikK.A. JeffsP. BrayB. DubayG. FalkinhamJ.O.III MesbahM. YoussefD. KhalifaS. SchmidtE.W. Burkholdines 1097 and 1229, potent antifungal peptides from Burkholderia ambifaria 2.2N.Org. Lett.201012466466610.1021/ol902926920085289
    [Google Scholar]
  56. KonnoH. OtsukiY. MatsuzakiK. NosakaK. Synthesis and antifungal activities of cyclic octa-lipopeptide burkholdine analogues.Bioorg. Med. Chem. Lett.201323144244424710.1016/j.bmcl.2013.04.09123769641
    [Google Scholar]
  57. ViehrigK. SurupF. HarmrolfsK. JansenR. KunzeB. MüllerR. Concerted action of P450 plus helper protein to form the amino-hydroxy-piperidone moiety of the potent protease inhibitor crocapeptin.J. Am. Chem. Soc.201313545168851689410.1021/ja404715324171398
    [Google Scholar]
  58. NagarajanM. MaruthanayagamV. SundararamanM. SAR analysis and bioactive potentials of freshwater and terrestrial cyanobacterial compounds: A review.J. Appl. Toxicol.201333531334910.1002/jat.283323172644
    [Google Scholar]
  59. KodaniS. KomakiH. HemmiH. MiyakeY. KaweewanI. DohraH. Streptopeptolin, a cyanopeptolin-type peptide from Streptomyces olivochromogenes.ACS Omega2018378104811010.1021/acsomega.8b0104230087936
    [Google Scholar]
  60. KöcherS. ReyJ. BongardJ. TiadenA.N. MeltzerM. RichardsP.J. EhrmannM. KaiserM. Tailored Ahp‐cyclodepsipeptides as potent non‐covalent serine protease inhibitors.Angew. Chem. Int. Ed.201756298555855810.1002/anie.20170177128514117
    [Google Scholar]
  61. KellerL. CanutoK.M. LiuC. SuzukiB.M. AlmalitiJ. SikandarA. NamanC.B. GlukhovE. LuoD. DugganB.M. LueschH. KoehnkeJ. O’DonoghueA.J. GerwickW.H. Tutuilamides A–C: Vinyl-chloride-containing cyclodepsipeptides from marine cyanobacteria with potent elastase inhibitory properties.ACS Chem. Biol.202015375175710.1021/acschembio.9b0099231935054
    [Google Scholar]
  62. DuF.Y. LiX.M. SunZ.C. MengL.H. WangB.G. Secondary metabolites with agricultural antagonistic potentials from Beauveria felina, a marine-derived entomopathogenic fungus.J. Agric. Food Chem.20206850148241483110.1021/acs.jafc.0c0569633322905
    [Google Scholar]
  63. LamK.T. WilliamsD.L.Jr SigmundJ.M. SanchezM. GenilloudO. KongY.L. Stevens-MilesS. HuangL. GarrityG.M. Cochinmicins, novel and potent cyclodepsipeptide endothelin antagonists from a Microbispora sp. I. Production, isolation, and characterization.J. Antibiot.199245111709171610.7164/antibiotics.45.17091468977
    [Google Scholar]
  64. LamK.T. ZinkD.L. WilliamsD.L.Jr BurgessB.W. Additional cochinmicins from A Microbispora sp.J. Antibiot.199245111792179410.7164/antibiotics.45.17921468988
    [Google Scholar]
  65. CarrilloC. TeruelJ.A. ArandaF.J. OrtizA. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin.Biochim. Biophys. Acta Biomembr.200316111-2919710.1016/S0005‑2736(03)00029‑412659949
    [Google Scholar]
  66. YuanL. ZhangS. WangY. LiY. WangX. YangQ. Surfactin inhibits membrane fusion during invasion of epithelial cells by enveloped viruses.J. Virol.20189221e00809-1810.1128/JVI.00809‑1830068648
    [Google Scholar]
  67. ShekunovE.V. ZlodeevaP.D. EfimovaS.S. MurylevaA.A. ZarubaevV.V. SlitaA.V. OstroumovaO.S. Cyclic lipopeptides as membrane fusion inhibitors against SARS-CoV-2: New tricks for old dogs.Antiviral Res.202321210557510.1016/j.antiviral.2023.10557536868316
    [Google Scholar]
  68. WuY.S. NgaiS.C. GohB.H. ChanK.G. LeeL.H. ChuahL.H. Anticancer activities of surfactin and potential application of nanotechnology assisted surfactin delivery.Front. Pharmacol.2017876110.3389/fphar.2017.0076129123482
    [Google Scholar]
  69. DuarteC. GudiñaE.J. LimaC.F. RodriguesL.R. Effects of biosurfactants on the viability and proliferation of human breast cancer cells.AMB Express2014414010.1186/s13568‑014‑0040‑024949273
    [Google Scholar]
  70. GuY.L. LiJ.Z. Pseudomonas cyclic lipopeptide medpeptin: Biosynthesis and modulation of plant immunity.Eng.202328153165
    [Google Scholar]
  71. YangQ. ChengB.T. TangZ. Applications and prospects of genome mining in the discovery of natural products.Synth. Biol.202125697715
    [Google Scholar]
  72. SchnegotzkiR. WiebachV. Sánchez-HidalgoM. TietzmannM. zur BonsenA.B. GenilloudO. SüssmuthR.D. Total synthesis and biosynthesis of cyclodepsipeptide cochinmicin I.Org. Lett.202224122344234810.1021/acs.orglett.2c0052535311291
    [Google Scholar]
  73. WeberT. BlinK. DuddelaS. KrugD. KimH.U. BruccoleriR. LeeS.Y. FischbachM.A. MüllerR. WohllebenW. BreitlingR. TakanoE. MedemaM.H. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters.Nucleic Acids Res.201543W1W237W24310.1093/nar/gkv43725948579
    [Google Scholar]
  74. WuQ. LiangJ. LinS. ZhouX. BaiL. DengZ. WangZ. Characterization of the biosynthesis gene cluster for the pyrrole polyether antibiotic calcimycin (A23187) in Streptomyces chartreusis NRRL 3882.Antimicrob. Agents Chemother.201155397498210.1128/AAC.01130‑1021173184
    [Google Scholar]
  75. PfeiferV. NicholsonG.J. RiesJ. RecktenwaldJ. ScheferA.B. ShawkyR.M. SchröderJ. WohllebenW. PelzerS. A polyketide synthase in glycopeptide biosynthesis: the biosynthesis of the non-proteinogenic amino acid (S)-3,5-dihydroxyphenylglycine.J. Biol. Chem.200127642383703837710.1074/jbc.M10658020011495926
    [Google Scholar]
  76. GaudelliN.M. TownsendC.A. Epimerization and substrate gating by a TE domain in β-lactam antibiotic biosynthesis.Nat. Chem. Biol.201410425125810.1038/nchembio.145624531841
    [Google Scholar]
  77. SüssmuthR.D. MainzA. Nonribosomal peptide synthesis—principles and prospects.Angew. Chem. Int. Ed.201756143770382110.1002/anie.20160907928323366
    [Google Scholar]
  78. WalshC.T. Insights into the chemical logic and enzymatic machinery of NRPS assembly lines.Nat. Prod. Rep.201633212713510.1039/C5NP00035A26175103
    [Google Scholar]
  79. ZouX. HuiZ. ShepherdR.A. ZhaoS. WuY. ShenZ. PangC. ZhouS. YuZ. ZhouJ. MooreB.S. SanchezL.M. TangX. Unveiling a CAAX protease‐like protein involved in didemnin drug maturation and secretion.Adv. Sci.2023230604410.1002/advs.20230604438032137
    [Google Scholar]
  80. ReimerD. PosK.M. ThinesM. GrünP. BodeH.B. A natural prodrug activation mechanism in nonribosomal peptide synthesis.Nat. Chem. Biol.201171288889010.1038/nchembio.68821926994
    [Google Scholar]
  81. WhiteK.M. RosalesR. YildizS. KehrerT. MiorinL. MorenoE. JangraS. UccelliniM.B. RathnasingheR. CoughlanL. Martinez-RomeroC. BatraJ. RojcA. BouhaddouM. FabiusJ.M. ObernierK. DejosezM. GuillénM.J. LosadaA. AvilésP. SchotsaertM. ZwakaT. VignuzziM. ShokatK.M. KroganN.J. García-SastreA. Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A.Science2021371653292693110.1126/science.abf405833495306
    [Google Scholar]
  82. ManolaridisI. KulkarniK. DoddR.B. OgasawaraS. ZhangZ. BinevaG. O’ReillyN. HanrahanS.J. ThompsonA.J. CroninN. IwataS. BarfordD. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1.Nature2013504747930130510.1038/nature1275424291792
    [Google Scholar]
  83. RahmadaniA. MasruhimM.A. RijaiL. HidayatA.T. SupratmanU. MaharaniT. Total synthesis of cyclohexadepsipeptides exumolides A and B.Tetrahedron20218313198710.1016/j.tet.2021.131987
    [Google Scholar]
  84. JenkinsK.M. RennerM.K. JensenP.R. FenicalW. Exumolides A and B: Antimicroalgal cyclic depsipeptides produced by a marine fungus of the genus Scytalidium.Tetrahedron Lett.199839172463246610.1016/S0040‑4039(98)00288‑3
    [Google Scholar]
  85. CoinI. BeerbaumM. SchmiederP. BienertM. BeyermannM. Solid-phase synthesis of a cyclodepsipeptide: cotransin.Org. Lett.200810173857386010.1021/ol800855p18651745
    [Google Scholar]
  86. OhsawaK. FukayaS. DoiT. Total synthesis and structural determination of cyclodepsipeptide decatransin.Org. Lett.202224305552555610.1021/acs.orglett.2c0208535867629
    [Google Scholar]
  87. YoshidaM. SatoH. IshidaY. NakagawaH. DoiT. Scalable solution-phase synthesis of the biologically active cyclodepsipeptide destruxin E, a potent negative regulator of osteoclast morphology.J. Org. Chem.201479129630610.1021/jo402437z24251640
    [Google Scholar]
  88. CrimminsM.T. EmmitteK.A. KatzJ.D. Diastereoselective alkylations of oxazolidinone glycolates: a useful extension of the Evans asymmetric alkylation.Org. Lett.20002142165216710.1021/ol006091m10891257
    [Google Scholar]
  89. KitamuraM. ShirakawaS. MaruokaK. Powerful chiral phase-transfer catalysts for the asymmetric synthesis of alpha-alkyl- and alpha,alpha-dialkyl-alpha-amino acids.Angew. Chem. Int. Ed.200544101549155110.1002/anie.20046225715685673
    [Google Scholar]
  90. LiK.W. WuJ. XingW. SimonJ.A. Total synthesis of the antitumor depsipeptide FR-901,228.J. Am. Chem. Soc.1996118307237723810.1021/ja9613724
    [Google Scholar]
  91. Pelay-GimenoM. García-RamosY. Jesús MartinM. SpenglerJ. Molina-GuijarroJ.M. MuntS. FranceschA.M. CuevasC. Tulla-PucheJ. AlbericioF. The first total synthesis of the cyclodepsipeptide pipecolidepsin A.Nat. Commun.201341235210.1038/ncomms335223989475
    [Google Scholar]
  92. SpenglerJ. PelayM. Tulla-PucheJ. AlbericioF. Synthesis of orthogonally protected l-threo-β-ethoxyasparagine.Amino Acids201039116116510.1007/s00726‑009‑0389‑619921395
    [Google Scholar]
  93. ÇalimsizS. Morales RamosÁ.I. LiptonM.A. Solid-phase synthesis and configurational reassigment of callipeltin E. Implications for the structures of callipeltins A and B.J. Org. Chem.200671176351635610.1021/jo060351h16901115
    [Google Scholar]
  94. ÇalimsizS. LiptonM.A. Synthesis of N-Fmoc-(2S,3S,4R)-3,4-dimethylglutamine: An application of lanthanide-catalyzed transamidation.J. Org. Chem.200570166218622110.1021/jo050518r16050680
    [Google Scholar]
  95. AcevedoC.M. KogutE.F. LiptonM.A. Synthesis and analysis of the sterically constrained l-glutamine l-pyroglutamic acid.Tetrahedron200157306353635910.1016/S0040‑4020(01)00501‑4
    [Google Scholar]
  96. KimS. McAlpineS. Solid phase versus solution phase synthesis of heterocyclic macrocycles.Molecules20131811111112110.3390/molecules1801111123325099
    [Google Scholar]
  97. PriorA. HoriT. FishmanA. SunD. Recent reports of solid-phase cyclohexapeptide synthesis and applications.Molecules2018236147510.3390/molecules2306147529912160
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298284383240110080227
Loading
/content/journals/mroc/10.2174/0118756298284383240110080227
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test