Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

It is known that flotation is the main method of extracting non-ferrous metals. The need of modern society for precious metals is constantly growing, and deposits of easily reversible ores are being depleted. Therefore, the improvement of the reagent regime and the search for new flotation reagents is an urgent task. We analyzed the literature data on the synthesis and use of common collectors such as xanthates and dithiocarbamates. Particular importance is given to recent progress in the functionalization of xanthates and dithiocarbamates, their selective characteristics and flotation mechanisms. Progress in the field of flotation can be made in the use of new effective reagents and their combinations, as well as in the modification of already known collectors. The generalization of the material in this review will help in the development of this area. The mini-review summarizes the syntheses of collectors such as xanthates and dithiocarbamates with the increased selective properties in the flotation process of non-ferrous metals. Furthermore, this review provides an analysis of the developments in these studies, especially highlighting recent progress in the functionalization of xanthates and dithiocarbamates, their selective characteristics and flotation mechanisms.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298267964231004113212
2023-10-10
2025-06-26
Loading full text...

Full text loading...

References

  1. (a BulatovicS.M. Handbook of flotation reagents.Elsevier2007
    [Google Scholar]
  2. (b PelekaE.N. GalliosG.P. MatisK.A. A perspective on flotation: A review.J. Chem. Technol. Biotechnol.201893361562310.1002/jctb.5486
    [Google Scholar]
  3. (c WangL. PengY. RungeK. BradshawD. A review of entrainment: Mechanisms, contributing factors and modelling in flotation.Miner. Eng.201570779110.1016/j.mineng.2014.09.003
    [Google Scholar]
  4. (a Hanumantha RaoK. ForssbergK.S.E. Mixed collector systems in flotation.Int. J. Miner. Process.1997511-4677910.1016/S0301‑7516(97)00039‑2
    [Google Scholar]
  5. (b LotterN.O. BradshawD.J. The formulation and use of mixed collectors in sulphide flotation.Miner. Eng.20102311-1394595110.1016/j.mineng.2010.03.011
    [Google Scholar]
  6. (c CaoQ. ChengJ. WenS. LiC. BaiS. LiuD. A mixed collector system for phosphate flotation.Miner. Eng.20157811412110.1016/j.mineng.2015.04.020
    [Google Scholar]
  7. (d DharP. ThornhillM. KotaH. Comparison of single and mixed reagent systems for flotation of copper sulphides from Nussir ore.Minerals20199380
    [Google Scholar]
  8. (a GaoZ. WangC. SunW. GaoY. KowalczukP.B. Froth flotation of fluorite: A review.Adv. Colloid Interface Sci.202129010238210.1016/j.cis.2021.10238233676242
    [Google Scholar]
  9. (b SisH. ChanderS. Reagents used in the flotation of phosphate ores: A critical review.Miner. Eng.200316757758510.1016/S0892‑6875(03)00131‑6
    [Google Scholar]
  10. (c FengQ. YangW. WenS. WangH. ZhaoW. HanG. Flotation of copper oxide minerals: A review.Int. J. Min. Sci. Technol.20223261351136410.1016/j.ijmst.2022.09.011
    [Google Scholar]
  11. (a FarrokhpayS. FilippovL. FornasieroD. Flotation of fine particles: A review.Miner. Process. Extr. Metall. Rev.202142747348310.1080/08827508.2020.1793140
    [Google Scholar]
  12. (b YoonR.H. LuttrellG.H. The effect of bubble size on fine particle flotation.Miner. Process. Extr. Metall. Rev.198951-410112210.1080/08827508908952646
    [Google Scholar]
  13. (a KhoshdastH. HassanzadehA. KowalczukP.B. FarrokhpayS. Characterization techniques of flotation frothers: A review.Miner. Process. Extr. Metall. Rev.20234427710110.1080/08827508.2021.2024822
    [Google Scholar]
  14. (b DrzymalaJ. KowalczukP. Classification of flotation frothers.Minerals2018825310.3390/min8020053
    [Google Scholar]
  15. (c MeloF. LaskowskiJ.S. Fundamental properties of flotation frothers and their effect on flotation.Miner. Eng.2006196-876677310.1016/j.mineng.2005.09.031
    [Google Scholar]
  16. (a RoyK-M. Ullmann’s Encyclopedia of Industrial Chemistry.WeinheimWiley-VCH2005
    [Google Scholar]
  17. (b MilosavljevićM.M. MarinkovićA.D. RančićM. MilentijevićG. BogdanovićA. CvijetićI.N. GurešićD. New Facile one-pot synthesis of isobutyl thiocarbamate in recycling solvent mixture.Minerals202010350
    [Google Scholar]
  18. (a Matthew HobsonJ. New developments in xanthate ester chemistry and the potential for protecting group applications.William & Mary2009
    [Google Scholar]
  19. (b KaïmL.E. GrimaudL. PravinP. Xanthate based radical cascade toward multicomponent formation of pyrrolopyrimidines.Molecules201116119261927310.3390/molecules1611926122474716
    [Google Scholar]
  20. (c ZardS.Z. The xanthate route to organofluorine derivatives. A brief account.Org. Biomol. Chem.201614296891691210.1039/C6OB01087C 27327241
    [Google Scholar]
  21. HanS. NguyenA.V. KimK. ParkJ. YouK. Measurements and analysis of xanthate chain length effect on bubble attachment to galena surfaces.Miner. Eng.202015910665110.1016/j.mineng.2020.106651
    [Google Scholar]
  22. (a KemppinenJ. AaltonenA. SihvonenT. LeppinenJ. SirénH. Xanthate degradation occurring in flotation process waters of a gold concentrator plant.Miner. Eng.2015801710.1016/j.mineng.2015.05.014
    [Google Scholar]
  23. (b ShenY. NagarajD.R. FarinatoR. SomasundaranP. Study of xanthate decomposition in aqueous solutions.Miner. Eng.201693101510.1016/j.mineng.2016.04.004
    [Google Scholar]
  24. FuP. FengJ. YangH. YangT. Degradation of sodium n-butyl xanthate by vacuum UV-ozone (VUV/O3) in comparison with ozone and VUV photolysis.Process Saf. Environ. Prot.2016102647010.1016/j.psep.2016.02.010
    [Google Scholar]
  25. (a SavranVI Ehndjus'kinVP SimakovaNV. Rus Pat.,RU2211831C12003
  26. (b ChiaC-J CurrahJE LusbyGR Manufacture of alkali metal xanthates.Patent US3864374A1973
  27. (c RajalingamP. RadhakrishnanG. Potassium-N-butyl xanthate as a new antioxidant for natural rubber.Polym. Plast. Technol. Eng.199130440541110.1080/03602559108021003
    [Google Scholar]
  28. (d ChristmannL.J. Butyl xanthate flotation.US1837852A1930
  29. (e MaX. WangS. ZhongH. Effective production of sodium isobutyl xanthate using carbon disulfide as a solvent: Reaction kinetics, calorimetry and scale-up.J. Clean. Prod.201820044445310.1016/j.jclepro.2018.07.251
    [Google Scholar]
  30. (f DerekG.E. Nickel. Ullmann’s encyclopedia of industrial chemistry.Wiley2005
    [Google Scholar]
  31. HuangX. JiaY. WangS. MaX. CaoZ. ZhongH. Novel Sodium O-benzythioethyl xanthate surfactant: Synthesis, DFT calculation and adsorption mechanism on chalcopyrite surface.Langmuir20193547151061511310.1021/acs.langmuir.9b03118 31692357
    [Google Scholar]
  32. AckermanP.K. HarrisG.H. KlimpelR.R. AplanF.F. Use of xanthogen formates as collectors in the flotation of copper sulfides and pyrite.Int. J. Miner. Process.2000581-411310.1016/S0301‑7516(99)00068‑X
    [Google Scholar]
  33. HuangX. HuangK. JiaY. WangS. CaoZ. ZhongH. Investigating the selectivity of a xanthate derivative for the flotation separation of chalcopyrite from pyrite.Chem. Eng. Sci.201920522022910.1016/j.ces.2019.04.051
    [Google Scholar]
  34. (a HeS. HuangY. WangM. ZhangY. ChenL. JiaY. LiuH. An efficient solid-liquid interface adsorption mode in chalcopyrite flotation with a novel di-minerophilic group surfactant 5-methyl isobutylxanthate-1,3,4-oxadiazole-2-thione.J. Mol. Liq.202234511825410.1016/j.molliq.2021.118254
    [Google Scholar]
  35. (b LiuG.Y. HuangY.G. Patent CN1053846692016
  36. (c HuangS.H.Y. ZhangY. WangM. Patent CN 202110422188.92021
  37. (a AjiboyeT.O. AjiboyeT.T. MarzoukiR. OnwudiweD.C. The versatility in the applications of dithiocarbamates.Int. J. Mol. Sci.2022233131710.3390/ijms2303131735163241
    [Google Scholar]
  38. (b SzolarO.H.J. Environmental and pharmaceutical analysis of dithiocarbamates.Anal. Chim. Acta2007582219120010.1016/j.aca.2006.09.02217386492
    [Google Scholar]
  39. (c KaulL. SüssR. ZannettinoA. RichterK. Dithiocarbamate pesticides, ethylenethiourea and propylenethiourea: A general introduction.World Health Organization2021
    [Google Scholar]
  40. (d KurianJ.K. PeethambaranN.R. MaryK.C. KuriakoseB. Effect of vulcanization systems and antioxidants on discoloration and degradation of natural rubber latex thread under UV radiation.J. Appl. Polym. Sci.200078230431010.1002/1097‑4628(20001010)78:2<304::AID‑APP100>3.0.CO;2‑G
    [Google Scholar]
  41. (e CvekB. DvorakZ. Targeting of nuclear factor-kappaB and proteasome by dithiocarbamate complexes with metals.Curr. Pharm. Des.200713303155316710.2174/13816120778211039017979756
    [Google Scholar]
  42. (f Viola-RhenalsM. PatelK.R. Jaimes-SantamariaL. WuG. LiuJ. DouQ.P. Recent advances in antabuse (disulfiram): The importance of its metal-binding ability to its anticancer activity.Curr. Med. Chem.201825450652410.2174/092986732466617102316112129065820
    [Google Scholar]
  43. (a XuL. TongJ. WuY. ZhaoS. LinB.L. A computational evaluation of targeted oxidation strategy (TOS) for potential inhibition of SARS-CoV-2 by disulfiram and analogues.Biophys. Chem.202127610661010.1016/j.bpc.2021.10661034089978
    [Google Scholar]
  44. (b HarrisonJ.J. TurnerR.J. CeriH. A subpopulation of Candida albicans and Candida tropicalis biofilm cells are highly tolerant to chelating agents.FEMS Microbiol. Lett.2007272217218110.1111/j.1574‑6968.2007.00745.x17490429
    [Google Scholar]
  45. (c CvekB. Targeting malignancies with disulfiram (Antabuse): Multidrug resistance, angiogenesis, and proteasome.Curr. Cancer Drug Targets201111333233710.2174/15680091179451980621247389
    [Google Scholar]
  46. (d BalaV. GuptaG. SharmaV. Chemical and medicinal versatility of dithiocarbamates: An overview.Mini Rev. Med. Chem.201414121021103210.2174/138955751466614110613014625373849
    [Google Scholar]
  47. (e OliveiraJ.W.F. RochaH.A.O. de MedeirosW.M.T.Q. SilvaM.S. Application of dithiocarbamates as potential new antitrypanosomatids-drugs: Approach chemistry, functional and biological.Molecules20192415280610.3390/molecules2415280631374887
    [Google Scholar]
  48. (f VenkateshR. ShankarG. NarayananA.C. ModiG. SabiahS. KandasamyJ. Multicomponent synthesis of S-benzyl dithiocarbamates from para-quinone methides and their biological evaluation for the treatment of alzheimer’s disease.J. Org. Chem.202287106730674110.1021/acs.joc.2c0042335545917
    [Google Scholar]
  49. (g ByrneS.T. GuP. ZhouJ. DenkinS.M. ChongC. SullivanD. LiuJ.O. ZhangY. Pyrrolidine dithiocarbamate and diethyldithiocarbamate are active against growing and nongrowing persister Mycobacterium tuberculosis.Antimicrob. Agents Chemother.200751124495449710.1128/AAC.00753‑07 17876006
    [Google Scholar]
  50. (a JacobsenE. Biochemical methods in the treatment of alcoholism, with special reference to antabuse.Proc. R. Soc. Med.195043751952610.1177/00359157500430070515440767
    [Google Scholar]
  51. (b SinghA.N. SrivastavaS. JainarA.K. Pharmacotherapy of chronic alcoholism: A review.Drugs Today1999351273310.1358/dot.1999.35.1.52294412973406
    [Google Scholar]
  52. (c SoykaM. RoesnerS. New pharmacological approaches for the treatment of alcoholism.Expert Opin. Pharmacother.20067172341235310.1517/14656566.7.17.2341 17109610
    [Google Scholar]
  53. (a AziziN. AryanasabF. SaidiM.R. Straightforward and highly efficient catalyst-free one-pot synthesis of dithiocarbamates under solvent-free conditions.Org. Lett.20068235275527710.1021/ol062014117078696
    [Google Scholar]
  54. (b ChaturvediD. RayS. An efficient, one-pot, synthesis of dithiocarbamates from the corresponding alcohols using Mitsunobu’s reagent.Tetrahedron Lett.20064781307130910.1016/j.tetlet.2005.12.079
    [Google Scholar]
  55. (a HeardP.J. Progress in inorganic chemistry.John Wiley & Sons2005
    [Google Scholar]
  56. (b HogarthL.G. Transition metal dithiocarbamates: 1978-2003.Prog. Inorg. Chem.2005537110.1002/0471725587.ch2
    [Google Scholar]
  57. (c TiekinkE.R.T. Tin dithiocarbamates: Applications and structures.Appl. Organomet. Chem.200822953355010.1002/aoc.1441
    [Google Scholar]
  58. (d HogarthG. Metal-dithiocarbamate complexes: Chemistry and biological activity.Mini Rev. Med. Chem.201212121202121510.2174/138955712802762095 22931592
    [Google Scholar]
  59. (a HumeresE. DebacherN.A. SierraM.M.S. FrancoJ.D. SchutzA. Mechanisms of acid decomposition of dithiocarbamates. 1. Alkyl dithiocarbamates.J. Org. Chem.19986351598160310.1021/jo971869b
    [Google Scholar]
  60. (b SinghalS. GargA.N. ChandraK. Thermal decomposition of transition metal dithiocarbamates.J. Therm. Anal. Calorim.200478394195210.1007/s10973‑005‑0460‑0
    [Google Scholar]
  61. ShenY. NagarajD.R. FarinatoR. SomasundaranP. TongS. Decomposition of flotation reagents in solutions containing metal ions. Part III: Comparison between xanthates and dithiocarbamates.Miner. Eng.201913910589810.1016/j.mineng.2019.105898
    [Google Scholar]
  62. (a SutherlandK.L. WarkI.W. Principles of flotation.Australasian institute of mining and metallurgy.1955
    [Google Scholar]
  63. (b GaudinA.M. FuerstenauM.C. Gaudin (AM) memorial flotation symposium.New YorkAmerican Institute of Mining, Metallurgical, and Petroleum Engineers.1976
    [Google Scholar]
  64. MaX. HuY. ZhongH. WangS. LiuG. ZhaoG. A novel surfactant S-benzoyl-N,N-diethyldithiocarbamate synthesis and its flotation performance to galena.Appl. Surf. Sci.201636534235110.1016/j.apsusc.2016.01.048
    [Google Scholar]
  65. LiuS. LiuG. ZhongH. YangX. The role of HABTC’s hydroxamate and dithiocarbamate groups in chalcopyrite flotation.J. Ind. Eng. Chem.20175235936810.1016/j.jiec.2017.04.015
    [Google Scholar]
  66. LiuS. ZhongH. LiuG. XuZ. Cu(I)/Cu(II) mixed-valence surface complexes of S-[(2-hydroxyamino)-2-oxoethyl]-N,N-dibutyldithiocarbamate: Hydrophobic mechanism to malachite flotation.J. Colloid Interface Sci.201851270171210.1016/j.jcis.2017.10.063 29107921
    [Google Scholar]
  67. LiuS. DongY. XieL. LiuG. ZhongH. ZengH. Uncovering the hydrophobic mechanism of a novel dithiocarbamate-hydroxamate surfactant towards galena.Chem. Eng. Sci.202124511676510.1016/j.ces.2021.116765
    [Google Scholar]
  68. (a HuangX. HuangK. WangS. CaoZ. ZhongH. Synthesis of 2-hydroxyethyl dibutyldithiocarbamate and its adsorption mechanism on chalcopyrite.Appl. Surf. Sci.201947646046710.1016/j.apsusc.2019.01.053
    [Google Scholar]
  69. (b HuangX. JiaY. CaoZ. WangS. MaX. ZhongH. Investigation of the interfacial adsorption mechanisms of 2-hydroxyethyl dibutyldithiocarbamate surfactant on galena and sphalerite.Colloids Surf. A Physicochem. Eng. Asp.201958312390810.1016/j.colsurfa.2019.123908
    [Google Scholar]
  70. DingX. LiM. YangW. ZhangK. ZuoZ. ChenY. YinX. LiuY. Experimental and theoretical studies of sodium acetyldithiocarbamate for the removal of Cu2+ and Ni2+ from aqueous solution.J. Colloid Interface Sci.202057933033910.1016/j.jcis.2020.06.074 32610206
    [Google Scholar]
  71. (a QiJ. LiuG. DongY. Probing the hydrophobic mechanism of N-[(3-hydroxyamino)-propoxy]-N-octyl dithiocarbamate toward bastnaesite flotation by in situ AFM, FTIR and XPS.J. Colloid Interface Sci.202057217918910.1016/j.jcis.2020.03.08032240791
    [Google Scholar]
  72. (b QiJ. DongY. LiuS. LiuG. A selective flotation of cassiterite with a dithiocarbamate-hydroxamate molecule and its adsorption mechanism.Appl. Surf. Sci.202153814799610.1016/j.apsusc.2020.147996
    [Google Scholar]
  73. MassariS. RubertiM. Rare earth elements as critical raw materials: Focus on international markets and future strategies.Resour. Policy2013381364310.1016/j.resourpol.2012.07.001
    [Google Scholar]
  74. QiJ. ZhaoG. LiuS. ChenW. LiuG. Strengthening flotation enrichment of Pb(Ⅱ)-activated scheelite with N-[(3-hydroxyamino)-propoxy]-N-hexyl dithiocarbamate.J. Ind. Eng. Chem.202211433834610.1016/j.jiec.2022.07.024
    [Google Scholar]
  75. QiJ. LiuS. DongY. LiuG. Revealing the role of dithiocarbamate ester group in hydroxamic acid flotation of cassiterite with in situ AFM, DFT and XPS.Appl. Surf. Sci.202260415452110.1016/j.apsusc.2022.154521
    [Google Scholar]
  76. YangH. HuangK. CaoX. HuangX. CaoZ. ZhongH. ZhouH. ZengJ. XueJ. ZhangR. Investigating the adsorption performances and hydrophobic mechanism of O-ethyl-N-benzoyl thionocarbamate on chalcopyrite surface.Miner. Eng.202217610731610.1016/j.mineng.2021.107316
    [Google Scholar]
  77. CaoX. LiuC. HuangX. ZengJ. XueJ. ZhangR. HuangK. CaoZ. ZhongH. Uncovering the flotation performance and adsorption mechanism of a multifunctional thiocarbamate collector on malachite.Powder Technol.202240711767610.1016/j.powtec.2022.117676
    [Google Scholar]
  78. BiniakS. PakułaM. SzymańskiG.S. Świa̧ tkowskiA. Effect of activated carbon surface oxygen- and/or nitrogen-containing groups on adsorption of copper(II) ions from aqueous solution.Langmuir199915186117612210.1021/la9815704
    [Google Scholar]
  79. ZouS. WangS. MaX. YangJ. ZhongH. Synthesis of a novel dithiocarbamate collector and its selective adsorption mechanism in galena flotation.Colloids Surf. A Physicochem. Eng. Asp.202365713064910.1016/j.colsurfa.2022.130649
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298267964231004113212
Loading
/content/journals/mroc/10.2174/0118756298267964231004113212
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): adsorption; dithiocarbamate; Flotation; flotation reagent; non-ferrous metals; xanthate
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test