Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Water, a kind of abundant natural resource, is considered to be a green and desirable solvent for reasons of its low cost, high safety and environmental friendliness. This review article aims to briefly introduce the methodologies that have utilized water as reaction media under the aid of granular polytetrafluoroethylene (PTFE) to mediate reactions of a series of water-insoluble and high melting points substrates in a green, quantitative, fast, and stereoselective way in most situations. Besides, this review will be helpful to stimulate further study on both practical applications and mechanistic understanding of these aqueous reactions promoted by granular PTFE for the novel synthesis of interesting structures.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298253318230929034500
2023-10-05
2025-07-09
Loading full text...

Full text loading...

References

  1. AnastasP.T. IstvánT.H. Introduction: Green chemistry.Chem. Rev.200710762167216810.1021/cr0783784
    [Google Scholar]
  2. AnastasP. EghbaliN. Green chemistry: Principles and practice.Chem. Soc. Rev.201039130131210.1039/B918763B 20023854
    [Google Scholar]
  3. Jiménez-GonzálezC. ConstableD.J.C. PonderC.S. Evaluating the “Greenness” of chemical processes and products in the pharmaceutical industry-a green metrics primer.Chem. Soc. Rev.20124141485149810.1039/C1CS15215G 22076593
    [Google Scholar]
  4. TangS.L.Y. SmithR.L. PoliakoffM. Principles of green chemistry: PRODUCTIVELY.Green Chem.200571176176210.1039/b513020b
    [Google Scholar]
  5. SandersonK. Chemistry: It’s not easy being green.Nature20114697328182010.1038/469018a 21209638
    [Google Scholar]
  6. JessopP.G. Searching for green solvents.Green Chem.20111361391139810.1039/c0gc00797h
    [Google Scholar]
  7. ClarkJ.H. TavenerS.J. Alternative solvents: Shades of green.Org. Process Res. Dev.200711114915510.1021/op060160g
    [Google Scholar]
  8. WeltonT. Solvents and sustainable chemistry.Proc.- Royal Soc., Math. Phys. Eng. Sci.201547121832015050210.1098/rspa.2015.0502 26730217
    [Google Scholar]
  9. KamletM.J. AbboudJ.L.M. AbrahamM.H. TaftR.W. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters. pi.*. alpha., and. beta., and some methods for simplifying the generalized solvatochromic equation.J. Org. Chem.198348172877288710.1021/jo00165a018
    [Google Scholar]
  10. AlfonsiK. ColbergJ. DunnP.J. FevigT. JenningsS. JohnsonT.A. KleineH.P. KnightC. NagyM.A. PerryD.A. StefaniakM. Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation.Green Chem.2008101313610.1039/B711717E
    [Google Scholar]
  11. ChandrasekharS. NarsihmuluC. SultanaS.S. ReddyN.R. Poly(ethylene glycol) (PEG) as a reusable solvent medium for organic synthesis. Application in the Heck reaction.Org. Lett.20024254399440110.1021/ol0266976 12465897
    [Google Scholar]
  12. HeldebrantD.J. WittH.N. WalshS.M. EllisT. RauscherJ. JessopP.G. Liquid polymers as solvents for catalytic reductions.Green Chem.20068980781510.1039/b605405f
    [Google Scholar]
  13. JessopP.G. SubramaniamB. Gas-Expanded liquids.Chem. Rev.200710762666269410.1021/cr040199o 17564482
    [Google Scholar]
  14. KuhlmannB. ArnettE.M. SiskinM. Classical organic reactions in pure superheated water.J. Org. Chem.199459113098310110.1021/jo00090a030
    [Google Scholar]
  15. SiskinM. KatritzkyA.R. Reactivity of organic compounds in superheated water: General background.Chem. Rev.2001101482583610.1021/cr000088z 11709859
    [Google Scholar]
  16. HorváthI.T. MehdiH. FábosV. BodaL. MikaL.T. γ-Valerolactone-a sustainable liquid for energy and carbon-based chemicals.Green Chem.200810223824210.1039/B712863K
    [Google Scholar]
  17. AycockD.F. Solvent applications of 2-methyltetrahydrofuran in organometallic and biphasic reactions.Org. Process Res. Dev.200711115615910.1021/op060155c
    [Google Scholar]
  18. GuY. JérômeF. Glycerol as a sustainable solvent for green chemistry.Green Chem.20101271127113810.1039/c001628d
    [Google Scholar]
  19. GarcíaJ.I. García-MarínH. MayoralJ.A. PérezP. Green solvents from glycerol. Synthesis and physico-chemical properties of alkyl glycerol ethers.Green Chem.201012342643410.1039/b923631g
    [Google Scholar]
  20. AparicioS. AlcaldeR. The green solventethyl lactate: An experimental and theoretical characterization.Green Chem.2009111657810.1039/B811909K
    [Google Scholar]
  21. WatanabeK. YamagiwaN. TorisawaY. Cyclopentyl methyl ether as a new and alternative process solvent.Org. Process Res. Dev.200711225125810.1021/op0680136
    [Google Scholar]
  22. Cortes-ClergetM. YuJ. KincaidJ.R.A. WaldeP. GallouF. LipshutzB.H. Water as the reaction medium in organic chemistry: From our worst enemy to our best friend.Chem. Sci.202112124237426610.1039/D0SC06000C 34163692
    [Google Scholar]
  23. NarayanS. MuldoonJ. FinnM.G. FokinV.V. KolbH.C. SharplessK.B. “On water”: Unique reactivity of organic compounds in aqueous suspension.Angew. Chem. Int. Ed.200544213275327910.1002/anie.200462883 15844112
    [Google Scholar]
  24. KitanosonoT. KobayashiS. Reactions in water involving the “On‐Water” mechanism.Chemistry202026439408942910.1002/chem.201905482 32058632
    [Google Scholar]
  25. KitanosonoT. MasudaK. XuP. KobayashiS. Catalytic organic reactions in water toward sustainable society.Chem. Rev.2018118267974610.1021/acs.chemrev.7b00417 29218984
    [Google Scholar]
  26. ChandaA. FokinV.V. Organic synthesis “on water”.Chem. Rev.2009109272574810.1021/cr800448q 19209944
    [Google Scholar]
  27. HarryN.A. RadhikaS. NeethaM. AnilkumarG. Recent advances and prospects of organic reactions “On Water”.ChemistrySelect2019442123371235510.1002/slct.201903360
    [Google Scholar]
  28. MajiM. BorthakurI. SrivastavaS. KunduS. Regio -selective C3- and N-alkylation of indolines in water under air using alcohols.J. Org. Chem.20228795603561610.1021/acs.joc.1c03040 35416045
    [Google Scholar]
  29. Quílez del MoralJ.F. Ruiz MartínezC. Pérez del PulgarH. Martín GonzálezJ.E. FernándezI. López-PérezJ.L. Fernández-ArteagaA. BarreroA.F. Synthesis of cannabinoids: “In Water” and “On Water” approaches: Influence of SDS micelles.J. Org. Chem.20218643344335510.1021/acs.joc.0c02698 33533618
    [Google Scholar]
  30. CasaltaC. BouzbouzS. Rhodium(III) catalyzed regioselective and stereospecific allylic arylation in water by β-fluorine elimination of the allylic fluoride: Toward the synthesis of Z-Alkenyl-unsaturated amides.Org. Lett.20202262359236410.1021/acs.orglett.0c00551 32159966
    [Google Scholar]
  31. WangY. DongB. WangZ. CongX. BiX. Silver-catalyzed reduction of quinolines in water.Org. Lett.201921103631363410.1021/acs.orglett.9b01055 31062984
    [Google Scholar]
  32. ZhangY. LuoL. GeJ. YanS.Q. PengY.X. LiuY.R. LiuJ.X. LiuC. MaT. LuoH.Q. “On Water” Direct organocatalytic cyanoarylmethylation of isatins for the diastereoselective synthesis of 3-hydroxy-3-cyanomethyl oxindoles.J. Org. Chem.20198474000400810.1021/acs.joc.8b03194 30864430
    [Google Scholar]
  33. HajraS. Singha RoyS. AzizS.M. DasD. Catalyst-free “On-Water” regio- and stereospecific ring-opening of spiroaziridine oxindole: Enantiopure synthesis of unsymmetrical 3,3′-bisindoles.Org. Lett.201719154082408510.1021/acs.orglett.7b01833 28718289
    [Google Scholar]
  34. LiC.J. ChenL. Organic chemistry in water.Chem. Soc. Rev.2006351688210.1039/B507207G 16365643
    [Google Scholar]
  35. HeraviM.M. Vazin FardM. FaghihiZ. Heteropoly acids-catalyzed organic reactions in water: Doubly green reactions.Green Chem. Lett. Rev.20136428230010.1080/17518253.2013.846415
    [Google Scholar]
  36. EngbertsJ.B.F.N. BlandamerM.J. Understanding organic reactions in water: From hydrophobic encounters to surfactant aggregates.Chem. Commun.2001181701170810.1039/b104537g 12240276
    [Google Scholar]
  37. VamisettiG.B. ChowdhuryR. KumarM. GhoshS.K. “On Water” Organocatalyzed [4 + 2] cycloaddition of enones and nitro dienes for the enantioselective synthesis of densely substituted cyclohexanones.Org. Lett.20161891964196710.1021/acs.orglett.6b00460 27120404
    [Google Scholar]
  38. ParkK. LeeS. Additive-free decarboxylative coupling of cinnamic acid derivatives in water: Synthesis of allyl amines.Org. Lett.20151751300130310.1021/acs.orglett.5b00303 25706481
    [Google Scholar]
  39. PaladhiS. BhatiM. PandaD. DashJ. Thiazolidinedione-isatin conjugates via an uncatalyzed diastereoselective aldol reaction on water.J. Org. Chem.20147931473148010.1021/jo402515d 24383887
    [Google Scholar]
  40. ButlerR.N. CoyneA.G. Water: Nature’s reaction enforcer--comparative effects for organic synthesis “in-water” and “on-water”.Chem. Rev.2010110106302633710.1021/cr100162c 20815348
    [Google Scholar]
  41. SunK. LvQ.Y. ChenX.L. QuL.B. YuB. Recent advances in visible-light-mediated organic transformations in water.Green Chem.202123123224810.1039/D0GC03447A
    [Google Scholar]
  42. LindströmU.M. Stereoselective organic reactions in water.Chem. Rev.200210282751277210.1021/cr010122p 12175267
    [Google Scholar]
  43. CravottoG. BorrettoE. OliverioM. ProcopioA. PenoniA. Organic reactions in water or biphasic aqueous systems under sonochemical conditions. A review on catalytic effects.Catal. Commun.201563102910.1016/j.catcom.2014.12.014
    [Google Scholar]
  44. LiY. SongG.T. TangD.Y. XuZ.G. ChenZ.Z. Acid-promoted direct C–H carbamoylation at the C-3 position of quinoxalin-2(1 H)-ones with isocyanide in water.ACS Omega2023811577158710.1021/acsomega.2c06946 36643431
    [Google Scholar]
  45. BaeD. LeeJ.W. RyuD.H. Enantio- and diastereoselective michael addition of cyclic ketones/aldehydes to nitroolefins in water as catalyzed by proline-derived bifunctional organocatalysts.J. Org. Chem.20228724165321654110.1021/acs.joc.2c02218 36442143
    [Google Scholar]
  46. AlazemiA.M. DawoodK.M. Al-MatarH.M. TohamyW.M. Efficient and recyclable solid-supported Pd(II) catalyst for microwave-assisted suzuki cross-coupling in aqueous medium.ACS Omega2022733288312884810.1021/acsomega.2c01809 36033663
    [Google Scholar]
  47. Cerezo-NavarreteC. MarinI.M. García-MiquelH. CormaA. ChaudretB. Martínez-PrietoL.M. Magnetically induced catalytic reduction of biomass-derived oxygenated compounds in water.ACS Catal.202212148462847510.1021/acscatal.2c01696
    [Google Scholar]
  48. MajiB. BhandariA. BhattacharyaD. ChoudhuryJ. Reusable single homogeneous Ir(III)–NHC catalysts for bidirectional hydrogenation-dehydrogenation of N-heteroarenes in water.Organometallics202241131609162010.1021/acs.organomet.2c00107
    [Google Scholar]
  49. RenX. TangS. LiL. LiJ. LiangH. LiG. YangG. LiH. YuanB. Surfactant-type catalyst for aerobic oxidative coupling of hydrazine with thiol in water.J. Org. Chem.201984138683869010.1021/acs.joc.9b00451 31244150
    [Google Scholar]
  50. HazraS. TiwariV. VermaA. DoluiP. EliasA.J. NaCl as catalyst and water as solvent: Highly E -selective olefination of methyl substituted N -heteroarenes with benzyl amines and alcohols.Org. Lett.202022145496550110.1021/acs.orglett.0c01851 32603129
    [Google Scholar]
  51. AnsariT.N. JasinskiJ.B. LeahyD.K. HandaS. Metal-micelle cooperativity: Phosphine ligand-free ultrasmall palladium(II) nanoparticles for oxidative mizoroki-heck-type couplings in water at room temperature.JACS Au20211330831510.1021/jacsau.0c00087 34467295
    [Google Scholar]
  52. LiB. DixneufP.H. sp2 C–H bond activation in water and catalytic cross-coupling reactions.Chem. Soc. Rev.201342135744576710.1039/c3cs60020c 23525331
    [Google Scholar]
  53. GuoW. WuB. ZhouX. ChenP. WangX. ZhouY.G. LiuY. LiC. Formal asymmetric catalytic thiolation with a bifunctional catalyst at a water-oil interface: Synthesis of benzyl thiols.Angew. Chem. Int. Ed.201554154522452610.1002/anie.201409894 25694264
    [Google Scholar]
  54. LlanesP. SayaleroS. Rodríguez-EscrichC. PericàsM.A. Asymmetric cross- and self-aldol reactions of aldehydes in water with a polystyrene-supported triazolylproline organocatalyst.Green Chem.201618123507351210.1039/C6GC00792A
    [Google Scholar]
  55. DhanumalayanE. JoshiG.M. Performance properties and applications of polytetrafluoroethylene (PTFE)—a review.Adv. Compos. Hybrid Mater.20181224726810.1007/s42114‑018‑0023‑8
    [Google Scholar]
  56. OkazakiM. Comparison of hexagonal crystal structures between fluorapatite and polytetrafluoroethylene.Biomed. Mater. Eng.20172813810.3233/BME‑171650 28269739
    [Google Scholar]
  57. PutsG.J. CrouseP. AmeduriB.M. Polytetrafluoroethylene: Synthesis and characterization of the original extreme polymer.Chem. Rev.201911931763180510.1021/acs.chemrev.8b00458 30689365
    [Google Scholar]
  58. LunkwitzK. LappanU. SchelerU. Modification of perfluorinated polymers by high-energy irradiation.J. Fluor. Chem.2004125686387310.1016/j.jfluchem.2004.01.020
    [Google Scholar]
  59. RaeP.J. DattelbaumD.M. The properties of poly(tetrafluoroethylene) (PTFE) in compression.Polymer200445227615762510.1016/j.polymer.2004.08.064
    [Google Scholar]
  60. SuwaT. SeguchiT. TakehisaM. MachiS. Effect of molecular weight on the crystalline structure of polytetrafluoroethylene as-polymerized.J. Polym. Sci., Polym. Phys. Ed.197513112183219410.1002/pol.1975.180131110
    [Google Scholar]
  61. ZhangJ. LiJ. HanY. Superhydrophobic PTFE surfaces by extension.Macromol. Rapid Commun.200425111105110810.1002/marc.200400065
    [Google Scholar]
  62. FengY. XiongT. JiangS. LiuS. HouH. Mechanical properties and chemical resistance of electrospun polyterafluoroethylene fibres.RSC Advances2016629242502425610.1039/C5RA27676D
    [Google Scholar]
  63. KhannaY.P. The melting temperature of polytetrafluoroethylene.J. Mater. Sci. Lett.19887881781810.1007/BF00723770
    [Google Scholar]
  64. FengG. ZhuM. LiuL. LiC. A quantitative one-pot synthesis method for industrial azo pigments with recyclable wastewater.Green Chem.20192171769177610.1039/C8GC03982H
    [Google Scholar]
  65. LiT. ChenY. LiC. Androsterone-based gels enable diastereospecific reductions and diastereoselective epoxidations of gelators.Org. Biomol. Chem.201816366791680010.1039/C8OB01505H 30203821
    [Google Scholar]
  66. HeG. LiB. LiC. Quantitative “on water” ring-opening of steroidal epoxides accelerated by sand: A green procedure.J. Agric. Food Chem.201361122913291810.1021/jf3052362 23470158
    [Google Scholar]
  67. FengS. LiC. Stereospecific, high-yielding, and green synthesis of β-glycosyl esters.J. Agric. Food Chem.201563245732573910.1021/acs.jafc.5b02534 26042825
    [Google Scholar]
  68. LiB. LiC. Darzens reaction rate enhancement using aqueous media leading to a high level of kinetically controlled diastereoselective synthesis of steroidal epoxyketones.J. Org. Chem.201479178271827710.1021/jo501500v 25119148
    [Google Scholar]
  69. WuM. XuY. HeQ. SunP. WengX. DongX. Tribocatalysis of homogeneous material with multi-size granular distribution for degradation of organic pollutants.J. Colloid Interface Sci.202262260261110.1016/j.jcis.2022.04.132 35526416
    [Google Scholar]
  70. LipshutzB.H. GhoraiS. Cortes-ClergetM. The hydrophobic effect applied to organic synthesis: Recent synthetic chemistry “in Water”.Chemistry201824266672669510.1002/chem.201705499 29465785
    [Google Scholar]
  71. LitaiemY. DhahbiM. Physicochemical properties of an hydrophobic ionic liquid (Aliquat 336) in a polar protic solvent (Formamide) at different temperatures.J. Dispers. Sci. Technol.201536564165110.1080/01932691.2013.862170
    [Google Scholar]
  72. StarksC.M. Phase-transfer catalysis. I. Heterogeneous reactions involving anion transfer by quaternary ammonium and phosphonium salts.J. Am. Chem. Soc.197193119519910.1021/ja00730a033
    [Google Scholar]
  73. CuiX. LiB. LiuT. LiC. A Practical solution for aqueous reactions of water-insoluble high-melting-point organic substrates.Green Chem.201214366867210.1039/c2gc16328d
    [Google Scholar]
  74. LiB. LiC. Neighboring heteroatom effect unique to aqueous aldol reactions of water-insoluble substrates.J. Org. Chem.20147952242225410.1021/jo500213b 24533785
    [Google Scholar]
  75. LiT. CuiX. SunL. LiC. Economical and efficient aqueous reductions of high melting-point imines and nitroarenes to amines: Promotion effects of granular PTFE.RSC Advances2014463335993360610.1039/C4RA04528A
    [Google Scholar]
  76. LiuC. SunL. LiC. Aqueous reduction of iodosteroids to deoxysteroids.J. Chem. Res.201438530931210.3184/174751914X13968892307636
    [Google Scholar]
  77. LiuL. FengS. LiC. Practical approach for quantitative green esterifications.ACS Sustain. Chem. Eng.20164126754676210.1021/acssuschemeng.6b01718
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298253318230929034500
Loading
/content/journals/mroc/10.2174/0118756298253318230929034500
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test