Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Analysis of the biochemical differences in the energy metabolism among bi-dimensional (2D) and tri-dimensional (3D) cultured cancer cell models and actual human tumors was undertaken. In 2D cancer cells, the oxidative phosphorylation (OxPhos) fluxes range is 2.5-19 nmol O/min/mg cellular protein. Hypoxia drastically decreased OxPhos flux by 2-3 times in 2D models, similar to what occurs in mature multicellular tumor spheroids (MCTS), a representative 3D cancer cell model. However, mitochondrial protein contents and enzyme activities were significantly different between both models. Moreover, glycolytic fluxes were also significantly different between 2D and MCTS. The glycolytic flux range in 2D models is 1-34 nmol lactate/min/mg cellular protein, whereas in MCTS the range of glycolysis fluxes is 60-80 nmol lactate/min/mg cellular. In addition, sensitivity to anticancer canonical and metabolic drugs was greater in MCTS than in 2D. Actual solid human tumor samples show lower (1.6-4.5 times) OxPhos fluxes compared to normoxic 2D cancer cell cultures. These observations indicate that tridimensional organization provides a unique microenvironment affecting tumor physiology, which has not been so far faithfully reproduced by the 2D environment. Thus, the analysis of the resemblances and differences among cancer cell models undertaken in the present study raises caution on the interpretation of results derived from 2D cultured cancer cells when they are extended to clinical settings. It also raises awareness about detecting which biological and environmental factors are missing in 2D and 3D cancer cell models to be able to reproduce the actual human tumor behavior.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575322436240924101642
2024-10-15
2025-04-16
Loading full text...

Full text loading...

References

  1. HinshawD.C. ShevdeL.A. The tumor microenvironment innately modulates cancer progression.Cancer Res.201979184557456610.1158/0008‑5472.CAN‑18‑3962 31350295
    [Google Scholar]
  2. XiaoY. YuD. Tumor microenvironment as a therapeutic target in cancer.Pharmacol. Ther.202122110775310.1016/j.pharmthera.2020.107753 33259885
    [Google Scholar]
  3. SmolkováK. Plecitá-HlavatáL. BellanceN. BenardG. RossignolR. JežekP. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells.Int. J. Biochem. Cell Biol.201143795096810.1016/j.biocel.2010.05.003 20460169
    [Google Scholar]
  4. PayenV.L. PorporatoP.E. BaseletB. SonveauxP. Metabolic changes associated with tumor metastasis, part 1: Tumor pH, glycolysis and the pentose phosphate pathway.Cell. Mol. Life Sci.20167371333134810.1007/s00018‑015‑2098‑5 26626411
    [Google Scholar]
  5. ChuK. DowL.E. Adding new dimensions to 3D cancer models.Cancer Res.202484679879910.1158/0008‑5472.CAN‑24‑0490 38335538
    [Google Scholar]
  6. SwartzM.A. IidaN. RobertsE.W. SangalettiS. WongM.H. YullF.E. CoussensL.M. DeClerckY.A. Tumor microenvironment complexity: Emerging roles in cancer therapy.Cancer Res.201272102473248010.1158/0008‑5472.CAN‑12‑0122 22414581
    [Google Scholar]
  7. McGranahanN. SwantonC. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution.Cancer Cell2015271152610.1016/j.ccell.2014.12.001 25584892
    [Google Scholar]
  8. DuesbergP. RauschC. RasnickD. HehlmannR. Genetic instability of cancer cells is proportional to their degree of aneuploidy.Proc. Natl. Acad. Sci. USA19989523136921369710.1073/pnas.95.23.13692 9811862
    [Google Scholar]
  9. GstraunthalerG. SeppiT. PfallerW. Impact of culture conditions, culture media volumes, and glucose content on metabolic properties of renal epithelial cell cultures. Are renal cells in tissue culture hypoxic?Cell. Physiol. Biochem.19999315017210.1159/000016312 10494029
    [Google Scholar]
  10. SherrC.J. DePinhoR.A. Cellular senescence.Cell2000102440741010.1016/S0092‑8674(00)00046‑5 10966103
    [Google Scholar]
  11. JoseC. RossignolR. Rationale for mitochondria-targeting strategies in cancer bioenergetic therapies.Int. J. Biochem. Cell Biol.201345112312910.1016/j.biocel.2012.07.005 22776740
    [Google Scholar]
  12. SwerdlowR.H. eL. AiresD. LuJ. Glycolysis–respiration relationships in a neuroblastoma cell line.Biochim. Biophys. Acta, Gen. Subj.2013183042891289810.1016/j.bbagen.2013.01.002 23313167
    [Google Scholar]
  13. SmithJ.A. NgoH. MartinM.C. WolfJ.K. An evaluation of cytotoxicity of the taxane and platinum agents combination treatment in a panel of human ovarian carcinoma cell lines.Gynecol. Oncol.200598114114510.1016/j.ygyno.2005.02.006 15963813
    [Google Scholar]
  14. ChuP.M. ChiouS.H. SuT.L. LeeY.J. ChenL.H. ChenY.W. YenS.H. ChenM.T. ChenM.H. ShihY.H. TuP.H. MaH.I. Enhancement of radiosensitivity in human glioblastoma cells by the DNA N-mustard alkylating agent BO-1051 through augmented and sustained DNA damage response.Radiat. Oncol.201161710.1186/1748‑717X‑6‑7 21244709
    [Google Scholar]
  15. SutherlandR.M. Cell and environment interactions in tumor microregions: The multicell spheroid model.Science1988240484917718410.1126/science.2451290 2451290
    [Google Scholar]
  16. Kunz-SchughartL.A. Multicellular tumor spheroids: Intermediates between monolayer culture and in vivo tumor.Cell Biol. Int.199923315716110.1006/cbir.1999.0384 10562436
    [Google Scholar]
  17. Mueller-KlieserW. Multicellular spheroids.J. Cancer Res. Clin. Oncol.1987113210112210.1007/BF00391431 3549738
    [Google Scholar]
  18. HirschhaeuserF. MenneH. DittfeldC. WestJ. Mueller-KlieserW. Kunz-SchughartL.A. Multicellular tumor spheroids: An underestimated tool is catching up again.J. Biotechnol.2010148131510.1016/j.jbiotec.2010.01.012 20097238
    [Google Scholar]
  19. WeiswaldL.B. BelletD. Dangles-MarieV. Spherical cancer models in tumor biology.Neoplasia201517111510.1016/j.neo.2014.12.004 25622895
    [Google Scholar]
  20. SutherlandR. FreyerJ. Mueller-KlieserW. WilsonR. HeacockC. SciandraJ. SordatB. Cellular growth and metabolic adaptations to nutrient stress environments in tumor microregions.Int. J. Radiat. Oncol. Biol. Phys.198612461161510.1016/0360‑3016(86)90070‑2 3700166
    [Google Scholar]
  21. FreyerJ.P. SchorP.L. Regrowth kinetics of cells from different regions of multicellular spheroids of four cell lines.J. Cell. Physiol.1989138238439210.1002/jcp.1041380222 2918040
    [Google Scholar]
  22. Rodríguez-EnríquezS. Gallardo-PérezJ.C. Avilés-SalasA. Marín-HernándezA. Carreño-FuentesL. Maldonado-LagunasV. Moreno-SánchezR. Energy metabolism transition in multi‐cellular human tumor spheroids.J. Cell. Physiol.2008216118919710.1002/jcp.21392 18264981
    [Google Scholar]
  23. Mandujano-TinocoE.A. Gallardo-PérezJ.C. Marín-HernándezA. Moreno-SánchezR. Rodríguez-EnríquezS. Anti-mitochondrial therapy in human breast cancer multi-cellular spheroids.Biochim. Biophys. Acta Mol. Cell Res.20131833354155110.1016/j.bbamcr.2012.11.013 23195224
    [Google Scholar]
  24. Akbarpour GhazaniM. NouriZ. SaghafianM. SoltaniM. Mathematical modeling reveals how the density of initial tumor and its distance to parent vessels alter the growth trend of vascular tumors.Microcirculation2020271e1258410.1111/micc.12584 31390104
    [Google Scholar]
  25. Rodríguez-EnríquezS. Gallardo-PérezJ.C. Hernández-ReséndizI. Marín-HernándezA. Pacheco-VelázquezS.C. López-RamírezS.Y. RumjanekF.D. Moreno-SánchezR. Canonical and new generation anticancer drugs also target energy metabolism.Arch. Toxicol.20148871327135010.1007/s00204‑014‑1246‑2 24792321
    [Google Scholar]
  26. Moreno-SánchezR. Robledo-CadenaD.X. Pacheco-VelázquezS.C. Vargas NavarroJ.L. Padilla-FloresJ.A. Rodríguez-EnríquezS. Estimation of energy pathway fluxes in cancer cells - Beyond the Warburg effect.Arch. Biochem. Biophys.202373910955910.1016/j.abb.2023.109559 36906097
    [Google Scholar]
  27. Marín-HernándezA. López-RamírezS.Y. Del Mazo-MonsalvoI. Gallardo-PérezJ.C. Rodríguez-EnríquezS. Moreno-SánchezR. SaavedraE. Modeling cancer glycolysis under hypoglycemia, and the role played by the differential expression of glycolytic isoforms.FEBS J.2014281153325334510.1111/febs.12864 24912776
    [Google Scholar]
  28. Marín-HernándezÁ. Gallardo-PérezJ.C. Hernández-ReséndizI. Del Mazo-MonsalvoI. Robledo-CadenaD.X. Moreno-SánchezR. Rodríguez-EnríquezS. Hypoglycemia enhances epithelial‐mesenchymal transition and invasiveness, and restrains the warburg phenotype, in hypoxic hela cell cultures and microspheroids.J. Cell. Physiol.201723261346135910.1002/jcp.25617 27661776
    [Google Scholar]
  29. CantorJ.R. Abu-RemailehM. KanarekN. FreinkmanE. GaoX. LouissaintA.Jr LewisC.A. SabatiniD.M. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase.Cell20171692258272.e1710.1016/j.cell.2017.03.023 28388410
    [Google Scholar]
  30. Vande VoordeJ. AckermannT. PfetzerN. SumptonD. MackayG. KalnaG. NixonC. BlythK. GottliebE. TarditoS. Improving the metabolic fidelity of cancer models with a physiological cell culture medium.Sci. Adv.201951eaau731410.1126/sciadv.aau7314 30613774
    [Google Scholar]
  31. YeoE.J. Hypoxia and aging.Exp. Mol. Med.2019516115 31221957
    [Google Scholar]
  32. VetrovoyO. SarievaK. GalkinaO. EschenkoN. LyanguzovA. GluschenkoT. TyulkovaE. RybnikovaE. Neuroprotective mechanism of hypoxic post-conditioning involves HIF1-associated regulation of the pentose phosphate pathway in rat brain.Neurochem. Res.20194461425143610.1007/s11064‑018‑2681‑x 30448928
    [Google Scholar]
  33. VetrovoyO. SarievaK. LomertE. NimiritskyP. EschenkoN. GalkinaO. LyanguzovA. TyulkovaE. RybnikovaE. Pharmacological HIF1 inhibition eliminates downregulation of the pentose phosphate pathway and prevents neuronal apoptosis in rat hippocampus caused by severe hypoxia.J. Mol. Neurosci.202070563564610.1007/s12031‑019‑01469‑8 31865524
    [Google Scholar]
  34. Torres-QuesadaO. DoerrierC. StrichS. GnaigerE. StefanE. Physiological cell culture media tune mitochondrial bioenergetics and drug sensitivity in cancer cell models.Cancers20221416391710.3390/cancers14163917 36010911
    [Google Scholar]
  35. FreyerJ.P. SutherlandR.M. Selective dissociation and characterization of cells from different regions of multicell tumor spheroids.Cancer Res.1980401139563965 7471046
    [Google Scholar]
  36. LukC.K. KengP.C. SutherlandR.M. Radiation response of proliferating and quiescent subpopulations isolated from multicellular spheroids.Br. J. Cancer1986541253210.1038/bjc.1986.148 3730254
    [Google Scholar]
  37. GrönvikC. CapalaJ. CarlssonJ. The non-variation in radiosensitivity of different proliferative states of human glioma cells.Anticancer Res.19961612531 8615616
    [Google Scholar]
  38. FreyerJ.P. Decreased mitochondrial function in quiescent cells isolated from multicellular tumor spheroids.J. Cell. Physiol.1998176113814910.1002/(SICI)1097‑4652(199807)176:1<138::AID‑JCP16>3.0.CO;2‑3 9618154
    [Google Scholar]
  39. Kunz-SchughartL.A. KreutzM. KnuechelR. Multicellular spheroids: A three‐dimensional in vitro culture system to study tumour biology.Int. J. Exp. Pathol.199879112310.1046/j.1365‑2613.1998.00051.x 9614346
    [Google Scholar]
  40. TindallM.J. PleaseC.P. Modelling the cell cycle and cell movement in multicellular tumour spheroids.Bull. Math. Biol.20076941147116510.1007/s11538‑006‑9110‑z 17372784
    [Google Scholar]
  41. EngelbergJ.A. RopellaG.E.P. HuntC.A. Essential operating principles for tumor spheroid growth.BMC Syst. Biol.20082111010.1186/1752‑0509‑2‑110 19105850
    [Google Scholar]
  42. QvarnströmO.F. SimonssonM. ErikssonV. TuressonI. CarlssonJ. γH2AX and cleaved PARP-1 as apoptotic markers in irradiated breast cancer BT474 cellular spheroids.Int. J. Oncol.2009351414710.3892/ijo_00000311 19513550
    [Google Scholar]
  43. TidwellT.R. RøslandG.V. TronstadK.J. SøreideK. HaglandH.R. Metabolic flux analysis of 3D spheroids reveals significant differences in glucose metabolism from matched 2D cultures of colorectal cancer and pancreatic ductal adenocarcinoma cell lines.Cancer Metab.2022101910.1186/s40170‑022‑00285‑w 35578327
    [Google Scholar]
  44. Marín-HernándezA. Gallardo-PérezJ. RalphS. Rodríguez-EnríquezS. Moreno-SánchezR. HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms.Mini Rev. Med. Chem.2009991084110110.2174/138955709788922610 19689405
    [Google Scholar]
  45. Rodríguez-EnríquezS. JuárezO. Rodríguez-ZavalaJ.S. Moreno-SánchezR. Multisite control of the Crabtree effect in ascites hepatoma cells.Eur. J. Biochem.200126882512251910.1046/j.1432‑1327.2001.02140.x 11298771
    [Google Scholar]
  46. Rodríguez-EnríquezS. Carreño-FuentesL. Gallardo-PérezJ.C. SaavedraE. QuezadaH. VegaA. Marín-HernándezA. Olín-SandovalV. Torres-MárquezM.E. Moreno-SánchezR. Oxidative phosphorylation is impaired by prolonged hypoxia in breast and possibly in cervix carcinoma.Int. J. Biochem. Cell Biol.201042101744175110.1016/j.biocel.2010.07.010 20654728
    [Google Scholar]
  47. Moreno-SánchezR. Rodríguez-EnríquezS. Marín-HernándezA. SaavedraE. Energy metabolism in tumor cells.FEBS J.200727461393141810.1111/j.1742‑4658.2007.05686.x 17302740
    [Google Scholar]
  48. Moreno-SánchezR. Rodríguez-EnríquezS. SaavedraE. Marín-HernándezA. Gallardo-PérezJ.C. The bioenergetics of cancer: Is glycolysis the main ATP supplier in all tumor cells?Biofactors200935220922510.1002/biof.31 19449450
    [Google Scholar]
  49. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  50. WarburgO. On the origin of cancer cells.Science1956123319130931410.1126/science.123.3191.309 13298683
    [Google Scholar]
  51. ZuX.L. GuppyM. Cancer metabolism: Facts, fantasy, and fiction.Biochem. Biophys. Res. Commun.2004313345946510.1016/j.bbrc.2003.11.136 14697210
    [Google Scholar]
  52. Moreno-SánchezR. Marín-HernándezA. SaavedraE. PardoJ.P. RalphS.J. Rodríguez-EnríquezS. Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism.Int. J. Biochem. Cell Biol.201450102310.1016/j.biocel.2014.01.025 24513530
    [Google Scholar]
  53. XuQ. Human three-dimensional hepatic models: Cell type variety and corresponding applications.Front. Bioeng. Biotechnol.2021973000810.3389/fbioe.2021.730008 34631680
    [Google Scholar]
  54. RamasamyT.S. YuJ.S.L. SeldenC. HodgsonH. CuiW. Application of three-dimensional culture conditions to human embryonic stem cell-derived definitive endoderm cells enhances hepatocyte differentiation and functionality.Tissue Eng. Part A2013193-436036710.1089/ten.tea.2012.0190 23003670
    [Google Scholar]
  55. WangX. ZhaoG. VanS. JiangN. YuL. VeraD. HowellS.B. Pharmacokinetics and tissue distribution of PGG–paclitaxel, a novel macromolecular formulation of paclitaxel, in nu/nu mice bearing NCI-460 lung cancer xenografts.Cancer Chemother. Pharmacol.201065351552610.1007/s00280‑009‑1058‑x 19593566
    [Google Scholar]
  56. StageT.B. BergmannT.K. KroetzD.L. Clinical pharmacokinetics of paclitaxel monotherapy: An updated literature review.Clin. Pharmacokinet.201857171910.1007/s40262‑017‑0563‑z 28612269
    [Google Scholar]
  57. MitraP. Targeting transcription factors in cancer drug discovery.Explor. Target. Antitumor Ther.20201610022510.37349/etat.2020.00025 36046384
    [Google Scholar]
  58. NishikawaS. IwakumaT. Drugs targeting p53 mutations with FDA approval and in clinical trials.Cancers202315242910.3390/cancers15020429 36672377
    [Google Scholar]
  59. HeS. CarmanC.V. LeeJ.H. LanB. KoehlerS. AtiaL. ParkC.Y. KimJ.H. MitchelJ.A. ParkJ.A. ButlerJ.P. LuQ. FredbergJ.J. The tumor suppressor p53 can promote collective cellular migration.PLoS One2019142e020206510.1371/journal.pone.0202065 30707705
    [Google Scholar]
  60. AvciN.G. Ebrahimzadeh-PustchiS. AkayY.M. EsquenaziY. TandonN. ZhuJ.J. AkayM. NF-κB inhibitor with Temozolomide results in significant apoptosis in glioblastoma via the NF-κB(p65) and actin cytoskeleton regulatory pathways.Sci. Rep.20201011335210.1038/s41598‑020‑70392‑5 32770097
    [Google Scholar]
  61. SonveauxP. VégranF. SchroederT. WerginM.C. VerraxJ. RabbaniZ.N. De SaedeleerC.J. KennedyK.M. DiepartC. JordanB.F. KelleyM.J. GallezB. WahlM.L. FeronO. DewhirstM.W. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice.J. Clin. Invest.2008118123930394210.1172/JCI36843 19033663
    [Google Scholar]
  62. RattiganY.I. PatelB.B. AckerstaffE. SukenickG. KoutcherJ.A. GlodJ.W. BanerjeeD. Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment.Exp. Cell Res.2012318432633510.1016/j.yexcr.2011.11.014 22178238
    [Google Scholar]
  63. VaupelP. KallinowskiF. OkunieffP. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review.Cancer Res.1989492364496465 2684393
    [Google Scholar]
  64. HöckelM. VaupelP. Biological consequences of tumor hypoxia.Semin. Oncol.2001282Suppl. 8364110.1016/S0093‑7754(01)90211‑8 11395851
    [Google Scholar]
  65. TamuleviciusP. StrefferC. Metabolic imaging in tumours by means of bioluminescence.Br. J. Cancer19957251102111210.1038/bjc.1995.472 7577454
    [Google Scholar]
  66. HirayamaA. KamiK. SugimotoM. SugawaraM. TokiN. OnozukaH. KinoshitaT. SaitoN. OchiaiA. TomitaM. EsumiH. SogaT. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry.Cancer Res.200969114918492510.1158/0008‑5472.CAN‑08‑4806 19458066
    [Google Scholar]
  67. Pacheco-VelázquezS.C. Gallardo-PérezJ.C. Aguilar-PonceJ.L. VillarrealP. Ruiz-GodoyL. Pérez-SánchezM. Marín-HernándezA. Ruiz-GarcíaE. Meneses-GarcíaA. Moreno-SánchezR. Rodríguez-EnríquezS. Identification of a metabolic and canonical biomarker signature in Mexican HR+/HER2−, triple positive and triple-negative breast cancer patients.Int. J. Oncol.20144562549255910.3892/ijo.2014.2676 25270118
    [Google Scholar]
  68. SzablewskiL. Glucose transporters as markers of diagnosis and prognosis in cancer diseases.Oncol. Rev.202216156110.4081/oncol.2022.561 35340885
    [Google Scholar]
  69. MassariF. CiccareseC. SantoniM. IacovelliR. MazzucchelliR. PivaF. ScarpelliM. BerardiR. TortoraG. Lopez-BeltranA. ChengL. MontironiR. Metabolic phenotype of bladder cancer.Cancer Treat. Rev.201645465710.1016/j.ctrv.2016.03.005 26975021
    [Google Scholar]
  70. ZhangL. SuK. LiuQ. LiB. WangY. ChengC. LiY. XuC. ChenJ. WuH. ZhuM. MaiX. CaoY. PengJ. YueY. DingY. YuD. Kidney-type glutaminase is a biomarker for the diagnosis and prognosis of hepatocellular carcinoma: A prospective study.BMC Cancer2023231108110.1186/s12885‑023‑11601‑y 37946141
    [Google Scholar]
  71. Sánchez-CenizoL. FormentiniL. AldeaM. OrtegaÁ.D. García-HuertaP. Sánchez-AragóM. CuezvaJ.M. Up-regulation of the ATPase inhibitory factor 1 (IF1) of the mitochondrial H+-ATP synthase in human tumors mediates the metabolic shift of cancer cells to a Warburg phenotype.J. Biol. Chem.201028533253082531310.1074/jbc.M110.146480 20538613
    [Google Scholar]
  72. Rodríguez-EnríquezS. Robledo-CadenaD.X. Gallardo-PérezJ.C. Pacheco-VelázquezS.C. VázquezC. SaavedraE. Vargas-NavarroJ.L. Blanco-CarpinteroB.A. Marín-HernándezÁ. Jasso-ChávezR. EncaladaR. Ruiz-GodoyL. Aguilar-PonceJ.L. Moreno-SánchezR. Acetate promotes a differential energy metabolic response in human HCT 116 and COLO 205 colon cancer cells impacting cancer cell growth and invasiveness.Front. Oncol.20211169740810.3389/fonc.2021.697408 34414111
    [Google Scholar]
  73. SimonnetH. DemontJ. PfeifferK. GuenanecheL. BouvierR. BrandtU. SchaggerH. GodinotC. Mitochondrial complex I is deficient in renal oncocytomas.Carcinogenesis20032491461146610.1093/carcin/bgg109 12844484
    [Google Scholar]
  74. MeierhoferD. MayrJ.A. FoetschlU. BergerA. FinkK. SchmellerN. HackerG.W. Hauser-KronbergerC. KoflerB. SperlW. Decrease of mitochondrial DNA content and energy metabolism in renal cell carcinoma.Carcinogenesis20042561005101010.1093/carcin/bgh104 14764459
    [Google Scholar]
  75. KoitA. TimohhinaN. TruuL. ChekulayevV. GudlawarS. ShevchukI. LepikK. MalloL. KutnerR. ValvereV. KaambreT. Metabolic and OXPHOS activities quantified by temporal ex vivo analysis display patient-specific metabolic vulnerabilities in human breast cancers.Front. Oncol.202010105310.3389/fonc.2020.01053 32695682
    [Google Scholar]
  76. PereiraP.M.R. BerishaN. BhupathirajuN.V.S.D.K. FernandesR. ToméJ.P.C. DrainC.M. Cancer cell spheroids are a better screen for the photodynamic efficiency of glycosylated photosensitizers.PLoS One2017125e017773710.1371/journal.pone.0177737 28545086
    [Google Scholar]
  77. CookK.M. ShenH. McKelveyK.J. GeeH.E. HauE. Targeting glucose metabolism of cancer cells with dichloroacetate to radiosensitize high-grade gliomas.Int. J. Mol. Sci.20212214726510.3390/ijms22147265 34298883
    [Google Scholar]
  78. LiuR. BianY. LiuL. LiuL. LiuX. MaS. Molecular pathways associated with oxidative stress and their potential applications in radiotherapy (Review).Int. J. Mol. Med.20224956510.3892/ijmm.2022.5121 35293589
    [Google Scholar]
  79. KuznetsovA.V. VekslerV. GellerichF.N. SaksV. MargreiterR. KunzW.S. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells.Nat. Protoc.20083696597610.1038/nprot.2008.61 18536644
    [Google Scholar]
  80. KaambreT. ChekulayevV. ShevchukI. Karu-VarikmaaM. TimohhinaN. TeppK. BogovskajaJ. KütnerR. ValvereV. SaksV. Metabolic control analysis of cellular respiration in situ in intraoperational samples of human breast cancer.J. Bioenerg. Biomembr.201244553955810.1007/s10863‑012‑9457‑9 22836527
    [Google Scholar]
  81. KaldmaA. KlepininA. ChekulayevV. MadoK. ShevchukI. TimohhinaN. TeppK. KandashviliM. VarikmaaM. KoitA. PlankenM. HeckK. TruuL. PlankenA. ValvereV. RebaneE. KaambreT. An in situ study of bioenergetic properties of human colorectal cancer: The regulation of mitochondrial respiration and distribution of flux control among the components of ATP synthasome.Int. J. Biochem. Cell Biol.20145517118610.1016/j.biocel.2014.09.004 25218857
    [Google Scholar]
  82. SaksV. KuznetsovA. KhuchuaZ. VasilyevaE. BelikovaJ. KesvateraT. TiivelT. Control of cellular respiration in vivo by mitochondrial outer membrane and by creatine kinase. A new speculative hypothesis: Possible involvement of mitochondrial-cytoskeleton interactions.J. Mol. Cell. Cardiol.199527162564510.1016/S0022‑2828(08)80056‑9 7760382
    [Google Scholar]
  83. KuznetsovA.V. TiivelT. SikkP. KaambreT. KayL. DaneshradZ. RossiA. KadajaL. PeetN. SeppetE. SaksV.A. Striking differences between the kinetics of regulation of respiration by ADP in slow-twitch and fast-twitch muscles in vivo.Eur. J. Biochem.1996241390991510.1111/j.1432‑1033.1996.00909.x 8944782
    [Google Scholar]
  84. VekslerV.I. KuznetsovA.V. AnflousK. MateoP. van DeursenJ. WieringaB. Ventura-ClapierR. Muscle creatine kinase-deficient mice. II. Cardiac and skeletal muscles exhibit tissue-specific adaptation of the mitochondrial function.J. Biol. Chem.199527034199211992910.1074/jbc.270.34.19921 7650007
    [Google Scholar]
  85. Rebane-KlemmE. TruuL. ReinsaluL. PuurandM. ShevchukI. ChekulayevV. TimohhinaN. TeppK. BogovskajaJ. AfanasjevV. SuurmaaK. ValvereV. KaambreT. Mitochondrial respiration in KRAS and BRAF mutated colorectal tumors and polyps.Cancers202012481510.3390/cancers12040815 32231083
    [Google Scholar]
  86. OunpuuL. TruuL. ShevchukI. ChekulayevV. KlepininA. KoitA. TeppK. PuurandM. Rebane-KlemmE. KäämbreT. Comparative analysis of the bioenergetics of human adenocarcinoma Caco-2 cell line and postoperative tissue samples from colorectal cancer patients.Biochem. Cell Biol.201896680881710.1139/bcb‑2018‑0076 30058357
    [Google Scholar]
  87. Marín-HernándezA. Gallardo-PérezJ.C. Rodríguez-EnríquezS. EncaladaR. Moreno-SánchezR. SaavedraE. Modeling cancer glycolysis.Biochim. Biophys. Acta Bioenerg.20111807675576710.1016/j.bbabio.2010.11.006 21110941
    [Google Scholar]
  88. KoitA. ShevchukI. OunpuuL. KlepininA. ChekulayevV. TimohhinaN. TeppK. PuurandM. TruuL. HeckK. ValvereV. GuzunR. KaambreT. Mitochondrial respiration in human colorectal and breast cancer clinical material is regulated differently.Oxid. Med. Cell. Longev.201720171137264010.1155/2017/1372640 28781720
    [Google Scholar]
  89. ReinsaluL. PuurandM. ChekulayevV. MillerS. ShevchukI. TeppK. Rebane-KlemmE. TimohhinaN. TerasmaaA. KaambreT. Energy metabolic plasticity of colorectal cancer cells as a determinant of tumor growth and metastasis.Front. Oncol.20211169895110.3389/fonc.2021.698951 34381722
    [Google Scholar]
  90. Pacheco-VelázquezS.C. Gallardo-PérezJ.C. DíazD. Adán-Ladrón de GuevaraA. Robledo-CadenaD.X. SaavedraE. Ruiz-GodoyL. Jimenez-HernándezL.R. Vargas-BarrónJ. Aguilar-PonceJ.L. Rodríguez-EnríquezS. Heart myxoma develops oncogenic and metastatic phenotype.J. Cancer Res. Clin. Oncol.201914551283129510.1007/s00432‑019‑02897‑0 30900156
    [Google Scholar]
  91. Rebane-KlemmE. ReinsaluL. PuurandM. ShevchukI. BogovskajaJ. SuurmaaK. ValvereV. Moreno-SanchezR. KaambreT. Colorectal polyps increase the glycolytic activity.Front. Oncol.202313117188710.3389/fonc.2023.1171887 37342183
    [Google Scholar]
  92. LenazG. GenovaM.L. Kinetics of integrated electron transfer in the mitochondrial respiratory chain: Random collisions vs. solid state electron channeling.Am. J. Physiol. Cell Physiol.20072924C1221C123910.1152/ajpcell.00263.2006 17035300
    [Google Scholar]
  93. TimohhinaN. GuzunR. TeppK. MongeC. VarikmaaM. VijaH. SikkP. KaambreT. SackettD. SaksV. Direct measurement of energy fluxes from mitochondria into cytoplasm in permeabilized cardiac cells in situ: Some evidence for mitochondrial interactosome.J. Bioenerg. Biomembr.200941325927510.1007/s10863‑009‑9224‑8 19597977
    [Google Scholar]
  94. LenazG. GenovaM.L. Structural and functional organization of the mitochondrial respiratory chain: A dynamic super-assembly.Int. J. Biochem. Cell Biol.200941101750177210.1016/j.biocel.2009.04.003 19711505
    [Google Scholar]
  95. VonckJ. SchäferE. Supramolecular organization of protein complexes in the mitochondrial inner membrane.Biochim. Biophys. Acta Mol. Cell Res.20091793111712410.1016/j.bbamcr.2008.05.019 18573282
    [Google Scholar]
  96. RohlenovaK. SachaphibulkijK. StursaJ. Bezawork-GeletaA. BlechaJ. EndayaB. WernerL. CernyJ. ZobalovaR. GoodwinJ. SpacekT. Alizadeh PesdarE. YanB. NguyenM.N. VondrusovaM. SobolM. JezekP. HozakP. TruksaJ. RohlenaJ. DongL.F. NeuzilJ. Selective disruption of respiratory supercomplexes as a new strategy to suppress Her2high breast cancer.Antioxid. Redox Signal.20172628410310.1089/ars.2016.6677 27392540
    [Google Scholar]
  97. El-SoussiS. HannaR. SemaanH. KhaterA.R. AbdallahJ. Abou-KheirW. Abou-AntounT. A novel therapeutic mechanism of imipridones ONC201/ONC206 in MYCN-amplified neuroblastoma cells via differential expression of tumorigenic proteins.Front Pediatr.2021969314510.3389/fped.2021.693145 34422720
    [Google Scholar]
  98. Aminzadeh-GohariS. WeberD.D. CatalanoL. FeichtingerR.G. KoflerB. LangR. Targeting mitochondria in melanoma.Biomolecules20201010139510.3390/biom10101395 33007949
    [Google Scholar]
  99. HsiehM.T. LeeP.C. ChiangY.T. LinH.Y. LeeD.Y. The effects of a curcumin derivative and osimertinib on fatty acyl metabolism and mitochondrial functions in HCC827 cells and tumors.Int. J. Mol. Sci.202324151219010.3390/ijms241512190 37569564
    [Google Scholar]
  100. YaoK. LiuH. YinJ. YuanJ. TaoH. Synthetic lethality and synergetic effect: The effective strategies for therapy of IDH-mutated cancers.J. Exp. Clin. Cancer Res.202140126310.1186/s13046‑021‑02054‑x 34425876
    [Google Scholar]
  101. ZampieriL.X. SboarinaM. CacaceA. GrassoD. ThabaultL. HamelinL. VazeilleT. DumonE. RossignolR. FrédérickR. SonveauxE. LefrancF. SonveauxP. Olaparib is a mitochondrial complex I inhibitor that kills temozolomide-resistant human glioblastoma cells.Int. J. Mol. Sci.202122211193810.3390/ijms222111938 34769368
    [Google Scholar]
  102. Quintela-FandinoM. MoralesS. Cortés-SalgadoA. MansoL. ApalaJ.V. MuñozM. Gasol CudosA. Salla FortunyJ. GionM. Lopez-AlonsoA. CortésJ. GuerraJ. MalónD. CaleirasE. MuleroF. MouronS. Randomized phase 0/I trial of the mitochondrial inhibitor ME-344 or placebo added to bevacizumab in early HER2-negative breast cancer.Clin. Cancer Res.2020261354510.1158/1078‑0432.CCR‑19‑2023 31597662
    [Google Scholar]
  103. JankuF. LoRussoP. MansfieldA.S. NandaR. SpiraA. WangT. Melhem-BertrandtA. SuggJ. BallH.A. First-in-human evaluation of the novel mitochondrial complex I inhibitor ASP4132 for treatment of cancer.Invest. New Drugs20213951348135610.1007/s10637‑021‑01112‑7 33830407
    [Google Scholar]
  104. JankuF. BeomS.H. MoonY.W. KimT.W. ShinY.G. YimD.S. KimG.M. KimH.S. KimS.Y. CheongJ.H. LeeY.W. GeigerB. YooS. ThurstonA. WelschD. RudoltzM.S. RhaS.Y. First-in-human study of IM156, a novel potent biguanide oxidative phosphorylation (OXPHOS) inhibitor, in patients with advanced solid tumors.Invest. New Drugs20224051001101010.1007/s10637‑022‑01277‑9 35802288
    [Google Scholar]
  105. MohanA. GriffithK.A. WuchuF. ZhenD.B. Kumar-SinhaC. CryslerO. HsiehchenD. EnzlerT. DippmanD. GunchickV. AchrejaA. AnimasahunO. ChopparaS. NenwaniM. ChinnaiyanA.M. NagrathD. ZalupskiM.M. SahaiV. Devimistat in combination with gemcitabine and cisplatin in biliary tract cancer: Preclinical evaluation and phase Ib multicenter clinical trial (BilT-04).Clin. Cancer Res.202329132394240010.1158/1078‑0432.CCR‑23‑0036 37115501
    [Google Scholar]
  106. YapT.A. DaverN. MahendraM. ZhangJ. Kamiya-MatsuokaC. Meric-BernstamF. KantarjianH.M. RavandiF. CollinsM.E. FrancescoM.E.D. DumbravaE.E. FuS. GaoS. GayJ.P. GeraS. HanJ. HongD.S. JabbourE.J. JuZ. KarpD.D. LodiA. MolinaJ.R. BaranN. NaingA. OhanianM. PantS. PemmarajuN. BoseP. Piha-PaulS.A. RodonJ. SalgueroC. SasakiK. SinghA.K. SubbiahV. TsimberidouA.M. XuQ.A. YilmazM. ZhangQ. LiY. BristowC.A. BhattacharjeeM.B. TizianiS. HeffernanT.P. VellanoC.P. JonesP. HeijnenC.J. KavelaarsA. MarszalekJ.R. KonoplevaM. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: Phase I trials.Nat. Med.202329111512610.1038/s41591‑022‑02103‑8 36658425
    [Google Scholar]
  107. RasnickD. DuesbergP.H. How aneuploidy affects metabolic control and causes cancer.Biochem. J.1999340362163010.1042/bj3400621 10359645
    [Google Scholar]
  108. FongE.L.S. HarringtonD.A. Farach-CarsonM.C. YuH. Heralding a new paradigm in 3D tumor modeling.Biomaterials201610819721310.1016/j.biomaterials.2016.08.052 27639438
    [Google Scholar]
  109. AlzeebG. MetgesJ.P. CorcosL. Le Jossic-CorcosC. Three-dimensional culture systems in gastric cancer research.Cancers20201210280010.3390/cancers12102800 33003476
    [Google Scholar]
  110. Mueller-KlieserW. Three-dimensional cell cultures: From molecular mechanisms to clinical applications.Am. J. Physiol. Cell Physiol.19972734C1109C112310.1152/ajpcell.1997.273.4.C1109 9357753
    [Google Scholar]
  111. Hernández-ReséndizI. Gallardo-PérezJ.C. López-MacayA. Robledo-CadenaD.X. García-VillaE. GariglioP. SaavedraE. Moreno-SánchezR. Rodríguez-EnríquezS. Mutant p53 R248Q downregulates oxidative phosphorylation and upregulates glycolysis under normoxia and hypoxia in human cervix cancer cells.J. Cell. Physiol.201923455524553610.1002/jcp.27354 30272821
    [Google Scholar]
  112. Robledo-CadenaD.X. Gallardo-PérezJ.C. Dávila-BorjaV. Pacheco-VelázquezS.C. Belmont-DíazJ.A. RalphS.J. Blanco-CarpinteroB.A. Moreno-SánchezR. Rodríguez-EnríquezS. Non-steroidal anti-inflammatory drugs increase cisplatin, paclitaxel, and doxorubicin efficacy against human cervix cancer cells.Pharmaceuticals2020131246310.3390/ph13120463 33333716
    [Google Scholar]
  113. Pacheco-VelázquezS.C. Robledo-CadenaD.X. Hernández-ReséndizI. Gallardo-PérezJ.C. Moreno-SánchezR. Rodríguez-EnríquezS. Energy metabolism drugs block triple negative breast metastatic cancer cell phenotype.Mol. Pharm.20181562151216410.1021/acs.molpharmaceut.8b00015 29746779
    [Google Scholar]
  114. Pacheco-VelázquezS.C. Ortega-MejíaI.I. Vargas-NavarroJ.L. Padilla-FloresJ.A. Robledo-CadenaD.X. Tapia-MartínezG. Peñalosa-CastroI. Aguilar-PonceJ.L. Granados-RivasJ.C. Moreno-SánchezR. Rodríguez-EnríquezS. 17-β Estradiol up-regulates energy metabolic pathways, cellular proliferation and tumor invasiveness in ER+ breast cancer spheroids.Front. Oncol.202212101813710.3389/fonc.2022.1018137 36419896
    [Google Scholar]
  115. Rodríguez-EnríquezS. Marín-HernándezÁ. Gallardo-PérezJ.C. Pacheco-VelázquezS.C. Belmont-DíazJ.A. Robledo-CadenaD.X. Vargas-NavarroJ.L. Corona de la PeñaN.A. SaavedraE. Moreno-SánchezR. Transcriptional regulation of energy metabolism in cancer cells.Cells2019810122510.3390/cells8101225 31600993
    [Google Scholar]
  116. AdekunbiD.A. HuberH.F. LiC. NathanielszP.W. CoxL.A. SalmonA.B. Differential mitochondrial bioenergetics and cellular resilience in astrocytes, hepatocytes, and fibroblasts from aging baboons.bioRxiv202411710.1101/2024.02.06.579010
    [Google Scholar]
  117. SomersT. SiddiqiS. MaasR.G.C. SluijterJ.P.G. BuikemaJ.W. van den BroekP.H.H. MeuwissenT.J. MorshuisW.J. RusselF.G.M. SchirrisT.J.J. Statins affect human iPSC-derived cardiomyocytes by interfering with mitochondrial function and intracellular acidification.Basic Res. Cardiol.2024119230932710.1007/s00395‑023‑01025‑x 38305903
    [Google Scholar]
  118. RodríguezenríquezS. VitalgonzálezP. FloresrodríguezF. MarínhernándezA. RuizazuaraL. MorenosánchezR. Control of cellular proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells.Toxicol. Appl. Pharmacol.2006215220821710.1016/j.taap.2006.02.005 16580038
    [Google Scholar]
  119. Hernández-ReséndizI. Román-RosalesA. García-VillaE. López-MacayA. PinedaE. SaavedraE. Gallardo-PérezJ.C. Alvarez-RíosE. GariglioP. Moreno-SánchezR. Rodríguez-EnríquezS. Dual regulation of energy metabolism by p53 in human cervix and breast cancer cells.Biochim. Biophys. Acta Mol. Cell Res.20151853123266327810.1016/j.bbamcr.2015.09.033 26434996
    [Google Scholar]
  120. Gallardo-PérezJ.C. de GuevaraA.A-L. García-AmezcuaM.A. Robledo-CadenaD.X. Pacheco-VelázquezS.C. Belmont-DíazJ.A. Vargas-NavarroJ.L. Moreno-SánchezR. Rodríguez-EnríquezS. Celecoxib and dimethylcelecoxib block oxidative phosphorylation, epithelial-mesenchymal transition and invasiveness in breast cancer stem cells.Curr. Med. Chem.202229152719273510.2174/0929867328666211005124015 34636290
    [Google Scholar]
  121. FouadM.A. AghaA.M. MerzabaniM.M.A. ShoumanS.A. Resveratrol inhibits proliferation, angiogenesis and induces apoptosis in colon cancer cells.Hum. Exp. Toxicol.201332101067108010.1177/0960327113475679 23536519
    [Google Scholar]
  122. TsunodaT. IshikuraS. DoiK. MatsuzakiH. IwaiharaY. ShirasawaS. Resveratrol induces luminal apoptosis of human colorectal cancer HCT116 cells in three-dimensional culture.Anticancer Res.201434845514555 25075098
    [Google Scholar]
  123. WangS. WillenbergI. KrohnM. HeckerT. MeckelmannS. LiC. PanY. SchebbN.H. SteinbergP. EmplM.T. Growth-inhibiting activity of resveratrol imine analogs on tumor cells in vitro.PLoS One2017121e017050210.1371/journal.pone.0170502 28114318
    [Google Scholar]
  124. LiebmannJ.E. CookJ.A. LipschultzC. TeagueD. FisherJ. MitchellJ.B. Cytotoxic studies of paclitaxel (Taxol®) in human tumour cell lines.Br. J. Cancer19936861104110910.1038/bjc.1993.488 7903152
    [Google Scholar]
  125. Rodríguez-EnríquezS. Torres-MárquezM.E. Moreno-SánchezR. Substrate oxidation and ATP supply in AS-30D hepatoma cells.Arch. Biochem. Biophys.20003751213010.1006/abbi.1999.1582 10683245
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575322436240924101642
Loading
/content/journals/mrmc/10.2174/0113895575322436240924101642
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test