Skip to content
2000
image of Targeting Bcl-2 with Indole Scaffolds: Emerging Drug Design Strategies for Cancer Treatment

Abstract

The B-cell lymphoma-2 (Bcl-2) protein family plays a crucial role as a regulator in the process of apoptosis. There is a substantial body of evidence indicating that the upregulation of anti-apoptotic Bcl-2 proteins is prevalent in several cancer cell lines and original tumour tissue samples. This phenomenon plays a crucial role in enabling tumour cells to avoid apoptosis, hence facilitating the development of resistant cells against chemotherapy. Therefore, the success rate of chemotherapy for cancer can be enhanced by the down-regulation of anti-apoptotic Bcl-2 proteins. Furthermore, the indole structural design is commonly found in a variety of natural substances and biologically active compounds, particularly those that possess anti-cancer properties. Due to its distinctive physicochemical and biological characteristics, it has been highly regarded as a fundamental framework in the development and production of anti-cancer drugs. As a result, a considerable range of indole derivatives, encompassing both naturally occurring and developed compounds, have been identified as potential candidates for the treatment of cancer. Several of these derivatives have advanced to clinical trials, while others are already being used in clinical settings. This emphasizes the significant role of indole in the field of research and development of anti-cancer therapeutics. This study provides an overview of apoptosis and the structural characteristics of Bcl-2 family proteins, and mainly examines the present stage and recent developments in Bcl-2 inhibitors with an indole scaffold embedded in their structure.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575306176240925094457
2024-10-11
2024-12-26
Loading full text...

Full text loading...

References

  1. Jan R. Chaudhry G.S. Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Adv. Pharm. Bull. 2019 9 2 205 218 10.15171/apb.2019.024 31380246
    [Google Scholar]
  2. Hengartner M.O. The biochemistry of apoptosis. Nature 2000 407 6805 770 776 10.1038/35037710 11048727
    [Google Scholar]
  3. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  4. D’Arcy M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019 43 6 582 592 10.1002/cbin.11137 30958602
    [Google Scholar]
  5. Gilmore A. King L. Emerging approaches to target mitochondrial apoptosis in cancer cells. F1000Res. 2019 8 1793 10.12688/f1000research.18872.1
    [Google Scholar]
  6. Sermer D. Pasqualucci L. Wendel H.G. Melnick A. Younes A. Emerging epigenetic-modulating therapies in lymphoma. Nat. Rev. Clin. Oncol. 2019 16 8 494 507 10.1038/s41571‑019‑0190‑8 30837715
    [Google Scholar]
  7. Wan Y. Li Y. Yan C. Yan M. Tang Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem. 2019 183 111691 10.1016/j.ejmech.2019.111691 31536895
    [Google Scholar]
  8. Elmore S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007 35 4 495 516 10.1080/01926230701320337 17562483
    [Google Scholar]
  9. Carneiro B.A. El-Deiry W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 2020 17 7 395 417 10.1038/s41571‑020‑0341‑y 32203277
    [Google Scholar]
  10. Inoue S. Browne G. Melino G. Cohen G.M. Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death Differ. 2009 16 7 1053 1061 10.1038/cdd.2009.29 19325570
    [Google Scholar]
  11. Tang D. Kang R. Berghe T.V. Vandenabeele P. Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019 29 5 347 364 10.1038/s41422‑019‑0164‑5 30948788
    [Google Scholar]
  12. Yu-bin J. Postdoctoral, Programme, Reseach and Anticancer. “Advance research in apoptosis mediating by death receptor.”. J. Shenyang Pharm. Univ. 2008 2008 67 68
    [Google Scholar]
  13. Siegmund D. Mauri D. Peters N. Juo P. Thome M. Reichwein M. Blenis J. Scheurich P. Tschopp J. Wajant H. Fas-associated death domain protein (FADD) and caspase-8 mediate up-regulation of c-Fos by Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via a FLICE inhibitory protein (FLIP)-regulated pathway. J. Biol. Chem. 2001 276 35 32585 32590 10.1074/jbc.M100444200 11384965
    [Google Scholar]
  14. Huang B. Eberstadt M. Olejniczak E.T. Meadows R.P. Fesik S.W. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 1996 384 6610 638 641 10.1038/384638a0 8967952
    [Google Scholar]
  15. Reed J.C. Bcl-2 family proteins. Oncogene 1998 17 25 3225 3236 10.1038/sj.onc.1202591 9916985
    [Google Scholar]
  16. Alnemri E. Intrinsic Pathway for Apoptosis. 2004 Available From: https://reactome.org/content/detail/R-HSA-109606
  17. Vogler M. Dinsdale D. Dyer M.J.S. Cohen G.M. Bcl-2 inhibitors: Small molecules with a big impact on cancer therapy. Cell Death Differ. 2009 16 3 360 367 10.1038/cdd.2008.137 18806758
    [Google Scholar]
  18. Danial N.N. Korsmeyer S.J. Cell Death. Cell 2004 116 2 205 219 10.1016/S0092‑8674(04)00046‑7 14744432
    [Google Scholar]
  19. Huang D.C.S. Strasser A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell 2000 103 6 839 842 10.1016/S0092‑8674(00)00187‑2 11136969
    [Google Scholar]
  20. Adams J.M. Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007 26 9 1324 1337 10.1038/sj.onc.1210220 17322918
    [Google Scholar]
  21. Youle R.J. Strasser A. The BCL-2 protein family: Opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 2008 9 1 47 59 10.1038/nrm2308 18097445
    [Google Scholar]
  22. Chen L. Willis S.N. Wei A. Smith B.J. Fletcher J.I. Hinds M.G. Colman P.M. Day C.L. Adams J.M. Huang D.C.S. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell 2005 17 3 393 403 10.1016/j.molcel.2004.12.030 15694340
    [Google Scholar]
  23. Basu A. The interplay between apoptosis and cellular senescence: Bcl-2 family proteins as targets for cancer therapy. Pharmacol. Ther. 2022 230 107943 10.1016/j.pharmthera.2021.107943 34182005
    [Google Scholar]
  24. Lomonosova E. Chinnadurai G. BH3-only proteins in apoptosis and beyond: An overview. Oncogene 2008 27 S1 Suppl. 1 S2 S19 10.1038/onc.2009.39 19641503
    [Google Scholar]
  25. Shamas-Din A. Brahmbhatt H. Leber B. Andrews D.W. BH3-only proteins: Orchestrators of apoptosis. Biochim. Biophys. Acta Mol. Cell Res. 2011 1813 4 508 520 10.1016/j.bbamcr.2010.11.024 21146563
    [Google Scholar]
  26. Certo M. Moore V.D.G. Nishino M. Wei G. Korsmeyer S. Armstrong S.A. Letai A. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 2006 9 5 351 365 10.1016/j.ccr.2006.03.027 16697956
    [Google Scholar]
  27. Del Gaizo Moore V. Letai A. BH3 profiling – Measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions. Cancer Lett. 2013 332 2 202 205 10.1016/j.canlet.2011.12.021 22230093
    [Google Scholar]
  28. Leber B. Lin J. Andrews D.W. Still embedded together binding to membranes regulates Bcl-2 protein interactions. Oncogene 2010 29 38 5221 5230 10.1038/onc.2010.283 20639903
    [Google Scholar]
  29. Souers A.J. Leverson J.D. Boghaert E.R. Ackler S.L. Catron N.D. Chen J. Dayton B.D. Ding H. Enschede S.H. Fairbrother W.J. Huang D.C.S. Hymowitz S.G. Jin S. Khaw S.L. Kovar P.J. Lam L.T. Lee J. Maecker H.L. Marsh K.C. Mason K.D. Mitten M.J. Nimmer P.M. Oleksijew A. Park C.H. Park C.M. Phillips D.C. Roberts A.W. Sampath D. Seymour J.F. Smith M.L. Sullivan G.M. Tahir S.K. Tse C. Wendt M.D. Xiao Y. Xue J.C. Zhang H. Humerickhouse R.A. Rosenberg S.H. Elmore S.W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 2013 19 2 202 208 10.1038/nm.3048 23291630
    [Google Scholar]
  30. Delbridge A.R.D. Grabow S. Strasser A. Vaux D.L. Thirty years of BCL-2: Translating cell death discoveries into novel cancer therapies. Nat. Rev. Cancer 2016 16 2 99 109 10.1038/nrc.2015.17 26822577
    [Google Scholar]
  31. Kuwana T. Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol. 2003 15 6 691 9 10.1016/j.ceb.2003.10.004
    [Google Scholar]
  32. Kale J. Osterlund E.J. Andrews D.W. BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 2018 25 1 65 80 10.1038/cdd.2017.186 29149100
    [Google Scholar]
  33. Letai A. Bassik M.C. Walensky L.D. Sorcinelli M.D. Weiler S. Korsmeyer S.J. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002 2 3 183 192 10.1016/S1535‑6108(02)00127‑7 12242151
    [Google Scholar]
  34. Willis S.N. Chen L. Dewson G. Wei A. Naik E. Fletcher J.I. Adams J.M. Huang D.C.S. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-x L, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev. 2005 19 11 1294 1305 10.1101/gad.1304105 15901672
    [Google Scholar]
  35. Willis S.N. Fletcher J.I. Kaufmann T. van Delft M.F. Chen L. Czabotar P.E. Ierino H. Lee E.F. Fairlie W.D. Bouillet P. Strasser A. Kluck R.M. Adams J.M. Huang D.C.S. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 2007 315 5813 856 859 10.1126/science.1133289 17289999
    [Google Scholar]
  36. Ding J. Mooers B. H. M. Zhang Z. Kale J. Falcone D. McNichol J. Huang B. Zhang X. C. Xing C. Andrews D. W. Lin J. After embedding in membranes antiapoptotic Bcl-XL protein binds both Bcl-2 homology region 3 and helix 1 of proapoptotic Bax protein to inhibit apoptotic mitochondrial permeabilization. J Biol Chem. 2014 289 173 11873 11896 10.1074/jbc.M114.552562
    [Google Scholar]
  37. Del Gaizo Moore V. Brown J.R. Certo M. Love T.M. Novina C.D. Letai A. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J. Clin. Invest. 2007 117 1 112 121 10.1172/JCI28281 17200714
    [Google Scholar]
  38. Petros A.M. Olejniczak E.T. Fesik S.W. Structural biology of the Bcl-2 family of proteins. Biochim. Biophys. Acta Mol. Cell Res. 2004 1644 2-3 83 94, 83-94 10.1016/j.bbamcr.2003.08.012 14996493
    [Google Scholar]
  39. Muchmore S.W. Sattler M. Liang H. Meadows R.P. Harlan J.E. Yoon H.S. Nettesheim D. Chang B.S. Thompson C.B. Wong S.L. Ng S.C. Fesik S.W. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 1996 381 6580 335 341 10.1038/381335a0 8692274
    [Google Scholar]
  40. Li H. Zhu H. Xu C. Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998 94 4 491 501 10.1016/S0092‑8674(00)81590‑1 9727492
    [Google Scholar]
  41. Zha J. Weiler S. Oh K.J. Wei M.C. Korsmeyer S.J. Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 2000 290 5497 1761 1765 10.1126/science.290.5497.1761 11099414
    [Google Scholar]
  42. Bouillet P. Purton J.F. Godfrey D.I. Zhang L.C. Coultas L. Puthalakath H. Pellegrini M. Cory S. Adams J.M. Strasser A. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 2002 415 6874 922 926 10.1038/415922a 11859372
    [Google Scholar]
  43. Philippe B. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 1999 286 5445 1735 8 10.1126/science.286.5445.1735
    [Google Scholar]
  44. Harris C. A. Johnson E. M. Jr BH3-only Bcl-2 Family Members Are Coordinately Regulated by the JNK Pathway and Require Bax to Induce Apoptosis in Neurons. JBC 2001 276 41 37754 37760 10.1074/jbc.M104073200
    [Google Scholar]
  45. Puthalakath H. Villunger A. O’Reilly L.A. Beaumont J.G. Coultas L. Cheney R.E. Huang D.C.S. Strasser A. Bmf: A proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 2001 293 5536 1829 1832 10.1126/science.1062257 11546872
    [Google Scholar]
  46. Puthalakath H. Huang D.C.S. O’Reilly L.A. King S.M. Strasser A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell 1999 3 3 287 296 10.1016/S1097‑2765(00)80456‑6 10198631
    [Google Scholar]
  47. Adachi M. Zhao X. Imai K. Nomenclature of dynein light chain-linked BH3-only protein Bim isoforms. Cell Death Differ. 2005 12 2 192 193 10.1038/sj.cdd.4401529 15592437
    [Google Scholar]
  48. Kvansakul M. Hinds M.G. The Bcl-2 family: Structures, interactions and targets for drug discovery. Apoptosis 2015 20 2 136 150 10.1007/s10495‑014‑1051‑7 25398535
    [Google Scholar]
  49. Kelekar A. Thompson C.B. Bcl-2-family proteins: The role of the BH3 domain in apoptosis. Trends Cell Biol. 1998 8 8 324 330 10.1016/S0962‑8924(98)01321‑X 9704409
    [Google Scholar]
  50. Zhai D. Jin C. Satterthwait A.C. Reed J.C. Comparison of chemical inhibitors of antiapoptotic Bcl-2-family proteins. Cell Death Differ. 2006 13 8 1419 1421 10.1038/sj.cdd.4401937 16645636
    [Google Scholar]
  51. Chen G. Deng X. Targeting Bcl2 in cancer. Oncoscience 2015 2 10 813 814 10.18632/oncoscience.232 26682258
    [Google Scholar]
  52. Lama D. Sankararamakrishnan R. Identification of core structural residues in the sequentially diverse and structurally homologous Bcl-2 family of proteins. Biochemistry 2010 49 11 2574 2584 10.1021/bi100029k 20141168
    [Google Scholar]
  53. Peng J. Lapolla S. Zhang Z. Lin J. The Cytosolic Domain of Bcl-2 Oligomerizes to Form Pores in Model Mitochondrial Outer Membrane at Acidic pH. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2009 26 3 631 637
    [Google Scholar]
  54. Dadsena S. King L.E. García-Sáez A.J. Apoptosis regulation at the mitochondria membrane level. Biochim. Biophys. Acta Biomembr. 2021 1863 12 183716 10.1016/j.bbamem.2021.183716 34343535
    [Google Scholar]
  55. Stilgenbauer S. Eichhorst B. Schetelig J. Hillmen P. Seymour J.F. Coutre S. Jurczak W. Mulligan S.P. Schuh A. Assouline S. Wendtner C.M. Roberts A.W. Davids M.S. Bloehdorn J. Munir T. Böttcher S. Zhou L. Salem A.H. Desai M. Chyla B. Arzt J. Kim S.Y. Verdugo M. Gordon G. Hallek M. Wierda W.G. Venetoclax for patients with chronic lymphocytic leukemia with 17p deletion: Results from the full population of a phase II pivotal trial. J. Clin. Oncol. 2018 36 19 1973 1980 10.1200/JCO.2017.76.6840 29715056
    [Google Scholar]
  56. DiNardo C.D. Pratz K. Pullarkat V. Jonas B.A. Arellano M. Becker P.S. Frankfurt O. Konopleva M. Wei A.H. Kantarjian H.M. Xu T. Hong W.J. Chyla B. Potluri J. Pollyea D.A. Letai A. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 2019 133 1 7 17 10.1182/blood‑2018‑08‑868752 30361262
    [Google Scholar]
  57. Diepstraten S.T. Anderson M.A. Czabotar P.E. Lessene G. Strasser A. Kelly G.L. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat. Rev. Cancer 2022 22 1 45 64 10.1038/s41568‑021‑00407‑4 34663943
    [Google Scholar]
  58. Del Poeta G. Postorino M. Pupo L. Del Principe M.I. Dal Bo M. Bittolo T. Buccisano F. Mariotti B. Iannella E. Maurillo L. Venditti A. Gattei V. de Fabritiis P. Cantonetti M. Amadori S. Venetoclax: Bcl-2 inhibition for the treatment of chronic lymphocytic leukemia. Drugs Today (Barc) 2016 52 4 249 260 10.1358/dot.2016.52.4.2470954 27252989
    [Google Scholar]
  59. Chou J.J. Li H. Salvesen G.S. Yuan J. Wagner G. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 1999 96 5 615 624 10.1016/S0092‑8674(00)80572‑3 10089877
    [Google Scholar]
  60. McDonnell J.M. Fushman D. Milliman C.L. Korsmeyer S.J. Cowburn D. Solution structure of the proapoptotic molecule BID: A structural basis for apoptotic agonists and antagonists. Cell 1999 96 5 625 634 10.1016/S0092‑8674(00)80573‑5 10089878
    [Google Scholar]
  61. Suzuki M. Youle R.J. Tjandra N. Structure of Bax. Cell 2000 103 4 645 654 10.1016/S0092‑8674(00)00167‑7 11106734
    [Google Scholar]
  62. Hinds M.G. Lackmann M. Skea G.L. Harrison P.J. Huang D.C.S. Day C.L. The structure of Bcl-w reveals a role for the C-terminal residues in modulating biological activity. EMBO J. 2003 22 7 1497 1507 10.1093/emboj/cdg144 12660157
    [Google Scholar]
  63. Denisov A. Y. Madiraju M. S. R. Chen G. Khadir A. Beauparlant P. Attardo G. Shore G. C. Gehring K. Solution structure of human BCL-w: Modulation of ligand binding by the C-terminal helix. J Biol Chem 2003 23 21124 18 10.1074/jbc.M301798200
    [Google Scholar]
  64. Roberts A.W. Huang D.C.S. Targeting BCL2 With BH3 Mimetics: Basic Science and Clinical Application of Venetoclax in Chronic Lymphocytic Leukemia and Related B Cell Malignancies. Clin. Pharmacol. Ther. 2017 101 1 89 98 10.1002/cpt.553 27806433
    [Google Scholar]
  65. Touzeau C. Maciag P. Amiot M. Moreau P. Targeting Bcl-2 for the treatment of multiple myeloma. Leukemia 2018 32 9 1899 1907 10.1038/s41375‑018‑0223‑9 30076373
    [Google Scholar]
  66. Gagliardi M. Ashizawa A.T. Making Sense of Antisense Oligonucleotide Therapeutics Targeting Bcl-2. Pharmaceutics 2022 14 1 97 10.3390/pharmaceutics14010097 35056993
    [Google Scholar]
  67. Marzo I. Naval J. Bcl-2 family members as molecular targets in cancer therapy. Biochem. Pharmacol. 2008 76 8 939 946 10.1016/j.bcp.2008.06.009 18638457
    [Google Scholar]
  68. Kögel D. Exploiting BH3 Mimetics for Cancer Therapy. Mitochondria: The Anti- cancer Target for the Third Millennium. Neuzil J. Pervaiz S. Fulda S. Dordrecht Springer 2014 10.1007/978‑94‑017‑8984‑4_2
    [Google Scholar]
  69. Dai H. Meng X.W. Kaufmann S.H. Mitochondrial apoptosis and BH3 mimetics. F1000 Res. 2016 5 2804 10.12688/f1000research.9629.1 27990281
    [Google Scholar]
  70. Yap J.L. Chen L. Lanning M.E. Fletcher S. Expanding the Cancer Arsenal with Targeted Therapies: Disarmament of the Antiapoptotic Bcl-2 Proteins by Small Molecules. J. Med. Chem. 2017 60 3 821 838 10.1021/acs.jmedchem.5b01888 27749061
    [Google Scholar]
  71. Reyes A. Siddiqi T. Targeting BCL2 pathways in CLL: A story of resistance and ingenuity. Cancer Drug Resist. 2023 6 4 828 837 10.20517/cdr.2023.97 38263980
    [Google Scholar]
  72. Tahir S.K. Smith M.L. Hessler P. Rapp L.R. Idler K.B. Park C.H. Leverson J.D. Lam L.T. Potential mechanisms of resistance to venetoclax and strategies to circumvent it. BMC Cancer 2017 17 1 399 10.1186/s12885‑017‑3383‑5 28578655
    [Google Scholar]
  73. Suvarna V. Singh V. Murahari M. Current overview on the clinical update of Bcl-2 anti-apoptotic inhibitors for cancer therapy. Eur. J. Pharmacol. 2019 862 172655 10.1016/j.ejphar.2019.172655 31494078
    [Google Scholar]
  74. Opydo-Chanek M. Gonzalo O. Marzo I. Multifaceted anticancer activity of BH3 mimetics: Current evidence and future prospects. Biochem. Pharmacol. 2017 136 12 23 10.1016/j.bcp.2017.03.006 28288819
    [Google Scholar]
  75. Oltersdorf T. Elmore S.W. Shoemaker A.R. Armstrong R.C. Augeri D.J. Belli B.A. Bruncko M. Deckwerth T.L. Dinges J. Hajduk P.J. Joseph M.K. Kitada S. Korsmeyer S.J. Kunzer A.R. Letai A. Li C. Mitten M.J. Nettesheim D.G. Ng S. Nimmer P.M. O’Connor J.M. Oleksijew A. Petros A.M. Reed J.C. Shen W. Tahir S.K. Thompson C.B. Tomaselli K.J. Wang B. Wendt M.D. Zhang H. Fesik S.W. Rosenberg S.H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005 435 7042 677 681 10.1038/nature03579 15902208
    [Google Scholar]
  76. Kitada S. Leone M. Sareth S. Zhai D. Reed J. C. Pellecchia M. Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J. Med.Chem. 2003 46 20 4259 4264 10.1021/jm030190z
    [Google Scholar]
  77. Zhang L. Lu Z. Zhao X. Targeting Bcl-2 for cancer therapy. Biochim. Biophys. Acta Rev. Cancer 2021 1876 1 188569 10.1016/j.bbcan.2021.188569 34015412
    [Google Scholar]
  78. Baev D.V. Krawczyk J. The BH3-mimetic ABT-737 effectively kills acute myeloid leukemia initiating cells. Leuk. Res. Rep. 2014 3 2 79 82 10.1016/j.lrr.2014.06.001 25379408
    [Google Scholar]
  79. Rudin C. M. Hann C. L. Garon E. B. Ribeiro De Oliveira M. Bonomi P. D. Camidge D. R. Chu Q. Giaccone G. Khaira D. Ramalingam S. S. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin. Cancer Res 2012 18 11 3163 3169 10.1158/1078‑0432.CCR‑11‑3090
    [Google Scholar]
  80. Loriot Y. Mordant P. Dugue D. Geneste O. Gombos A. Opolon P. Guegan J. Perfettini J-L. Pierre A. Berthier L.K. Kroemer G. Soria J.C. Depil S. Deutsch E. Radiosensitization by a novel Bcl-2 and Bcl-XL inhibitor S44563 in small-cell lung cancer. Cell Death Dis. 2014 5 9 e1423 e1423 10.1038/cddis.2014.365 25232677
    [Google Scholar]
  81. Ye L. Yuan G. Xu F. Sun Y. Chen Z. Chen M. Li T. Sun P. Li S. Sun J. The small-molecule compound BM-1197 inhibits the antiapoptotic regulators Bcl-2/Bcl-xL and triggers apoptotic cell death in human colorectal cancer cells. Tumour Biol. 2015 36 5 3447 3455 10.1007/s13277‑014‑2980‑z 25542230
    [Google Scholar]
  82. Sun Y.L. Jiang W.Q. Luo Q.Y. Yang D.J. Cai Y.C. Huang H.Q. Sun J. A novel Bcl-2 inhibitor, BM-1197, induces apoptosis in malignant lymphoma cells through the endogenous apoptotic pathway. BMC Cancer 2020 20 1 1 10.1186/s12885‑019‑6169‑0 31892356
    [Google Scholar]
  83. Mitsiades C. S. Hayden P. Kotoula V. McMillin D. W. McMullan C. Negri J. Delmore J. E. Poulaki V. Mitsiades N. Bcl-2 overexpression in thyroid carcinoma cells increases sensitivity to Bcl-2 homology 3 domain inhibition. J Clin Endocrinol Metab. 2007 92 12 4845 52 10.1210/jc.2007‑0942
    [Google Scholar]
  84. Chen J. Zhou H. Aguilar A. Liu L. Bai L. McEachern D. Yang C.Y. Meagher J.L. Stuckey J.A. Wang S. Structure-based discovery of BM-957 as a potent small-molecule inhibitor of Bcl-2 and Bcl-xL capable of achieving complete tumor regression. J. Med. Chem. 2012 55 19 8502 8514 10.1021/jm3010306 23030453
    [Google Scholar]
  85. Mérino D. Khaw S.L. Glaser S.P. Anderson D.J. Belmont L.D. Wong C. Yue P. Robati M. Phipson B. Fairlie W.D. Lee E.F. Campbell K.J. Vandenberg C.J. Cory S. Roberts A.W. Ludlam M.J.C. Huang D.C.S. Bouillet P. Bcl-2, Bcl-xL, and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood 2012 119 24 5807 5816 10.1182/blood‑2011‑12‑400929 22538851
    [Google Scholar]
  86. Kim D-K. Zhao J. Kang S. Yi M. You S. Shin D-S. Kim D-K. A novel cromakalim analogue induces cell cycle arrest and apoptosis in human cervical carcinoma HeLa cells through the caspase- and mitochondria-dependent pathway. Int. J. Oncol. 2011 39 6 1609 1617 10.3892/ijo.2011.1153 21833470
    [Google Scholar]
  87. Shi J. Zhou Y. Huang H.C. Mitchison T.J. Navitoclax (ABT-263) accelerates apoptosis during drug-induced mitotic arrest by antagonizing Bcl-xL. Cancer Res. 2011 71 13 4518 4526 10.1158/0008‑5472.CAN‑10‑4336 21546570
    [Google Scholar]
  88. Lue Jennifer O'Connor Owen Pharmacologic Features of Drugs Targeting BCL 2 Family Members. Precision Cancer Therapies, Volume 1 ‐ Targeting Oncogenic Drivers and Signaling Pathways in Lymphoid Malignancies: From Concept to Practice Hoboken, New Jersey John Wiley & Sons 2023 10.1002/9781119819950.ch11
    [Google Scholar]
  89. Hamada N. Kataoka K. Sora S. Hara T. Omura-Minamisawa M. Funayama T. Sakashita T. Nakano T. Kobayashi Y. The small-molecule Bcl-2 inhibitor HA14-1 sensitizes cervical cancer cells, but not normal fibroblasts, to heavy-ion radiation. Radiother. Oncol. 2008 89 2 227 230 10.1016/j.radonc.2008.08.006 18774194
    [Google Scholar]
  90. Elhinnawi M.A. Mohareb R.M. Rady H.M. Khalil W.K.B. Abd Elhalim M.M. Elmegeed G.A. Novel pregnenolone derivatives modulate apoptosis via Bcl-2 family genes in hepatocellular carcinoma in vitro. J. Steroid Biochem. Mol. Biol. 2018 183 125 136 10.1016/j.jsbmb.2018.06.006 29898413
    [Google Scholar]
  91. Casara P. Davidson J. Claperon A. Le Toumelin-Braizat G. Vogler M. Bruno A. Chanrion M. Lysiak-Auvity G. Le Diguarher T. Starck J.B. Chen I. Whitehead N. Graham C. Matassova N. Dokurno P. Pedder C. Wang Y. Qiu S. Girard A.M. Schneider E. Gravé F. Studeny A. Guasconi G. Rocchetti F. Maïga S. Henlin J.M. Colland F. Kraus-Berthier L. Le Gouill S. Dyer M.J.S. Hubbard R. Wood M. Amiot M. Cohen G.M. Hickman J.A. Morris E. Murray J. Geneste O. S55746 is a novel orally active BCL-2 selective and potent inhibitor that impairs hematological tumor growth. Oncotarget 2018 9 28 20075 20088 10.18632/oncotarget.24744 29732004
    [Google Scholar]
  92. Vaillant F. Merino D. Lee L. Breslin K. Pal B. Ritchie M.E. Smyth G.K. Christie M. Phillipson L.J. Burns C.J. Mann G.B. Visvader J.E. Lindeman G.J. Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen receptor-positive breast cancer. Cancer Cell 2013 24 1 120 129 10.1016/j.ccr.2013.06.002 23845444
    [Google Scholar]
  93. Vogler M. Dinsdale D. Sun X-M. Young K.W. Butterworth M. Nicotera P. Dyer M.J.S. Cohen G.M. A novel paradigm for rapid ABT-737-induced apoptosis involving outer mitochondrial membrane rupture in primary leukemia and lymphoma cells. Cell Death Differ. 2008 15 5 820 830 10.1038/cdd.2008.25 18309326
    [Google Scholar]
  94. Hann C.L. Daniel V.C. Sugar E.A. Dobromilskaya I. Murphy S.C. Cope L. Lin X. Hierman J.S. Wilburn D.L. Watkins D.N. Rudin C.M. Therapeutic efficacy of ABT-737, a selective inhibitor of BCL-2, in small cell lung cancer. Cancer Res. 2008 68 7 2321 2328 10.1158/0008‑5472.CAN‑07‑5031 18381439
    [Google Scholar]
  95. Tse C. Shoemaker A.R. Adickes J. Anderson M.G. Chen J. Jin S. Johnson E.F. Marsh K.C. Mitten M.J. Nimmer P. Roberts L. Tahir S.K. Xiao Y. Yang X. Zhang H. Fesik S. Rosenberg S.H. Elmore S.W. ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008 68 9 3421 3428 10.1158/0008‑5472.CAN‑07‑5836 18451170
    [Google Scholar]
  96. Ng S. Davids M. Selective Bcl-2 inhibition to treat chronic lymphocytic leukemia and non-Hodgkin lymphoma. Clin Adv Hematol Oncol. 2014 12 4 224 9
    [Google Scholar]
  97. Wolf P. BH3 mimetics for the treatment of prostate cancer. Front. Pharmacol. 2017 8 557 https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2017.00557.DOI:10.3389/fphar.2017.00557 10.3389/fphar.2017.00557 28868037
    [Google Scholar]
  98. Roberts A.W. Seymour J.F. Brown J.R. Wierda W.G. Kipps T.J. Khaw S.L. Carney D.A. He S.Z. Huang D.C.S. Xiong H. Cui Y. Busman T.A. McKeegan E.M. Krivoshik A.P. Enschede S.H. Humerickhouse R. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: Results of a phase I study of navitoclax in patients with relapsed or refractory disease. J. Clin. Oncol. 2012 30 5 488 496 10.1200/JCO.2011.34.7898 22184378
    [Google Scholar]
  99. Mohamad Anuar N.N. Nor Hisam N.S. Liew S.L. Ugusman A. Clinical Review: Navitoclax as a Pro-Apoptotic and Anti-Fibrotic Agent. Front. Pharmacol. 2020 11 564108 10.3389/fphar.2020.564108 33381025
    [Google Scholar]
  100. Nor Hisam N.S. Ugusman A. Rajab N.F. Ahmad M.F. Fenech M. Liew S.L. Mohamad Anuar N.N. Combination Therapy of Navitoclax with Chemotherapeutic Agents in Solid Tumors and Blood Cancer: A Review of Current Evidence. Pharmaceutics 2021 13 9 1353 10.3390/pharmaceutics13091353 34575429
    [Google Scholar]
  101. Billard C. BH3 mimetics: Status of the field and new developments. Mol. Cancer Ther. 2013 12 9 1691 1700 10.1158/1535‑7163.MCT‑13‑0058 23974697
    [Google Scholar]
  102. Arulananda S. O’Brien M. Evangelista M. Jenkins L.J. Poh A.R. Walkiewicz M. Leong T. Mariadason J.M. Cebon J. Balachander S.B. Cidado J.R. Lee E.F. John T. Fairlie W.D. A novel BH3-mimetic, AZD0466, targeting BCL-XL and BCL-2 is effective in pre-clinical models of malignant pleural mesothelioma. Cell Death Discov. 2021 7 1 122 10.1038/s41420‑021‑00505‑0 34050131
    [Google Scholar]
  103. Luo Q. Pan W. Zhou S. Wang G. Yi H. Zhang L. Yan X. Yuan L. Liu Z. Wang J. Chen H. Qiu M. Yang D. Sun J. A novel BCL-2 inhibitor APG-2575 exerts synthetic lethality with BTK or MDM2-p53 inhibitor in diffuse large B-cell lymphoma. Oncol. Res. 2020 28 4 331 344 10.3727/096504020X15825405463920 32093809
    [Google Scholar]
  104. Yi H. Qiu M.Z. Yuan L. Luo Q. Pan W. Zhou S. Zhang L. Yan X. Yang D.J. Bcl‐2/Bcl‐xl inhibitor APG‐1252‐M1 is a promising therapeutic strategy for gastric carcinoma. Cancer Med. 2020 9 12 4197 4206 10.1002/cam4.3090 32346976
    [Google Scholar]
  105. Pal P. Zhang P. Poddar S.K. Zheng G. Patent landscape of inhibitors and PROTACs of the anti-apoptotic BCL-2 family proteins. Expert Opin. Ther. Pat. 2022 32 9 1003 1026 10.1080/13543776.2022.2116311 35993382
    [Google Scholar]
  106. Takimoto-Shimomura T. Tsukamoto T. Maegawa S. Fujibayashi Y. Matsumura-Kimoto Y. Mizuno Y. Chinen Y. Shimura Y. Mizutani S. Horiike S. Taniwaki M. Kobayashi T. Kuroda J. Dual targeting of bromodomain-containing 4 by AZD5153 and BCL2 by AZD4320 against B-cell lymphomas concomitantly overexpressing c-MYC and BCL2. Invest. New Drugs 2019 37 2 210 222 10.1007/s10637‑018‑0623‑8 29931583
    [Google Scholar]
  107. Li Y. Liu Y. McIntosh J. Jordan A.A. Leeming A. Andersen C.L. Cidado J. Jiang V.C. Wang M. AZD4320 Is a Novel and Potent BCL-2/XL Dual Inhibitor in Targeting Aggressive Mantle Cell Lymphoma. Blood 2020 136 Suppl. 1 44 10.1182/blood‑2020‑140775
    [Google Scholar]
  108. Yan X. Yi H. Luo Q. Yuan L. Zhou S. Pan W. Zhang L. Qiu M. Yang D. Abstract 2054: A novel Bcl-2/Bcl-XL inhibitor APG-1252-12A as a potential therapeutic strategy for gastric carcinoma. Proceedings: AACR Annual Meeting 2019 March 29-April 3, 2019 Atlanta, GA 2019 10.1158/1538‑7445.AM2019‑2054
    [Google Scholar]
  109. Birkinshaw R.W. Gong J. Luo C.S. Lio D. White C.A. Anderson M.A. Blombery P. Lessene G. Majewski I.J. Thijssen R. Roberts A.W. Huang D.C.S. Colman P.M. Czabotar P.E. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nat. Commun. 2019 10 1 2385 10.1038/s41467‑019‑10363‑1 31160589
    [Google Scholar]
  110. Fresquet V. Rieger M. Carolis C. García-Barchino M.J. Martinez-Climent J.A. Acquired mutations in BCL2 family proteins conferring resistance to the BH3 mimetic ABT-199 in lymphoma. Blood 2014 123 26 4111 4119 10.1182/blood‑2014‑03‑560284 24786774
    [Google Scholar]
  111. Zhao S. Kanagal-Shamanna R. Navsaria L. Ok C.Y. Zhang S. Nomie K. Han G. Hao D. Hill H.A. Jiang C. Yao Y. Nastoupil L. Westin J. Fayad L. Nair R. Steiner R. Ahmed S. Samaniego F. Iyer S.P. Oriabure O. Chen W. Song X. Zhang J. Badillo M. Moghrabi O. Aranda J. Tang G. Yin C.C. Patel K. Medeiros L.J. Li S. Vega F. Thirumurthi S. Xu G. Neelapu S. Flowers C.R. Romaguera J. Fowler N. Wang L. Wang M.L. Jain P. Efficacy of venetoclax in high risk relapsed mantle cell lymphoma ( MCL ) ‐ outcomes and mutation profile from venetoclax resistant MCL patients. Am. J. Hematol. 2020 95 6 623 629 10.1002/ajh.25796 32239765
    [Google Scholar]
  112. Wang B. Ni Z. Dai X. Qin L. Li X. Xu L. Lian J. He F. The Bcl-2/xL inhibitor ABT-263 increases the stability of Mcl-1 mRNA and protein in hepatocellular carcinoma cells. Mol. Cancer 2014 13 1 98 10.1186/1476‑4598‑13‑98 24779770
    [Google Scholar]
  113. Ruefli-Brasse A. Reed J.C. Therapeutics targeting Bcl-2 in hematological malignancies. Biochem. J. 2017 474 21 3643 3657 10.1042/BCJ20170080 29061914
    [Google Scholar]
  114. Pham L.V. Huang S. Zhang H. Zhang J. Bell T. Zhou S. Pogue E. Ding Z. Lam L. Westin J. Davis R.E. Young K.H. Medeiros L.J. Ford R.J. Nomie K. Zhang L. Wang M. Strategic therapeutic targeting to overcome venetoclax resistance in aggressive B-cell lymphomas. Clin. Cancer Res. 2018 24 16 3967 3980 10.1158/1078‑0432.CCR‑17‑3004 29666304
    [Google Scholar]
  115. DiNardo C.D. Tiong I.S. Quaglieri A. MacRaild S. Loghavi S. Brown F.C. Thijssen R. Pomilio G. Ivey A. Salmon J.M. Glytsou C. Fleming S.A. Zhang Q. Ma H. Patel K.P. Kornblau S.M. Xu Z. Chua C.C. Chen X. Blombery P. Flensburg C. Cummings N. Aifantis I. Kantarjian H. Huang D.C.S. Roberts A.W. Majewski I.J. Konopleva M. Wei A.H. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood 2020 135 11 791 803 10.1182/blood.2019003988 31932844
    [Google Scholar]
  116. Luedtke D.A. Niu X. Pan Y. Zhao J. Liu S. Edwards H. Chen K. Lin H. Taub J.W. Ge Y. Inhibition of Mcl-1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Signal Transduct. Target. Ther. 2017 2 1 17012 10.1038/sigtrans.2017.12 29263915
    [Google Scholar]
  117. Dastur A. Choi A.H. Costa C. Yin X. Williams A. McClanaghan J. Greenberg M. Roderick J. Patel N.U. Boisvert J. McDermott U. Garnett M.J. Almenara J. Grant S. Rizzo K. Engelman J.A. Kelliher M. Faber A.C. Benes C.H. NOTCH1 represses MCL-1 levels in GSI-resistant T-ALL, making them susceptible to ABT-263. Clin. Cancer Res. 2019 25 1 312 324 10.1158/1078‑0432.CCR‑18‑0867 30224339
    [Google Scholar]
  118. Trudel S. Li Z.H. Rauw J. Tiedemann R.E. Wen X.Y. Stewart A.K. Preclinical studies of the pan-Bcl inhibitor obatoclax (GX015-070) in multiple myeloma. Blood 2007 109 12 5430 5438 10.1182/blood‑2006‑10‑047951 17332241
    [Google Scholar]
  119. Brown J.R. Tesar B. Yu L. Werner L. Takebe N. Mikler E. Reynolds H.M. Thompson C. Fisher D.C. Neuberg D. Freedman A.S. Obatoclax in combination with fludarabine and rituximab is well-tolerated and shows promising clinical activity in relapsed chronic lymphocytic leukemia. Leuk. Lymphoma 2015 56 12 3336 3342 10.3109/10428194.2015.1048441 25971907
    [Google Scholar]
  120. Oki Y. Copeland A. Hagemeister F. Fayad L.E. Fanale M. Romaguera J. Younes A. Experience with obatoclax mesylate (GX15-070), a small molecule pan–Bcl-2 family antagonist in patients with relapsed or refractory classical Hodgkin lymphoma. Blood 2012 119 9 2171 2172 10.1182/blood‑2011‑11‑391037 22383790
    [Google Scholar]
  121. O’Brien S.M. Claxton D.F. Crump M. Faderl S. Kipps T. Keating M.J. Viallet J. Cheson B.D. Phase I study of obatoclax mesylate (GX15-070), a small molecule pan–Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia. Blood 2009 113 2 299 305 10.1182/blood‑2008‑02‑137943 18931344
    [Google Scholar]
  122. Hwang J. J. Kuruvilla J. Mendelson D. Pishvaian M. J. Deeken J. F. Siu L. L. Berger M. S. Viallet J. Marshall J. L. Phase I dose finding studies of obatoclax (GX15-070), a small molecule pan-BCL-2 family antagonist, in patients with advanced solid tumors or lymphoma. Clin. Cancer Res. 2010 16 15 4038 45 10.1158/1078‑0432.CCR‑10‑0822
    [Google Scholar]
  123. Jain N. Balakrishnan K. Ferrajoli A. O’Brien S.M. Burger J.A. Kadia T.M. Cortes J.E. Ayres M.L. Tambaro F.P. Keating M.J. Gandhi V. Wierda W.G. A phase I-II trial of fludarabine, bendamustine and rituximab (FBR) in previously treated patients with CLL. Oncotarget 2017 8 13 22104 22112 10.18632/oncotarget.12054 27655665
    [Google Scholar]
  124. Zerp S.F. Stoter T.R. Hoebers F.J.P. van den Brekel M.W.M. Dubbelman R. Kuipers G.K. Lafleur M.V.M. Slotman B.J. Verheij M. Targeting anti-apoptotic Bcl-2 by AT-101 to increase radiation efficacy: Data from in vitro and clinical pharmacokinetic studies in head and neck cancer. Radiat. Oncol. 2015 10 1 158 10.1186/s13014‑015‑0474‑9 26223311
    [Google Scholar]
  125. Balakrishnan K. Burger J.A. Wierda W.G. Gandhi V. AT-101 induces apoptosis in CLL B cells and overcomes stromal cell–mediated Mcl-1 induction and drug resistance. Blood 2009 113 1 149 153 10.1182/blood‑2008‑02‑138560 18836097
    [Google Scholar]
  126. Masood A. Chitta K. Paulus A. Khan A.N.H. Sher T. Ersing N. Miller K.C. Manfredi D. Ailawadhi S. Borrelo I. Lee K.P. Chanan-Khan A. Downregulation of BCL2 by AT‐101 enhances the antileukaemic effect of lenalidomide both by an immune dependant and independent manner. Br. J. Haematol. 2012 157 1 59 66 10.1111/j.1365‑2141.2011.08984.x 22171982
    [Google Scholar]
  127. Kitada S. Kress C.L. Krajewska M. Jia L. Pellecchia M. Reed J.C. Bcl-2 antagonist apogossypol (NSC736630) displays single-agent activity in Bcl-2–transgenic mice and has superior efficacy with less toxicity compared with gossypol (NSC19048). Blood 2008 111 6 3211 3219 10.1182/blood‑2007‑09‑113647 18202226
    [Google Scholar]
  128. Dash R. Azab B. Quinn B.A. Shen X. Wang X.Y. Das S.K. Rahmani M. Wei J. Hedvat M. Dent P. Dmitriev I.P. Curiel D.T. Grant S. Wu B. Stebbins J.L. Pellecchia M. Reed J.C. Sarkar D. Fisher P.B. Apogossypol derivative BI-97C1 (Sabutoclax) targeting Mcl-1 sensitizes prostate cancer cells to mda -7/IL-24–mediated toxicity. Proc. Natl. Acad. Sci. USA 2011 108 21 8785 8790 10.1073/pnas.1100769108 21555592
    [Google Scholar]
  129. Hu Y. Yagüe E. Zhao J. Wang L. Bai J. Yang Q. Pan T. Zhao H. Liu J. Zhang J. Sabutoclax, pan-active BCL-2 protein family antagonist, overcomes drug resistance and eliminates cancer stem cells in breast cancer. Cancer Lett. 2018 423 47 59 10.1016/j.canlet.2018.02.036 29496539
    [Google Scholar]
  130. Dadashpour S. Emami S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur. J. Med. Chem. 2018 150 9 29 10.1016/j.ejmech.2018.02.065 29505935
    [Google Scholar]
  131. Sravanthi T. Manju S. Indoles - A promising scaffold for drug development. Eur. J. Pharm. Sci. 2016 91 1 10 10.1016/j.ejps.2016.05.025
    [Google Scholar]
  132. Martino E. Casamassima G. Castiglione S. Cellupica E. Pantalone S. Papagni F. Rui M. Siciliano A.M. Collina S. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg. Med. Chem. Lett. 2018 28 17 2816 2826 10.1016/j.bmcl.2018.06.044 30122223
    [Google Scholar]
  133. Nagy M.I. Darwish K.M. Kishk S.M. Tantawy M.A. Nasr A.M. Qushawy M. Swidan S.A. Mostafa S.M. Salama I. Design, Synthesis, Anticancer Activity, and Solid Lipid Nanoparticle Formulation of Indole- and Benzimidazole-Based Compounds as Pro-Apoptotic Agents Targeting Bcl-2 Protein. Pharmaceuticals (Basel) 2021 14 2 113 10.3390/ph14020113 33535550
    [Google Scholar]
  134. Ziedan N.I. Hamdy R. Cavaliere A. Kourti M. Prencipe F. Brancale A. Jones A.T. Westwell A.D. Virtual screening, SAR, and discovery of 5‐(indole‐3‐yl)‐2‐[(2‐nitrophenyl)amino] [1,3,4]‐oxadiazole as a novel Bcl‐2 inhibitor. Chem. Biol. Drug Des. 2017 90 1 147 155 10.1111/cbdd.12936 28067996
    [Google Scholar]
  135. Liu T. Wan Y. Liu R. Ma L. Li M. Fang H. Design, synthesis and preliminary biological evaluation of indole-3-carboxylic acid-based skeleton of Bcl-2/Mcl-1 dual inhibitors. Bioorg. Med. Chem. 2017 25 6 1939 1948 10.1016/j.bmc.2017.02.014 28233676
    [Google Scholar]
  136. Ramsey H. E. Fischer M. A. Lee T. Gorska A. E. Arrate M. P. Fuller L. Boyd K. L. Strickland S. A. Sensintaffar J. Hogdal L. J. A Novel MCL1 Inhibitor Combined with Venetoclax Rescues Venetoclax-Resistant Acute Myelogenous Leukemia. Cancer Discov. 2018 12 1566 1581 10.1158/2159‑8290.CD‑18‑0140
    [Google Scholar]
  137. Kamath P.R. Sunil D. Joseph M.M. Abdul Salam A.A. T T S. Indole-coumarin-thiadiazole hybrids: An appraisal of their MCF-7 cell growth inhibition, apoptotic, antimetastatic and computational Bcl-2 binding potential. Eur. J. Med. Chem. 2017 136 442 451 10.1016/j.ejmech.2017.05.032 28525842
    [Google Scholar]
  138. Zhang Z. Hou L. Bai L. Pei J. Zhao S. Luan S. Liu D. Huang M. Zhao L. Discovery and structure-activity relationship studies of novel Bcl-2/Mcl-1 dual inhibitors with indole scaffold. Bioorg. Chem. 2022 125 105845 10.1016/j.bioorg.2022.105845 35512494
    [Google Scholar]
  139. Xu G. Liu T. Zhou Y. Yang X. Fang H. 1-Phenyl-1H-indole derivatives as a new class of Bcl-2/Mcl-1 dual inhibitors: Design, synthesis, and preliminary biological evaluation. Bioorg. Med. Chem. 2017 25 20 5548 5556 10.1016/j.bmc.2017.08.024 28866374
    [Google Scholar]
  140. Liu Y. Li J. Zhou G. Zhang J. Teng Y. Bai Z. Liu T. Design, synthesis and anticancer activity studies of novel indole derivatives as Bcl-2/Mcl-1 dual inhibitors. Med. Chem. Res. 2023 32 1 99 108 10.1007/s00044‑022‑02991‑y
    [Google Scholar]
  141. Niu Q. Deng H. Zhang Z. Xu Q. Luan S. Huang M. Liu D. Zhao L. Design, synthesis and biological evaluation of dual Bcl-2/Mcl-1 inhibitors bearing 2-(1H-indol-4-yl)benzoic acid scaffold. Bioorg. Med. Chem. Lett. 2021 47 128215 10.1016/j.bmcl.2021.128215 34153472
    [Google Scholar]
  142. Hamdy R. Ziedan N.I. Ali S. Bordoni C. El-Sadek M. Lashin E. Brancale A. Jones A.T. Westwell A.D. Synthesis and evaluation of 5-(1 H -indol-3-yl)- N -aryl-1,3,4-oxadiazol-2-amines as Bcl-2 inhibitory anticancer agents. Bioorg. Med. Chem. Lett. 2017 27 4 1037 1040 10.1016/j.bmcl.2016.12.061 28087272
    [Google Scholar]
  143. Kamath P.R. Sunil D. Ajees A.A. Pai K.S.R. Das S. Some new indole–coumarin hybrids; Synthesis, anticancer and Bcl-2 docking studies. Bioorg. Chem. 2015 63 101 109 10.1016/j.bioorg.2015.10.001 26469742
    [Google Scholar]
  144. Chen C. Nie Y. Xu G. Yang X. Fang H. Hou X. Design, synthesis and preliminary bioactivity studies of indomethacin derivatives as Bcl-2/Mcl-1 dual inhibitors. Bioorg. Med. Chem. 2019 27 13 2771 2783 10.1016/j.bmc.2019.05.003 31079964
    [Google Scholar]
  145. Kamath P.R. Sunil D. Ajees A.A. Pai K.S.R. Biswas S. N′-((2-(6-bromo-2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazide as a probable Bcl-2/Bcl-xL inhibitor with apoptotic and anti-metastatic potential. Eur. J. Med. Chem. 2016 120 134 147 10.1016/j.ejmech.2016.05.010 27187865
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575306176240925094457
Loading
/content/journals/mrmc/10.2174/0113895575306176240925094457
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test