Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

The B-cell lymphoma-2 (Bcl-2) protein family plays a crucial role as a regulator in the process of apoptosis. There is a substantial body of evidence indicating that the upregulation of anti-apoptotic Bcl-2 proteins is prevalent in several cancer cell lines and original tumour tissue samples. This phenomenon plays a crucial role in enabling tumour cells to avoid apoptosis, hence facilitating the development of resistant cells against chemotherapy. Therefore, the success rate of chemotherapy for cancer can be enhanced by the down-regulation of anti-apoptotic Bcl-2 proteins. Furthermore, the indole structural design is commonly found in a variety of natural substances and biologically active compounds, particularly those that possess anti-cancer properties. Due to its distinctive physicochemical and biological characteristics, it has been highly regarded as a fundamental framework in the development and production of anti-cancer drugs. As a result, a considerable range of indole derivatives, encompassing both naturally occurring and developed compounds, have been identified as potential candidates for the treatment of cancer. Several of these derivatives have advanced to clinical trials, while others are already being used in clinical settings. This emphasizes the significant role of indole in the field of research and development of anti-cancer therapeutics. This study provides an overview of apoptosis and the structural characteristics of Bcl-2 family proteins, and mainly examines the present stage and recent developments in Bcl-2 inhibitors with an indole scaffold embedded in their structure.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575306176240925094457
2024-10-08
2025-04-06
Loading full text...

Full text loading...

References

  1. JanR. ChaudhryG.S. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics.Adv. Pharm. Bull.20199220521810.15171/apb.2019.024 31380246
    [Google Scholar]
  2. HengartnerM.O. The biochemistry of apoptosis.Nature2000407680577077610.1038/35037710 11048727
    [Google Scholar]
  3. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  4. D’ArcyM.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy.Cell Biol. Int.201943658259210.1002/cbin.11137 30958602
    [Google Scholar]
  5. GilmoreA. KingL. Emerging approaches to target mitochondrial apoptosis in cancer cells.F1000Res.20198179310.12688/f1000research.18872.1
    [Google Scholar]
  6. SermerD. PasqualucciL. WendelH.G. MelnickA. YounesA. Emerging epigenetic-modulating therapies in lymphoma.Nat. Rev. Clin. Oncol.201916849450710.1038/s41571‑019‑0190‑8 30837715
    [Google Scholar]
  7. WanY. LiY. YanC. YanM. TangZ. Indole: A privileged scaffold for the design of anti-cancer agents.Eur. J. Med. Chem.201918311169110.1016/j.ejmech.2019.111691 31536895
    [Google Scholar]
  8. ElmoreS. Apoptosis: A review of programmed cell death.Toxicol. Pathol.200735449551610.1080/01926230701320337 17562483
    [Google Scholar]
  9. CarneiroB.A. El-DeiryW.S. Targeting apoptosis in cancer therapy.Nat. Rev. Clin. Oncol.202017739541710.1038/s41571‑020‑0341‑y 32203277
    [Google Scholar]
  10. InoueS. BrowneG. MelinoG. CohenG.M. Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway.Cell Death Differ.20091671053106110.1038/cdd.2009.29 19325570
    [Google Scholar]
  11. TangD. KangR. BergheT.V. VandenabeeleP. KroemerG. The molecular machinery of regulated cell death.Cell Res.201929534736410.1038/s41422‑019‑0164‑5 30948788
    [Google Scholar]
  12. Yu-binJ. Postdoctoral, Programme, reseach and anticancer. Advance research in apoptosis mediating by death receptor.J. Shenyang Pharm. Univ.200820086768
    [Google Scholar]
  13. SiegmundD. MauriD. PetersN. JuoP. ThomeM. ReichweinM. BlenisJ. ScheurichP. TschoppJ. WajantH. Fas-associated death domain protein (FADD) and caspase-8 mediate up-regulation of c-Fos by Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via a FLICE inhibitory protein (FLIP)-regulated pathway.J. Biol. Chem.200127635325853259010.1074/jbc.M100444200 11384965
    [Google Scholar]
  14. HuangB. EberstadtM. OlejniczakE.T. MeadowsR.P. FesikS.W. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain.Nature1996384661063864110.1038/384638a0 8967952
    [Google Scholar]
  15. ReedJ.C. Bcl-2 family proteins.Oncogene199817253225323610.1038/sj.onc.1202591 9916985
    [Google Scholar]
  16. AlnemriE. Intrinsic Pathway for Apoptosis.2004Available From: https://reactome.org/content/detail/R-HSA-109606
  17. VoglerM. DinsdaleD. DyerM.J.S. CohenG.M. Bcl-2 inhibitors: Small molecules with a big impact on cancer therapy.Cell Death Differ.200916336036710.1038/cdd.2008.137 18806758
    [Google Scholar]
  18. DanialN.N. KorsmeyerS.J. Cell death.Cell2004116220521910.1016/S0092‑8674(04)00046‑7 14744432
    [Google Scholar]
  19. HuangD.C.S. StrasserA. BH3-Only proteins-essential initiators of apoptotic cell death.Cell2000103683984210.1016/S0092‑8674(00)00187‑2 11136969
    [Google Scholar]
  20. AdamsJ.M. CoryS. The Bcl-2 apoptotic switch in cancer development and therapy.Oncogene20072691324133710.1038/sj.onc.1210220 17322918
    [Google Scholar]
  21. YouleR.J. StrasserA. The BCL-2 protein family: Opposing activities that mediate cell death.Nat. Rev. Mol. Cell Biol.200891475910.1038/nrm2308 18097445
    [Google Scholar]
  22. ChenL. WillisS.N. WeiA. SmithB.J. FletcherJ.I. HindsM.G. ColmanP.M. DayC.L. AdamsJ.M. HuangD.C.S. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function.Mol. Cell200517339340310.1016/j.molcel.2004.12.030 15694340
    [Google Scholar]
  23. BasuA. The interplay between apoptosis and cellular senescence: Bcl-2 family proteins as targets for cancer therapy.Pharmacol. Ther.202223010794310.1016/j.pharmthera.2021.107943 34182005
    [Google Scholar]
  24. LomonosovaE. ChinnaduraiG. BH3-only proteins in apoptosis and beyond: An overview.Oncogene200827S1Suppl. 1S2S1910.1038/onc.2009.39 19641503
    [Google Scholar]
  25. Shamas-DinA. BrahmbhattH. LeberB. AndrewsD.W. BH3-only proteins: Orchestrators of apoptosis.Biochim. Biophys. Acta Mol. Cell Res.20111813450852010.1016/j.bbamcr.2010.11.024 21146563
    [Google Scholar]
  26. CertoM. MooreV.D.G. NishinoM. WeiG. KorsmeyerS. ArmstrongS.A. LetaiA. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members.Cancer Cell20069535136510.1016/j.ccr.2006.03.027 16697956
    [Google Scholar]
  27. Del Gaizo MooreV. LetaiA. BH3 profiling – Measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions.Cancer Lett.2013332220220510.1016/j.canlet.2011.12.021 22230093
    [Google Scholar]
  28. LeberB. LinJ. AndrewsD.W. Still embedded together binding to membranes regulates Bcl-2 protein interactions.Oncogene201029385221523010.1038/onc.2010.283 20639903
    [Google Scholar]
  29. SouersA.J. LeversonJ.D. BoghaertE.R. AcklerS.L. CatronN.D. ChenJ. DaytonB.D. DingH. EnschedeS.H. FairbrotherW.J. HuangD.C.S. HymowitzS.G. JinS. KhawS.L. KovarP.J. LamL.T. LeeJ. MaeckerH.L. MarshK.C. MasonK.D. MittenM.J. NimmerP.M. OleksijewA. ParkC.H. ParkC.M. PhillipsD.C. RobertsA.W. SampathD. SeymourJ.F. SmithM.L. SullivanG.M. TahirS.K. TseC. WendtM.D. XiaoY. XueJ.C. ZhangH. HumerickhouseR.A. RosenbergS.H. ElmoreS.W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets.Nat. Med.201319220220810.1038/nm.3048 23291630
    [Google Scholar]
  30. DelbridgeA.R.D. GrabowS. StrasserA. VauxD.L. Thirty years of BCL-2: Translating cell death discoveries into novel cancer therapies.Nat. Rev. Cancer20161629910910.1038/nrc.2015.17 26822577
    [Google Scholar]
  31. KuwanaT. Bcl-2-family proteins and the role of mitochondria in apoptosis.Curr. Opin. Cell Biol.2003156691910.1016/j.ceb.2003.10.004
    [Google Scholar]
  32. KaleJ. OsterlundE.J. AndrewsD.W. BCL-2 family proteins: Changing partners in the dance towards death.Cell Death Differ.2018251658010.1038/cdd.2017.186 29149100
    [Google Scholar]
  33. LetaiA. BassikM.C. WalenskyL.D. SorcinelliM.D. WeilerS. KorsmeyerS.J. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics.Cancer Cell20022318319210.1016/S1535‑6108(02)00127‑7 12242151
    [Google Scholar]
  34. WillisS.N. ChenL. DewsonG. WeiA. NaikE. FletcherJ.I. AdamsJ.M. HuangD.C.S. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-x L, but not Bcl-2, until displaced by BH3-only proteins.Genes Dev.200519111294130510.1101/gad.1304105 15901672
    [Google Scholar]
  35. WillisS.N. FletcherJ.I. KaufmannT. van DelftM.F. ChenL. CzabotarP.E. IerinoH. LeeE.F. FairlieW.D. BouilletP. StrasserA. KluckR.M. AdamsJ.M. HuangD.C.S. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak.Science2007315581385685910.1126/science.1133289 17289999
    [Google Scholar]
  36. DingJ. MooersB.H.M. ZhangZ. KaleJ. FalconeD. McNicholJ. HuangB. ZhangX.C. XingC. AndrewsD.W. LinJ. After embedding in membranes antiapoptotic Bcl-XL protein binds both Bcl-2 homology region 3 and helix 1 of proapoptotic Bax protein to inhibit apoptotic mitochondrial permeabilization.J. Biol. Chem.2014289173118731189610.1074/jbc.M114.552562
    [Google Scholar]
  37. Del Gaizo MooreV. BrownJ.R. CertoM. LoveT.M. NovinaC.D. LetaiA. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737.J. Clin. Invest.2007117111212110.1172/JCI28281 17200714
    [Google Scholar]
  38. PetrosA.M. OlejniczakE.T. FesikS.W. Structural biology of the Bcl-2 family of proteins.Biochim. Biophys. Acta Mol. Cell Res.200416442-3839410.1016/j.bbamcr.2003.08.01214996493
    [Google Scholar]
  39. MuchmoreS.W. SattlerM. LiangH. MeadowsR.P. HarlanJ.E. YoonH.S. NettesheimD. ChangB.S. ThompsonC.B. WongS.L. NgS.C. FesikS.W. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death.Nature1996381658033534110.1038/381335a0 8692274
    [Google Scholar]
  40. LiH. ZhuH. XuC. YuanJ. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis.Cell199894449150110.1016/S0092‑8674(00)81590‑1 9727492
    [Google Scholar]
  41. ZhaJ. WeilerS. OhK.J. WeiM.C. KorsmeyerS.J. Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis.Science200029054971761176510.1126/science.290.5497.1761 11099414
    [Google Scholar]
  42. BouilletP. PurtonJ.F. GodfreyD.I. ZhangL.C. CoultasL. PuthalakathH. PellegriniM. CoryS. AdamsJ.M. StrasserA. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes.Nature2002415687492292610.1038/415922a 11859372
    [Google Scholar]
  43. PhilippeB. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity.Science199928654451735810.1126/science.286.5445.1735
    [Google Scholar]
  44. HarrisC.A. JohnsonE.M.Jr. bh3-only bcl-2 family members are coordinately regulated by the jnk pathway and require bax to induce apoptosis in neurons.JBC200127641377543776010.1074/jbc.M104073200
    [Google Scholar]
  45. PuthalakathH. VillungerA. O’ReillyL.A. BeaumontJ.G. CoultasL. CheneyR.E. HuangD.C.S. StrasserA. Bmf: A proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis.Science200129355361829183210.1126/science.1062257 11546872
    [Google Scholar]
  46. PuthalakathH. HuangD.C.S. O’ReillyL.A. KingS.M. StrasserA. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex.Mol. Cell19993328729610.1016/S1097‑2765(00)80456‑6 10198631
    [Google Scholar]
  47. AdachiM. ZhaoX. ImaiK. Nomenclature of dynein light chain-linked BH3-only protein Bim isoforms.Cell Death Differ.200512219219310.1038/sj.cdd.4401529 15592437
    [Google Scholar]
  48. KvansakulM. HindsM.G. The Bcl-2 family: Structures, interactions and targets for drug discovery.Apoptosis201520213615010.1007/s10495‑014‑1051‑7 25398535
    [Google Scholar]
  49. KelekarA. ThompsonC.B. Bcl-2-family proteins: The role of the BH3 domain in apoptosis.Trends Cell Biol.19988832433010.1016/S0962‑8924(98)01321‑X 9704409
    [Google Scholar]
  50. ZhaiD. JinC. SatterthwaitA.C. ReedJ.C. Comparison of chemical inhibitors of antiapoptotic Bcl-2-family proteins.Cell Death Differ.20061381419142110.1038/sj.cdd.4401937 16645636
    [Google Scholar]
  51. ChenG. DengX. Targeting Bcl2 in cancer.Oncoscience201521081381410.18632/oncoscience.232 26682258
    [Google Scholar]
  52. LamaD. SankararamakrishnanR. Identification of core structural residues in the sequentially diverse and structurally homologous Bcl-2 family of proteins.Biochemistry201049112574258410.1021/bi100029k 20141168
    [Google Scholar]
  53. PengJ. LapollaS. ZhangZ. LinJ. The cytosolic domain of bcl-2 oligomerizes to form pores in model mitochondrial outer membrane at acidic pH.Sheng Wu Yi Xue Gong Cheng Xue Za Zhi.2009263631637
    [Google Scholar]
  54. DadsenaS. KingL.E. García-SáezA.J. Apoptosis regulation at the mitochondria membrane level.Biochim. Biophys. Acta Biomembr.202118631218371610.1016/j.bbamem.2021.183716 34343535
    [Google Scholar]
  55. StilgenbauerS. EichhorstB. ScheteligJ. HillmenP. SeymourJ.F. CoutreS. JurczakW. MulliganS.P. SchuhA. AssoulineS. WendtnerC.M. RobertsA.W. DavidsM.S. BloehdornJ. MunirT. BöttcherS. ZhouL. SalemA.H. DesaiM. ChylaB. ArztJ. KimS.Y. VerdugoM. GordonG. HallekM. WierdaW.G. Venetoclax for patients with chronic lymphocytic leukemia with 17p deletion: Results from the full population of a phase II pivotal trial.J. Clin. Oncol.201836191973198010.1200/JCO.2017.76.6840 29715056
    [Google Scholar]
  56. DiNardoC.D. PratzK. PullarkatV. JonasB.A. ArellanoM. BeckerP.S. FrankfurtO. KonoplevaM. WeiA.H. KantarjianH.M. XuT. HongW.J. ChylaB. PotluriJ. PollyeaD.A. LetaiA. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia.Blood2019133171710.1182/blood‑2018‑08‑868752 30361262
    [Google Scholar]
  57. DiepstratenS.T. AndersonM.A. CzabotarP.E. LesseneG. StrasserA. KellyG.L. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs.Nat. Rev. Cancer2022221456410.1038/s41568‑021‑00407‑4 34663943
    [Google Scholar]
  58. Del PoetaG. PostorinoM. PupoL. Del PrincipeM.I. Dal BoM. BittoloT. BuccisanoF. MariottiB. IannellaE. MaurilloL. VendittiA. GatteiV. de FabritiisP. CantonettiM. AmadoriS. Venetoclax: Bcl-2 inhibition for the treatment of chronic lymphocytic leukemia.Drugs Today (Barc)201652424926010.1358/dot.2016.52.4.2470954 27252989
    [Google Scholar]
  59. ChouJ.J. LiH. SalvesenG.S. YuanJ. WagnerG. Solution structure of BID, an intracellular amplifier of apoptotic signaling.Cell199996561562410.1016/S0092‑8674(00)80572‑3 10089877
    [Google Scholar]
  60. McDonnellJ.M. FushmanD. MillimanC.L. KorsmeyerS.J. CowburnD. Solution structure of the proapoptotic molecule BID: A structural basis for apoptotic agonists and antagonists.Cell199996562563410.1016/S0092‑8674(00)80573‑5 10089878
    [Google Scholar]
  61. SuzukiM. YouleR.J. TjandraN. Structure of Bax.Cell2000103464565410.1016/S0092‑8674(00)00167‑7 11106734
    [Google Scholar]
  62. HindsM.G. LackmannM. SkeaG.L. HarrisonP.J. HuangD.C.S. DayC.L. The structure of Bcl-w reveals a role for the C-terminal residues in modulating biological activity.EMBO J.20032271497150710.1093/emboj/cdg144 12660157
    [Google Scholar]
  63. DenisovA.Y. MadirajuM.S.R. ChenG. KhadirA. BeauparlantP. AttardoG. ShoreG.C. GehringK. Solution structure of human BCL-w: Modulation of ligand binding by the C-terminal helix.J. Biol. Chem.200323211241810.1074/jbc.M301798200
    [Google Scholar]
  64. RobertsA.W. HuangD.C.S. Targeting BCL2 With BH3 Mimetics: Basic science and clinical application of venetoclax in chronic lymphocytic leukemia and related b cell malignancies.Clin. Pharmacol. Ther.20171011899810.1002/cpt.553 27806433
    [Google Scholar]
  65. TouzeauC. MaciagP. AmiotM. MoreauP. Targeting Bcl-2 for the treatment of multiple myeloma.Leukemia20183291899190710.1038/s41375‑018‑0223‑9 30076373
    [Google Scholar]
  66. GagliardiM. AshizawaA.T. Making sense of antisense oligonucleotide therapeutics targeting Bcl-2.Pharmaceutics20221419710.3390/pharmaceutics14010097 35056993
    [Google Scholar]
  67. MarzoI. NavalJ. Bcl-2 family members as molecular targets in cancer therapy.Biochem. Pharmacol.200876893994610.1016/j.bcp.2008.06.009 18638457
    [Google Scholar]
  68. KögelD. Exploiting BH3 mimetics for cancer Therapy. Mitochondria: The Anti- cancer Target for the Third Millennium NeuzilJ. PervaizS. FuldaS. DordrechtSpringer2014395810.1007/978‑94‑017‑8984‑4_2
    [Google Scholar]
  69. DaiH. MengX.W. KaufmannS.H. Mitochondrial apoptosis and BH3 mimetics.F1000 Res.20165280410.12688/f1000research.9629.1 27990281
    [Google Scholar]
  70. YapJ.L. ChenL. LanningM.E. FletcherS. Expanding the cancer arsenal with targeted therapies: Disarmament of the antiapoptotic bcl-2 proteins by small molecules.J. Med. Chem.201760382183810.1021/acs.jmedchem.5b01888 27749061
    [Google Scholar]
  71. ReyesA. SiddiqiT. Targeting BCL2 pathways in CLL: A story of resistance and ingenuity.Cancer Drug Resist.20236482883710.20517/cdr.2023.97 38263980
    [Google Scholar]
  72. TahirS.K. SmithM.L. HesslerP. RappL.R. IdlerK.B. ParkC.H. LeversonJ.D. LamL.T. Potential mechanisms of resistance to venetoclax and strategies to circumvent it.BMC Cancer201717139910.1186/s12885‑017‑3383‑5 28578655
    [Google Scholar]
  73. SuvarnaV. SinghV. MurahariM. Current overview on the clinical update of Bcl-2 anti-apoptotic inhibitors for cancer therapy.Eur. J. Pharmacol.201986217265510.1016/j.ejphar.2019.172655 31494078
    [Google Scholar]
  74. Opydo-ChanekM. GonzaloO. MarzoI. Multifaceted anticancer activity of BH3 mimetics: Current evidence and future prospects.Biochem. Pharmacol.2017136122310.1016/j.bcp.2017.03.006 28288819
    [Google Scholar]
  75. OltersdorfT. ElmoreS.W. ShoemakerA.R. ArmstrongR.C. AugeriD.J. BelliB.A. BrunckoM. DeckwerthT.L. DingesJ. HajdukP.J. JosephM.K. KitadaS. KorsmeyerS.J. KunzerA.R. LetaiA. LiC. MittenM.J. NettesheimD.G. NgS. NimmerP.M. O’ConnorJ.M. OleksijewA. PetrosA.M. ReedJ.C. ShenW. TahirS.K. ThompsonC.B. TomaselliK.J. WangB. WendtM.D. ZhangH. FesikS.W. RosenbergS.H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours.Nature2005435704267768110.1038/nature03579 15902208
    [Google Scholar]
  76. KitadaS. LeoneM. SarethS. ZhaiD. ReedJ.C. PellecchiaM. Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins.J. Med. Chem.200346204259426410.1021/jm030190z
    [Google Scholar]
  77. ZhangL. LuZ. ZhaoX. Targeting Bcl-2 for cancer therapy.Biochim. Biophys. Acta Rev. Cancer20211876118856910.1016/j.bbcan.2021.188569 34015412
    [Google Scholar]
  78. BaevD.V. KrawczykJ. The BH3-mimetic ABT-737 effectively kills acute myeloid leukemia initiating cells.Leuk. Res. Rep.201432798210.1016/j.lrr.2014.06.001 25379408
    [Google Scholar]
  79. RudinC.M. HannC.L. GaronE.B. Ribeiro De OliveiraM. BonomiP.D. CamidgeD.R. ChuQ. GiacconeG. KhairaD. RamalingamS.S. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer.Clin. Cancer Res.201218113163316910.1158/1078‑0432.CCR‑11‑3090
    [Google Scholar]
  80. LoriotY. MordantP. DugueD. GenesteO. GombosA. OpolonP. GueganJ. PerfettiniJ-L. PierreA. BerthierL.K. KroemerG. SoriaJ.C. DepilS. DeutschE. Radiosensitization by a novel Bcl-2 and Bcl-XL inhibitor S44563 in small-cell lung cancer.Cell Death Dis.201459e1423e142310.1038/cddis.2014.365 25232677
    [Google Scholar]
  81. YeL. YuanG. XuF. SunY. ChenZ. ChenM. LiT. SunP. LiS. SunJ. The small-molecule compound BM-1197 inhibits the antiapoptotic regulators Bcl-2/Bcl-xL and triggers apoptotic cell death in human colorectal cancer cells.Tumour Biol.20153653447345510.1007/s13277‑014‑2980‑z 25542230
    [Google Scholar]
  82. SunY.L. JiangW.Q. LuoQ.Y. YangD.J. CaiY.C. HuangH.Q. SunJ. A novel Bcl-2 inhibitor, BM-1197, induces apoptosis in malignant lymphoma cells through the endogenous apoptotic pathway.BMC Cancer2020201110.1186/s12885‑019‑6169‑0 31892356
    [Google Scholar]
  83. MitsiadesC.S. HaydenP. KotoulaV. McMillinD.W. McMullanC. NegriJ. DelmoreJ.E. PoulakiV. MitsiadesN. Bcl-2 overexpression in thyroid carcinoma cells increases sensitivity to Bcl-2 homology 3 domain inhibition.J. Clin. Endocrinol. Metab.2007921248455210.1210/jc.2007‑0942
    [Google Scholar]
  84. ChenJ. ZhouH. AguilarA. LiuL. BaiL. McEachernD. YangC.Y. MeagherJ.L. StuckeyJ.A. WangS. Structure-based discovery of BM-957 as a potent small-molecule inhibitor of Bcl-2 and Bcl-xL capable of achieving complete tumor regression.J. Med. Chem.201255198502851410.1021/jm3010306 23030453
    [Google Scholar]
  85. MérinoD. KhawS.L. GlaserS.P. AndersonD.J. BelmontL.D. WongC. YueP. RobatiM. PhipsonB. FairlieW.D. LeeE.F. CampbellK.J. VandenbergC.J. CoryS. RobertsA.W. LudlamM.J.C. HuangD.C.S. BouilletP. Bcl-2, Bcl-xL, and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells.Blood2012119245807581610.1182/blood‑2011‑12‑400929 22538851
    [Google Scholar]
  86. KimD-K. ZhaoJ. KangS. YiM. YouS. ShinD-S. KimD-K. A novel cromakalim analogue induces cell cycle arrest and apoptosis in human cervical carcinoma HeLa cells through the caspase- and mitochondria-dependent pathway.Int. J. Oncol.20113961609161710.3892/ijo.2011.1153 21833470
    [Google Scholar]
  87. ShiJ. ZhouY. HuangH.C. MitchisonT.J. Navitoclax (ABT-263) accelerates apoptosis during drug-induced mitotic arrest by antagonizing Bcl-xL.Cancer Res.201171134518452610.1158/0008‑5472.CAN‑10‑4336 21546570
    [Google Scholar]
  88. LueJennifer O'Connor, Owen Pharmacologic Features of Drugs Targeting BCL 2 Family Members. Precision Cancer Therapies, Volume 1 ‐ Targeting Oncogenic Drivers and Signaling Pathways in Lymphoid Malignancies: From Concept to PracticeJohn Wiley & SonsHoboken, New Jersey202315116410.1002/9781119819950.ch11
    [Google Scholar]
  89. HamadaN. KataokaK. SoraS. HaraT. Omura-MinamisawaM. FunayamaT. SakashitaT. NakanoT. KobayashiY. The small-molecule Bcl-2 inhibitor HA14-1 sensitizes cervical cancer cells, but not normal fibroblasts, to heavy-ion radiation.Radiother. Oncol.200889222723010.1016/j.radonc.2008.08.006 18774194
    [Google Scholar]
  90. ElhinnawiM.A. MoharebR.M. RadyH.M. KhalilW.K.B. Abd ElhalimM.M. ElmegeedG.A. Novel pregnenolone derivatives modulate apoptosis via Bcl-2 family genes in hepatocellular carcinoma in vitro.J. Steroid Biochem. Mol. Biol.201818312513610.1016/j.jsbmb.2018.06.006 29898413
    [Google Scholar]
  91. CasaraP. DavidsonJ. ClaperonA. Le Toumelin-BraizatG. VoglerM. BrunoA. ChanrionM. Lysiak-AuvityG. Le DiguarherT. StarckJ.B. ChenI. WhiteheadN. GrahamC. MatassovaN. DokurnoP. PedderC. WangY. QiuS. GirardA.M. SchneiderE. GravéF. StudenyA. GuasconiG. RocchettiF. MaïgaS. HenlinJ.M. CollandF. Kraus-BerthierL. Le GouillS. DyerM.J.S. HubbardR. WoodM. AmiotM. CohenG.M. HickmanJ.A. MorrisE. MurrayJ. GenesteO. S55746 is a novel orally active BCL-2 selective and potent inhibitor that impairs hematological tumor growth.Oncotarget2018928200752008810.18632/oncotarget.24744 29732004
    [Google Scholar]
  92. VaillantF. MerinoD. LeeL. BreslinK. PalB. RitchieM.E. SmythG.K. ChristieM. PhillipsonL.J. BurnsC.J. MannG.B. VisvaderJ.E. LindemanG.J. Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen receptor-positive breast cancer.Cancer Cell201324112012910.1016/j.ccr.2013.06.002 23845444
    [Google Scholar]
  93. VoglerM. DinsdaleD. SunX-M. YoungK.W. ButterworthM. NicoteraP. DyerM.J.S. CohenG.M. A novel paradigm for rapid ABT-737-induced apoptosis involving outer mitochondrial membrane rupture in primary leukemia and lymphoma cells.Cell Death Differ.200815582083010.1038/cdd.2008.25 18309326
    [Google Scholar]
  94. HannC.L. DanielV.C. SugarE.A. DobromilskayaI. MurphyS.C. CopeL. LinX. HiermanJ.S. WilburnD.L. WatkinsD.N. RudinC.M. Therapeutic efficacy of ABT-737, a selective inhibitor of BCL-2, in small cell lung cancer.Cancer Res.20086872321232810.1158/0008‑5472.CAN‑07‑5031 18381439
    [Google Scholar]
  95. TseC. ShoemakerA.R. AdickesJ. AndersonM.G. ChenJ. JinS. JohnsonE.F. MarshK.C. MittenM.J. NimmerP. RobertsL. TahirS.K. XiaoY. YangX. ZhangH. FesikS. RosenbergS.H. ElmoreS.W. ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor.Cancer Res.20086893421342810.1158/0008‑5472.CAN‑07‑5836 18451170
    [Google Scholar]
  96. NgS. DavidsM. Selective Bcl-2 inhibition to treat chronic lymphocytic leukemia and non-Hodgkin lymphoma.Clin. Adv. Hematol. Oncol.2014124224229
    [Google Scholar]
  97. WolfP. BH3 mimetics for the treatment of prostate cancer.Front. Pharmacol.20178557 https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2017.00557.10.3389/fphar.2017.0055728868037
    [Google Scholar]
  98. RobertsA.W. SeymourJ.F. BrownJ.R. WierdaW.G. KippsT.J. KhawS.L. CarneyD.A. HeS.Z. HuangD.C.S. XiongH. CuiY. BusmanT.A. McKeeganE.M. KrivoshikA.P. EnschedeS.H. HumerickhouseR. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: Results of a phase I study of navitoclax in patients with relapsed or refractory disease.J. Clin. Oncol.201230548849610.1200/JCO.2011.34.7898 22184378
    [Google Scholar]
  99. Mohamad AnuarN.N. Nor HisamN.S. LiewS.L. UgusmanA. Clinical review: Navitoclax as a pro-apoptotic and anti-fibrotic agent.Front. Pharmacol.20201156410810.3389/fphar.2020.564108 33381025
    [Google Scholar]
  100. AshkenaziA. FairbrotherW.J. LeversonJ.D. SouersA.J. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors.Nat. Rev. Drug Discovery201716427328410.1038/nrd.2016.253
    [Google Scholar]
  101. BillardC. BH3 mimetics: Status of the field and new developments.Mol. Cancer Ther.20131291691170010.1158/1535‑7163.MCT‑13‑0058 23974697
    [Google Scholar]
  102. ArulanandaS. O’BrienM. EvangelistaM. JenkinsL.J. PohA.R. WalkiewiczM. LeongT. MariadasonJ.M. CebonJ. BalachanderS.B. CidadoJ.R. LeeE.F. JohnT. FairlieW.D. A novel BH3-mimetic, AZD0466, targeting BCL-XL and BCL-2 is effective in pre-clinical models of malignant pleural mesothelioma.Cell Death Discov.20217112210.1038/s41420‑021‑00505‑0 34050131
    [Google Scholar]
  103. LuoQ. PanW. ZhouS. WangG. YiH. ZhangL. YanX. YuanL. LiuZ. WangJ. ChenH. QiuM. YangD. SunJ. A novel BCL-2 inhibitor APG-2575 exerts synthetic lethality with BTK or MDM2-p53 inhibitor in diffuse large B-cell lymphoma.Oncol. Res.202028433134410.3727/096504020X15825405463920 32093809
    [Google Scholar]
  104. YiH. QiuM.Z. YuanL. LuoQ. PanW. ZhouS. ZhangL. YanX. YangD.J. Bcl‐2/Bcl‐xl inhibitor APG‐1252‐M1 is a promising therapeutic strategy for gastric carcinoma.Cancer Med.20209124197420610.1002/cam4.3090 32346976
    [Google Scholar]
  105. PalP. ZhangP. PoddarS.K. ZhengG. Patent landscape of inhibitors and PROTACs of the anti-apoptotic BCL-2 family proteins.Expert Opin. Ther. Pat.20223291003102610.1080/13543776.2022.2116311 35993382
    [Google Scholar]
  106. Takimoto-ShimomuraT. TsukamotoT. MaegawaS. FujibayashiY. Matsumura-KimotoY. MizunoY. ChinenY. ShimuraY. MizutaniS. HoriikeS. TaniwakiM. KobayashiT. KurodaJ. Dual targeting of bromodomain-containing 4 by AZD5153 and BCL2 by AZD4320 against B-cell lymphomas concomitantly overexpressing c-MYC and BCL2.Invest. New Drugs201937221022210.1007/s10637‑018‑0623‑8 29931583
    [Google Scholar]
  107. LiY. LiuY. McIntoshJ. JordanA.A. LeemingA. AndersenC.L. CidadoJ. JiangV.C. WangM. AZD4320 is a novel and potent bcl-2/xl dual inhibitor in targeting aggressive mantle cell lymphoma.Blood2020136Suppl. 14410.1182/blood‑2020‑140775
    [Google Scholar]
  108. YanX. YiH. LuoQ. YuanL. ZhouS. PanW. ZhangL. QiuM. YangD. Abstract 2054: A novel Bcl-2/Bcl-XL inhibitor APG-1252-12A as a potential therapeutic strategy for gastric carcinoma.Proceedings: AACR Annual Meeting 2019March 29-April 3, 2019 Atlanta, GA 2019.10.1158/1538‑7445.AM2019‑2054
    [Google Scholar]
  109. BirkinshawR.W. GongJ. LuoC.S. LioD. WhiteC.A. AndersonM.A. BlomberyP. LesseneG. MajewskiI.J. ThijssenR. RobertsA.W. HuangD.C.S. ColmanP.M. CzabotarP.E. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations.Nat. Commun.2019101238510.1038/s41467‑019‑10363‑1 31160589
    [Google Scholar]
  110. FresquetV. RiegerM. CarolisC. García-BarchinoM.J. Martinez-ClimentJ.A. Acquired mutations in BCL2 family proteins conferring resistance to the BH3 mimetic ABT-199 in lymphoma.Blood2014123264111411910.1182/blood‑2014‑03‑560284 24786774
    [Google Scholar]
  111. ZhaoS. Kanagal-ShamannaR. NavsariaL. OkC.Y. ZhangS. NomieK. HanG. HaoD. HillH.A. JiangC. YaoY. NastoupilL. WestinJ. FayadL. NairR. SteinerR. AhmedS. SamaniegoF. IyerS.P. OriabureO. ChenW. SongX. ZhangJ. BadilloM. MoghrabiO. ArandaJ. TangG. YinC.C. PatelK. MedeirosL.J. LiS. VegaF. ThirumurthiS. XuG. NeelapuS. FlowersC.R. RomagueraJ. FowlerN. WangL. WangM.L. JainP. Efficacy of venetoclax in high risk relapsed mantle cell lymphoma (MCL) ‐ Outcomes and mutation profile from venetoclax resistant MCL patients.Am. J. Hematol.202095662362910.1002/ajh.25796 32239765
    [Google Scholar]
  112. WangB. NiZ. DaiX. QinL. LiX. XuL. LianJ. HeF. The Bcl-2/xL inhibitor ABT-263 increases the stability of Mcl-1 mRNA and protein in hepatocellular carcinoma cells.Mol. Cancer20141319810.1186/1476‑4598‑13‑98 24779770
    [Google Scholar]
  113. Ruefli-BrasseA. ReedJ.C. Therapeutics targeting Bcl-2 in hematological malignancies.Biochem. J.2017474213643365710.1042/BCJ20170080 29061914
    [Google Scholar]
  114. PhamL.V. HuangS. ZhangH. ZhangJ. BellT. ZhouS. PogueE. DingZ. LamL. WestinJ. DavisR.E. YoungK.H. MedeirosL.J. FordR.J. NomieK. ZhangL. WangM. Strategic therapeutic targeting to overcome venetoclax resistance in aggressive B-cell lymphomas.Clin. Cancer Res.201824163967398010.1158/1078‑0432.CCR‑17‑3004 29666304
    [Google Scholar]
  115. DiNardoC.D. TiongI.S. QuaglieriA. MacRaildS. LoghaviS. BrownF.C. ThijssenR. PomilioG. IveyA. SalmonJ.M. GlytsouC. FlemingS.A. ZhangQ. MaH. PatelK.P. KornblauS.M. XuZ. ChuaC.C. ChenX. BlomberyP. FlensburgC. CummingsN. AifantisI. KantarjianH. HuangD.C.S. RobertsA.W. MajewskiI.J. KonoplevaM. WeiA.H. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML.Blood20201351179180310.1182/blood.2019003988 31932844
    [Google Scholar]
  116. LuedtkeD.A. NiuX. PanY. ZhaoJ. LiuS. EdwardsH. ChenK. LinH. TaubJ.W. GeY. Inhibition of Mcl-1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells.Signal Transduct. Target. Ther.2017211701210.1038/sigtrans.2017.12 29263915
    [Google Scholar]
  117. DasturA. ChoiA.H. CostaC. YinX. WilliamsA. McClanaghanJ. GreenbergM. RoderickJ. PatelN.U. BoisvertJ. McDermottU. GarnettM.J. AlmenaraJ. GrantS. RizzoK. EngelmanJ.A. KelliherM. FaberA.C. BenesC.H. NOTCH1 represses MCL-1 levels in GSI-resistant T-ALL, making them susceptible to ABT-263.Clin. Cancer Res.201925131232410.1158/1078‑0432.CCR‑18‑0867 30224339
    [Google Scholar]
  118. TrudelS. LiZ.H. RauwJ. TiedemannR.E. WenX.Y. StewartA.K. Preclinical studies of the pan-Bcl inhibitor obatoclax (GX015-070) in multiple myeloma.Blood2007109125430543810.1182/blood‑2006‑10‑047951 17332241
    [Google Scholar]
  119. BrownJ.R. TesarB. YuL. WernerL. TakebeN. MiklerE. ReynoldsH.M. ThompsonC. FisherD.C. NeubergD. FreedmanA.S. Obatoclax in combination with fludarabine and rituximab is well-tolerated and shows promising clinical activity in relapsed chronic lymphocytic leukemia.Leuk. Lymphoma201556123336334210.3109/10428194.2015.1048441 25971907
    [Google Scholar]
  120. OkiY. CopelandA. HagemeisterF. FayadL.E. FanaleM. RomagueraJ. YounesA. Experience with obatoclax mesylate (GX15-070), a small molecule pan–Bcl-2 family antagonist in patients with relapsed or refractory classical Hodgkin lymphoma.Blood201211992171217210.1182/blood‑2011‑11‑391037 22383790
    [Google Scholar]
  121. O’BrienS.M. ClaxtonD.F. CrumpM. FaderlS. KippsT. KeatingM.J. VialletJ. ChesonB.D. Phase I study of obatoclax mesylate (GX15-070), a small molecule pan–Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia.Blood2009113229930510.1182/blood‑2008‑02‑137943 18931344
    [Google Scholar]
  122. HwangJ.J. KuruvillaJ. MendelsonD. PishvaianM.J. DeekenJ.F. SiuL.L. BergerM.S. VialletJ. MarshallJ.L. Phase I dose finding studies of obatoclax (GX15-070), a small molecule pan-BCL-2 family antagonist, in patients with advanced solid tumors or lymphoma.Clin. Cancer Res.201016154038404510.1158/1078‑0432.CCR‑10‑0822
    [Google Scholar]
  123. JainN. BalakrishnanK. FerrajoliA. O’BrienS.M. BurgerJ.A. KadiaT.M. CortesJ.E. AyresM.L. TambaroF.P. KeatingM.J. GandhiV. WierdaW.G. A phase I-II trial of fludarabine, bendamustine and rituximab (FBR) in previously treated patients with CLL.Oncotarget2017813221042211210.18632/oncotarget.12054 27655665
    [Google Scholar]
  124. ZerpS.F. StoterT.R. HoebersF.J.P. van den BrekelM.W.M. DubbelmanR. KuipersG.K. LafleurM.V.M. SlotmanB.J. VerheijM. Targeting anti-apoptotic Bcl-2 by AT-101 to increase radiation efficacy: Data from in vitro and clinical pharmacokinetic studies in head and neck cancer.Radiat. Oncol.201510115810.1186/s13014‑015‑0474‑9 26223311
    [Google Scholar]
  125. BalakrishnanK. BurgerJ.A. WierdaW.G. GandhiV. AT-101 induces apoptosis in CLL B cells and overcomes stromal cell–mediated Mcl-1 induction and drug resistance.Blood2009113114915310.1182/blood‑2008‑02‑138560 18836097
    [Google Scholar]
  126. MasoodA. ChittaK. PaulusA. KhanA.N.H. SherT. ErsingN. MillerK.C. ManfrediD. AilawadhiS. BorreloI. LeeK.P. Chanan-KhanA. Downregulation of BCL2 by AT‐101 enhances the antileukaemic effect of lenalidomide both by an immune dependant and independent manner.Br. J. Haematol.20121571596610.1111/j.1365‑2141.2011.08984.x 22171982
    [Google Scholar]
  127. KitadaS. KressC.L. KrajewskaM. JiaL. PellecchiaM. ReedJ.C. Bcl-2 antagonist apogossypol (NSC736630) displays single-agent activity in Bcl-2–transgenic mice and has superior efficacy with less toxicity compared with gossypol (NSC19048).Blood200811163211321910.1182/blood‑2007‑09‑113647 18202226
    [Google Scholar]
  128. DashR. AzabB. QuinnB.A. ShenX. WangX.Y. DasS.K. RahmaniM. WeiJ. HedvatM. DentP. DmitrievI.P. CurielD.T. GrantS. WuB. StebbinsJ.L. PellecchiaM. ReedJ.C. SarkarD. FisherP.B. Apogossypol derivative BI-97C1 (Sabutoclax) targeting Mcl-1 sensitizes prostate cancer cells to mda -7/IL-24–mediated toxicity.Proc. Natl. Acad. Sci. USA2011108218785879010.1073/pnas.1100769108 21555592
    [Google Scholar]
  129. HuY. YagüeE. ZhaoJ. WangL. BaiJ. YangQ. PanT. ZhaoH. LiuJ. ZhangJ. Sabutoclax, pan-active BCL-2 protein family antagonist, overcomes drug resistance and eliminates cancer stem cells in breast cancer.Cancer Lett.2018423475910.1016/j.canlet.2018.02.036 29496539
    [Google Scholar]
  130. DadashpourS. EmamiS. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms.Eur. J. Med. Chem.201815092910.1016/j.ejmech.2018.02.065 29505935
    [Google Scholar]
  131. SravanthiT. ManjuS. Indoles - A promising scaffold for drug development.Eur. J. Pharm. Sci.20169111010.1016/j.ejps.2016.05.025
    [Google Scholar]
  132. MartinoE. CasamassimaG. CastiglioneS. CellupicaE. PantaloneS. PapagniF. RuiM. SicilianoA.M. CollinaS. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead.Bioorg. Med. Chem. Lett.201828172816282610.1016/j.bmcl.2018.06.044 30122223
    [Google Scholar]
  133. NagyM.I. DarwishK.M. KishkS.M. TantawyM.A. NasrA.M. QushawyM. SwidanS.A. MostafaS.M. SalamaI. Design, synthesis, anticancer activity, and solid lipid nanoparticle formulation of indole- and benzimidazole-based compounds as pro-apoptotic agents targeting BCL-2 protein.Pharmaceuticals (Basel)202114211310.3390/ph14020113 33535550
    [Google Scholar]
  134. ZiedanN.I. HamdyR. CavaliereA. KourtiM. PrencipeF. BrancaleA. JonesA.T. WestwellA.D. Virtual screening, SAR, and discovery of 5‐(indole‐3‐yl)‐2‐[(2‐nitrophenyl)amino] [1,3,4]‐oxadiazole as a novel Bcl‐2 inhibitor.Chem. Biol. Drug Des.201790114715510.1111/cbdd.12936 28067996
    [Google Scholar]
  135. LiuT. WanY. LiuR. MaL. LiM. FangH. Design, synthesis and preliminary biological evaluation of indole-3-carboxylic acid-based skeleton of Bcl-2/Mcl-1 dual inhibitors.Bioorg. Med. Chem.20172561939194810.1016/j.bmc.2017.02.014 28233676
    [Google Scholar]
  136. RamseyH.E. FischerM.A. LeeT. GorskaA.E. ArrateM.P. FullerL. BoydK.L. StricklandS.A. SensintaffarJ. HogdalL.J. A novel mcl1 inhibitor combined with venetoclax rescues venetoclax-resistant acute myelogenous leukemia.Cancer Discov.2018121566158110.1158/2159‑8290.CD‑18‑0140
    [Google Scholar]
  137. KamathP.R. SunilD. JosephM.M. Abdul SalamA.A. T TS. Indole-coumarin-thiadiazole hybrids: An appraisal of their MCF-7 cell growth inhibition, apoptotic, antimetastatic and computational Bcl-2 binding potential.Eur. J. Med. Chem.201713644245110.1016/j.ejmech.2017.05.032 28525842
    [Google Scholar]
  138. ZhangZ. HouL. BaiL. PeiJ. ZhaoS. LuanS. LiuD. HuangM. ZhaoL. Discovery and structure-activity relationship studies of novel Bcl-2/Mcl-1 dual inhibitors with indole scaffold.Bioorg. Chem.202212510584510.1016/j.bioorg.2022.105845 35512494
    [Google Scholar]
  139. XuG. LiuT. ZhouY. YangX. FangH. 1-Phenyl-1H-indole derivatives as a new class of Bcl-2/Mcl-1 dual inhibitors: Design, synthesis, and preliminary biological evaluation.Bioorg. Med. Chem.201725205548555610.1016/j.bmc.2017.08.024 28866374
    [Google Scholar]
  140. LiuY. LiJ. ZhouG. ZhangJ. TengY. BaiZ. LiuT. Design, synthesis and anticancer activity studies of novel indole derivatives as Bcl-2/Mcl-1 dual inhibitors.Med. Chem. Res.20233219910810.1007/s00044‑022‑02991‑y
    [Google Scholar]
  141. NiuQ. DengH. ZhangZ. XuQ. LuanS. HuangM. LiuD. ZhaoL. Design, synthesis and biological evaluation of dual Bcl-2/Mcl-1 inhibitors bearing 2-(1H-indol-4-yl)benzoic acid scaffold.Bioorg. Med. Chem. Lett.20214712821510.1016/j.bmcl.2021.128215 34153472
    [Google Scholar]
  142. HamdyR. ZiedanN.I. AliS. BordoniC. El-SadekM. LashinE. BrancaleA. JonesA.T. WestwellA.D. Synthesis and evaluation of 5-(1 H -indol-3-yl)- N -aryl-1,3,4-oxadiazol-2-amines as Bcl-2 inhibitory anticancer agents.Bioorg. Med. Chem. Lett.20172741037104010.1016/j.bmcl.2016.12.061 28087272
    [Google Scholar]
  143. KamathP.R. SunilD. AjeesA.A. PaiK.S.R. DasS. Some new indole–coumarin hybrids; Synthesis, anticancer and Bcl-2 docking studies.Bioorg. Chem.20156310110910.1016/j.bioorg.2015.10.001 26469742
    [Google Scholar]
  144. ChenC. NieY. XuG. YangX. FangH. HouX. Design, synthesis and preliminary bioactivity studies of indomethacin derivatives as Bcl-2/Mcl-1 dual inhibitors.Bioorg. Med. Chem.201927132771278310.1016/j.bmc.2019.05.003 31079964
    [Google Scholar]
  145. KamathP.R. SunilD. AjeesA.A. PaiK.S.R. BiswasS.N. ′-((2-(6-bromo-2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazide as a probable Bcl-2/Bcl-xL inhibitor with apoptotic and anti-metastatic potential.Eur. J. Med. Chem.201612013414710.1016/j.ejmech.2016.05.010 27187865
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575306176240925094457
Loading
/content/journals/mrmc/10.2174/0113895575306176240925094457
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test