Skip to content
2000
Volume 17, Issue 2
  • ISSN: 1876-4029
  • E-ISSN: 1876-4037

Abstract

Background

QCA nanotechnology is an emerging technology in the current scenario to develop the digital circuits for area-efficient, energy-efficient, low-power, and high-speed applications. The EXOR gate is broadly used in many digital applications. Therefore, an EXOR gate needs to be designed in an emerging technology to tackle the issues of the nanoscale regime of conventional metal oxide semiconductor (MOS) technology.

Aim

This study aims to implement an efficient 3-input exclusive OR (EXOR) gate using quantum-dot cellular automata (QCA) nanotechnology and check its performance for subsequent circuits.

Objective

The objective of this research work is to develop an efficient translation-based 3-input EXOR gate in QCA nanotechnology. The subsequent circuits are designed using the proposed EXOR gate to evaluate the efficacy of extension work.

Methods

A unique feature of QCA nanotechnology is utilized for the design of the EXOR gate. The translation-based approach is applied for the implementation of the proposed EXOR gate. A QCA cell may be shifted from its initial position in order to form the logic function. The translation-based method saves the area requirement.

Results

The proposed EXOR gate consists of only 10 QCA cells and 0.50 clocks. The energy dissipation and fault analyses are done for the proposed EXOR gate. A thorough comparative study is prepared for the performance evaluation. The various subsequent circuits, such as a full adder, a 4-bit parity checker, and a 4-bit binary to gray (BTG) code converter, are also designed using the proposed EXOR gate in order to check the extension work on the proposed EXOR gate.

Conclusion

It is observed from the simulation work on the proposed EXOR gate that it saves layout area and is most cost-effective. It is highly optimized in terms of cell count and clock. The proposed EXOR gate saves 25% cell area and 23.08% design cost as compared to the best-reported design. The designed subsequent circuits also outperform in terms of different parameters. The full adder reduces 33.33% cell count and 34.85% cost as compared to the best-reported design. The 4-bit parity checker improves the cell count by 47.50% and the design cost by 57.29% as compared to the best-reported work. The 4-bit BTG code converter minimizes layout area by 25.81% and design cost by 29.30% as compared to the best-reported work.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029349996241115095107
2024-12-12
2025-07-05
Loading full text...

Full text loading...

References

  1. KumarC. MishraA.S. SharmaV.K. Leakage power reduction in CMOS logic circuits using stack ONOFIC technique.Second International Conference on Intelligent Computing and Control Systems (ICICCS)Madurai, India, 14-15 June 2018, pp. 1363-1368.10.1109/ICCONS.2018.8662955
    [Google Scholar]
  2. SharmaV.K. PattanaikM. Design of low leakage variability aware ONOFIC CMOS standard cell library.J. Circuits Syst. Comput.20162511165013410.1142/S0218126616501346
    [Google Scholar]
  3. SharmaV.K. A survey of leakage reduction techniques in CMOS digital circuits for nanoscale regime.Aust. J. Electr. Electron. Eng.202118421723610.1080/1448837X.2021.1966957
    [Google Scholar]
  4. SharmaV.K. PattanaikM. Process, voltage and temperature variations aware low leakage approach for nanoscale CMOS circuits.J. Low Power Electron.2014101455210.1166/jolpe.2014.1293
    [Google Scholar]
  5. NazS.F. RiyazS. SharmaV.K. A Review of QCA Nanotechnology as an Alternate to CMOS.Curr. Nanosci.2022181183010.2174/1573413717666210301111822
    [Google Scholar]
  6. RiyazS. SharmaV.K. Design of reversible Feynman and double Feynman gates in quantum-dot cellular automata nanotechnology.Circuit World2023491283710.1108/CW‑08‑2020‑0199
    [Google Scholar]
  7. RainaB. VermaC. GuptaM. SharmaV.K. Binary coded decimal (BCD) seven segment circuit designing using quantum-dot cellular automata (QCA).5th International Conference on Trends in Electronics and Informatics (ICOEI)Tirunelveli, India, 03-05 June 2021, pp. 126-130.10.1109/ICOEI51242.2021.9453046
    [Google Scholar]
  8. RiyazS. Nashit RabeetM. Kumar SharmaV. Reversible code converters in QCA nanotechnology.Mater. Today Proc.20226344044610.1016/j.matpr.2022.03.446
    [Google Scholar]
  9. SharmaS. SharmaV.K. Design of full adder and parity generator based on reversible logic.2021 Emerging Trends in Industry 4.0 (ETI 4.0)Raigarh, India, 19-21 May 2021, pp. 1-4.10.1109/ETI4.051663.2021.9619268
    [Google Scholar]
  10. SharmaV.K. SoniS. Comparison among different CMOS inverter for low leakage at different technologies.Int. J. Appl. Eng. Res.201012228
    [Google Scholar]
  11. MushtaqU. SharmaV.K. Performance analysis for reliable nanoscaled FinFET logic circuits.Analog Integr. Circuits Signal Process.2021107367168210.1007/s10470‑020‑01765‑z
    [Google Scholar]
  12. SharmaV.K. Design and simulation of FinFET circuits at different technologies.6th International Conference on Inventive Computation Technologies (ICICT)Coimbatore, India, 20-22 Jan. 2021, pp. 1-6.10.1109/ICICT50816.2021.9358487
    [Google Scholar]
  13. Kajal, SharmaV.K. An efficient low power method for FinFET domino OR logic circuit.Microprocess. Microsyst.20229510471910.1016/j.micpro.2022.104719
    [Google Scholar]
  14. DhareV. MehtaU. Test generation algorithm for QCA circuits targeting novel defects and its corresponding fault models.Microprocess. Microsyst.202411010509010.1016/j.micpro.2024.105090
    [Google Scholar]
  15. LinH. ChenD. AnD. Ahmed AlyousufF.Q. Design and analysis of a new fault-tolerant QCA-based nano-scale circuit for morphological operations in image processing.J. Inst. Electron. Telecommun. Eng.20241710.1080/03772063.2024.2321989
    [Google Scholar]
  16. NegahdarK. MoslehM. AhmadpourS.S. Jafari NavimipourN. ShahrbanoonezhadA. Toward implementing robust quantum logic circuits using effectual fault-tolerant majority voter gate.Mater. Sci. Eng. B202430111716110.1016/j.mseb.2023.117161
    [Google Scholar]
  17. RahimiE. EstiriM. Missing-cell defects in QCA wires: The ground and excited electronic states perspectives.Results Phys.20246410791910.1016/j.rinp.2024.107919
    [Google Scholar]
  18. MisraN.K. BhoiB.K. KassaS.R. Utilizing a novel universal quantum gate in the design of fault-tolerant architecture.Nano Commun. Netw.20243910048210.1016/j.nancom.2023.100482
    [Google Scholar]
  19. KhanA. ParameshwaraM.C. AryaR. Defects of quantum dot cellular automata computing devices: An extensive review, evaluation, and future directions.Microprocess. Microsyst.202310110491210.1016/j.micpro.2023.104912
    [Google Scholar]
  20. SharmaV.K. Single‐bit digital comparator circuit design using quantum‐dot cellular automata nanotechnology.ETRI J.202345353454210.4218/etrij.2022‑0033
    [Google Scholar]
  21. SrivastavaS. ChitranshK. SharmaV.K. Block coding 3B/4B for digital communication using quantum-dot cellular automata technology.3rd International Conference on Signal Processing and Communication (ICPSC)Coimbatore, India, 13-14 May 2021, pp. 335-339.10.1109/ICSPC51351.2021.9451794
    [Google Scholar]
  22. SharmaV.K. Parity generators for nanocommunication systems using QCA nanotechnology.Period. Polytech. Electr. Eng. Comput. Sci.202367222923710.3311/PPee.20602
    [Google Scholar]
  23. SharmaV.K. QCA-based reliable fundamental units for multiplexer-demultiplexer and D-flip-flop.Int. J. Nanosci.2023221235000110.1142/S0219581X23500011
    [Google Scholar]
  24. SharmaV.K. DhillonA. SharmaM. Multi-functional reversible logic gate using QCA nanotechnology.6th International Conference on Trends in Electronics and Informatics (ICOEI)Tirunelveli, India, 28-30 Apr. 2022, pp. 107-111.10.1109/ICOEI53556.2022.9776683
    [Google Scholar]
  25. SharmaV.K. Reversible logic gates using quantum dot cellular automata (QCA) nanotechnology.AI for Big Data-Based Engineering Applications from Security PerspectivesCRC Press2023
    [Google Scholar]
  26. SharmaV.K. Parity generators in QCA nanotechnology for nanocommunication systems.Nano Commun. Netw.20233610044010.1016/j.nancom.2023.100440
    [Google Scholar]
  27. AnjalideepK. KumarH. SrivastavaS. SharmaV.K. QCA-based single-bit comparator circuit.3rd International Conference on Smart Electronics and Communication (ICOSEC)Trichy, India, 2022, pp. 328-332.10.1109/ICOSEC54921.2022.9952090
    [Google Scholar]
  28. SrivastavaS. YadavA. ChitranshK. SharmaV.K. Design of block coding 4B/5B for digital communication using quantum-dot cellular automata technology.International Conference on Computer Communication and Informatics (ICCCI)Coimbatore, India, 27-29 Jan. 2021, pp. 1-5.10.1109/ICCCI50826.2021.9402573
    [Google Scholar]
  29. SharmaV.K. Single layer adder/subtractor using QCA nanotechnology for nanocomputing operations.Eng. Res. Express20224404500210.1088/2631‑8695/ac9957
    [Google Scholar]
  30. MishraR. SinghB.K. SinghH. SharmaV.K. 101 sequence detector using QCA technology.International Conference on Computer Communication and Informatics (ICCCI)Coimbatore, India, 23-25 Jan., 2023, pp. 1-5.10.1109/ICCCI56745.2023.10128312
    [Google Scholar]
  31. SharmaV.K. Quantum-dot cellular automata (QCA) nanotechnology for next-generation systems.Nanoelectronics for Next-Generation Integrated CircuitsCRC Press2022
    [Google Scholar]
  32. SharmaV.K. Structure for demultiplexer in QCA technology for nanocommunication systems.International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)Maldives, Maldives, 16-18 Nov., 2022, pp. 1-5.10.1109/ICECCME55909.2022.9987794
    [Google Scholar]
  33. RiyazS. SharmaV.K. KaushikN. Fault-tolerant universal reversible gate design in QCA nanotechnology.e-Prime - Adv. Electr. Eng. Electron. Energy2024710043510.1016/j.prime.2024.100435
    [Google Scholar]
  34. SharmaV.K. RiyazS. Universal and reversible gate design in quantum-dot cellular automata nanotechnology.Micro Nanosyst.202315430832110.2174/0118764029270222231123071138
    [Google Scholar]
  35. SharmaV.K. KaushikN. Ultra-optimized demultiplexer unit design in quantum-dot cellular automata nanotechnology.e-Prime - Adv. Electr. Eng. Electron. Energy2024710044510.1016/j.prime.2024.100445
    [Google Scholar]
  36. VaidN. SharmaV.K. KumarP. Fundamental 1: 2 demultiplexer design in quantum-dot cellular automata nanotechnology.e-Prime - Adv. Electr. Eng. Electron. Energy2024810060010.1016/j.prime.2024.100600
    [Google Scholar]
  37. KassaS. DasJ.C. LambaV. DeD. DebnathB. MallikS. ShahM.A. Novel design of cryptographic architecture of nanorouter using quantum-dot cellular automata nanotechnology.Sci. Rep.20241411053210.1038/s41598‑024‑61260‑738720092
    [Google Scholar]
  38. NemattabarS. MoslehM. HaghparastM. KheyrandishM. Advancing nanoscale computing: Efficient reversible ALU in quantum-dot cellular automata.Nano Commun. Netw.20244010049810.1016/j.nancom.2024.100498
    [Google Scholar]
  39. JeonJ.C. SeoC. Quantum-dot cellular automata demultiplexer with minimum design costs with energy dissipation analysis and physical proof for reliable nano-communication systems.Heliyon20241016e3592610.1016/j.heliyon.2024.e3592639224317
    [Google Scholar]
  40. DasJ.C. DebnathB. DeD. MohanV.M. Dual banyan network (DBN) design: A quantum-dot cellular automata (QCA) based approach.Nano Commun. Netw.20244110052810.1016/j.nancom.2024.100528
    [Google Scholar]
  41. VaishU. AbrahamJ.S. KumarV.R. A fault-tolerant QCA-based convolution encoder for robust data transmission.Nano Commun. Netw.20244010050710.1016/j.nancom.2024.100507
    [Google Scholar]
  42. DharM. MukherjeeC. BanerjeeA. MannaD. PandaS. MajiB. Predicting energy dissipation in QCA-based layered-T gates under cell defects and polarisation: A study with machine-learning models.J. Electron. Test.202440443545510.1007/s10836‑024‑06133‑7
    [Google Scholar]
  43. Jahanshahi JavaranF. Jafarali JassbiS. KhademolhosseiniH. FarazkishR. Robust QCA full adders using a novel fault tolerant five-input majority gate.Int. J. Ind. Electron. Control. Optim.20247299108
    [Google Scholar]
  44. BevaraV. BevaraS. BusiS. KrishnaR.V.V.M. AylapoguP. Ultra low power reversible arithmetic processor based on QCA.Opt. Quantum Electron.202456458610.1007/s11082‑024‑06306‑w
    [Google Scholar]
  45. RiyazS. NazS.F. SharmaV.K. Multioperative reversible gate design with implementation of 1‐bit full adder and subtractor along with energy dissipation analysis.Int. J. Circuit Theory Appl.2021494990101210.1002/cta.2886
    [Google Scholar]
  46. SharmaV.K. Optimal design for 1:2 n demultiplexer using QCA nanotechnology with energy dissipation analysis.Int. J. Numer. Model.2021346e290710.1002/jnm.2907
    [Google Scholar]
  47. SharmaV.K. Optimal design for digital comparator using QCA nanotechnology with energy estimation.Int. J. Numer. Model.2021342e282210.1002/jnm.2822
    [Google Scholar]
  48. AhmadpourS.S. NoorallahzadehM. Al-KhafajiH.M.R. DarbandiM. Jafari NavimipourN. JavadiB. AinN.U. HosseinzadehM. YalcinS. A new energy-efficient design for quantum-based multiplier for nano-scale devices in internet of things.Comput. Electr. Eng.202411710926310.1016/j.compeleceng.2024.109263
    [Google Scholar]
  49. AlharbiM. EdwardsG. StockerR. An ultra-energy-efficient reversible quantum-dot cellular automata 8:1 multiplexer circuit.Quantum Reports202461415710.3390/quantum6010004
    [Google Scholar]
  50. ChughH. SinghS. Efficient co-planar adder designs in quantum dot cellular automata: Energy and cost optimization with crossover elimination.Integration (Amst.)20249410210310.1016/j.vlsi.2023.102103
    [Google Scholar]
  51. SafoevN. JeonJ.C. A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate.Microelectron. Eng.202022211119710.1016/j.mee.2019.111197
    [Google Scholar]
  52. MajeedA. AlkaldyE. High-performance adder using a new XOR gate in QCA technology.J. Supercomput.2022789115641157910.1007/s11227‑022‑04339‑0
    [Google Scholar]
  53. MajeedA.H. ZainalM.S. AlkaldyE. NorD.M. Single-bit comparator in quantum-dot cellular automata (QCA) technology using novel QCA-XNOR gates.J. Electron. Sci. Technol.202119310007810.1016/j.jnlest.2020.100078
    [Google Scholar]
  54. BalaliM. RezaiA. BalaliH. RabieiF. EmadiS. Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate.Results Phys.201771389139510.1016/j.rinp.2017.04.005
    [Google Scholar]
  55. RoshanyH.R. RezaiA. Novel efficient circuit design for multilayer QCA RCA.Int. J. Theor. Phys.20195861745175710.1007/s10773‑019‑04069‑9
    [Google Scholar]
  56. MohammadiH. NaviK. HosseinzadehM. An efficient quantum-dot cellular automata full adder based on a new convertible 7-input majority-not gate.J. Inst. Electron. Telecommun. Eng.202369155856610.1080/03772063.2020.1838338
    [Google Scholar]
  57. AhmadpourS.S. NavimipourN.J. MoslehM. BaharA.N. YalcinS. A nano-scale n-bit ripple carry adder using an optimized XOR gate and quantum-dots technology with diminished cells and power dissipation.Nano Commun. Netw.20233610044210.1016/j.nancom.2023.100442
    [Google Scholar]
  58. HayatiM. RezaeiA. Design of novel efficient adder and subtractor for quantum‐dot cellular automata.Int. J. Circuit Theory Appl.201543101446145410.1002/cta.2019
    [Google Scholar]
  59. LabradoC. ThapliyalH. Design of adder and subtractor circuits in majority logic‐based field‐coupled QCA nanocomputing.Electron. Lett.201652646446610.1049/el.2015.3834
    [Google Scholar]
  60. MohammadiM. MohammadiM. GorginS. An efficient design of full adder in quantum-dot cellular automata (QCA) technology.Microelectronics J.201650354310.1016/j.mejo.2016.02.004
    [Google Scholar]
  61. RashidiH. RezaiA. High-performance full adder architecture in quantum-dot cellular automata.J. Eng.201720177394402
    [Google Scholar]
  62. BalaliM. RezaiA. Design of low-complexity and high-speed coplanar four-bit ripple carry adder in QCA technology.Int. J. Theor. Phys.20185771948196010.1007/s10773‑018‑3720‑8
    [Google Scholar]
  63. SasamalT.N. SinghA.K. MohanA. An efficient design of quantum-dot cellular automata based 5-input majority gate with power analysis.Microprocess. Microsyst.20185910311710.1016/j.micpro.2018.03.002
    [Google Scholar]
  64. SasamalT.N. SinghA.K. GhanekarU. Efficient design of coplanar ripple carry adder in QCA.IET Circuits Dev. Syst.201812559460510.1049/iet‑cds.2018.0020
    [Google Scholar]
  65. ZhangY. DengF. ChengX. XieG. A coplanar XOR using NAND-NOR-inverter and five-input majority voter in quantum-dot cellular automata technology.Int. J. Theor. Phys.202059248450110.1007/s10773‑019‑04343‑w
    [Google Scholar]
  66. SinghG. SarinR.K. RajB. A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis.J. Comput. Electron.201615245546510.1007/s10825‑016‑0804‑7
    [Google Scholar]
  67. MohammadiH. NaviK. Energy-efficient single-layer QCA logical circuits based on a novel XOR gate.J. Circuits Syst. Comput.20182714185021610.1142/S021812661850216X
    [Google Scholar]
  68. WangL. XieG. A novel XOR/XNOR structure for modular design of QCA Circuits.IEEE Trans. Circuits Syst. II Express Briefs202067123327333110.1109/TCSII.2020.2989496
    [Google Scholar]
  69. AhmadpourS.S. MoslehM. Ultra-efficient adders and even parity generators in nano scale.Comput. Electr. Eng.20219610754810.1016/j.compeleceng.2021.107548
    [Google Scholar]
  70. KhanA. BaharA.N. AryaR. Quad-functioning parity layout for nanocomputing: A QCA design.Nano Commun. Netw.20244110052510.1016/j.nancom.2024.100525
    [Google Scholar]
  71. ArunaP. KomanapalliG. Design of energy, cost-efficient binary to gray code converter with temperature and stability analysis.Results Opt.20241610071210.1016/j.rio.2024.100712
    [Google Scholar]
  72. KhakpourM. GholamiM. NaghizadehS. Parity generator and digital code converter in QCA nanotechnology.Int. Nano Lett.2020101495910.1007/s40089‑019‑00292‑8
    [Google Scholar]
  73. KarkajE.T. HeikalabadS.R. Binary to gray and gray to binary converter in quantum-dot cellular automata.Optik (Stuttg.)201713098198910.1016/j.ijleo.2016.11.087
    [Google Scholar]
  74. ShuX. LiL. RenM. MohammedB.O. A new binary to gray code converter based on quantum-dot cellular automata nanotechnology.Photonic Netw. Commun.202141110210810.1007/s11107‑020‑00915‑7
    [Google Scholar]
  75. BhowmikD. PalJ. ChandraM. Kumar SahaA. KumarN. QCA based design of cost-efficient code converter with temperature stability and energy efficiency analysis.Mater. Today Proc.2022493585359410.1016/j.matpr.2021.08.119
    [Google Scholar]
  76. HuangX. YanG. YangX. A new design for XOR gate-based reversible double Feynman gate in nano-scale quantum-dots.Optik (Stuttg.)202327817064710.1016/j.ijleo.2023.170647
    [Google Scholar]
/content/journals/mns/10.2174/0118764029349996241115095107
Loading
/content/journals/mns/10.2174/0118764029349996241115095107
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test