Skip to content
2000
Volume 17, Issue 2
  • ISSN: 1876-4029
  • E-ISSN: 1876-4037

Abstract

Introduction/Objective

Acyclovir, a BCS class III drug (that has high solubility and low permeability) is an antiviral drug used for the treatment of herpes simplex and varicose zoster. To enhance acyclovir's permeability across the intestinal membrane and to improve its bioavailability the β-cyclodextrin (β-CD) nanoparticles of acyclovir were prepared with sodium lauryl sulfate (SLS) as a crosslinking agent.

Methods

A phase solubility study was performed with varying ratios of acyclovir to β-CD. Three formulations of acyclovir-loaded β-CD nanoparticles were prepared with drug-β-CD ratios of 1:1, 1:2, and 1:4. The prepared nanoparticle formulations were characterized for FTIR, dynamic light scattering (particle size, polydispersity index, zeta potential) and permeability studies.

Results

Phase solubility study resulted in an “AL type” curve with an association constant (Kc) of 12 M-1 which suggested the formation of a strong complex between acyclovir and β-CD, leading to enhanced solubility of acyclovir with increasing concentrations of β-CD. The FTIR spectrum confirmed the compatibility of acyclovir, β-CD, and SLS in the formulations. Dynamic light scattering analysis demonstrated particle sizes ranging from 152.92 nm to 335.7 nm, with the smallest particles in the 1:4 ratio formulation (152.92 nm), potentially due to higher drug encapsulation. Zeta potential measurements reflected formation of stable nanoparticle suspensions, with the formulation exhibiting a zeta potential of -45.4 mV showcasing optimal stability. permeation studies revealed that the 1:4 ratio formulation exhibited the highest permeability (84.24 ± 1.94% at the end of 150 min) through the eggshell membrane, implying efficient drug release. This increase in permeability corroborated with its smallest particle size.

Conclusion

The study highlights the potential of β-CD nanoparticles (with best performance shown by drug-to-β-CD ratio 1:4) in augmenting acyclovir's delivery, suggesting a promising avenue for improving the drug delivery in viral infections.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029339726241208062307
2024-12-20
2025-07-08
Loading full text...

Full text loading...

References

  1. WeiY.P. YaoL.Y. WuY.Y. LiuX. PengL.H. TianY.L. DingJ.H. LiK.H. HeQ.G. Critical review of synthesis, toxicology and detection of acyclovir.Molecules20212621656610.3390/molecules26216566 34770975
    [Google Scholar]
  2. ShahP. JoganiV. MishraP. MishraA.K. BagchiT. MisraA. In vitro assessment of acyclovir permeation across cell monolayers in the presence of absorption enhancers.Drug Dev. Ind. Pharm.200834327928810.1080/03639040701655952 18363143
    [Google Scholar]
  3. G AssisM.S. F PedrosaT.C. de MoraesF.S. CaldeiraT.G. PereiraG.R. de SouzaJ. RuelaA.L.M. Novel insights to enhance therapeutics with acyclovir in the management of herpes simplex encephalitis.J. Pharm. Sci.202111041557157110.1016/j.xphs.2021.01.003 33450220
    [Google Scholar]
  4. NartV. FrançaM.T. AnzilaggoD. RiekesM.K. KratzJ.M. de CamposC.E.M. SimõesC.M.O. StulzerH.K. Ball-milled solid dispersions of BCS Class IV drugs: Impact on the dissolution rate and intestinal permeability of acyclovir.Mater. Sci. Eng. C20155322923810.1016/j.msec.2015.04.028 26042711
    [Google Scholar]
  5. KalepuS. NekkantiV. Insoluble drug delivery strategies: Review of recent advances and business prospects.Acta Pharm. Sin. B20155544245310.1016/j.apsb.2015.07.003 26579474
    [Google Scholar]
  6. HeY. ChengM. YangR. LiH. LuZ. JinY. FengJ. TuL. Research progress on the mechanism of nanoparticles crossing the intestinal epithelial cell membrane.Pharmaceutics2023157181610.3390/pharmaceutics15071816 37514003
    [Google Scholar]
  7. RaoJ.P. GeckelerK.E. Polymer nanoparticles: Preparation techniques and size-control parameters.Prog. Polym. Sci.201136788791310.1016/j.progpolymsci.2011.01.001
    [Google Scholar]
  8. FernandezM.J. SalveP.C. LopezC.R. JatoJ.L. Application of nanoparticles based on hydrophilic polymers as pharmaceutical forms.US patent 6,649,1922003
    [Google Scholar]
  9. MagnúsdóttirA. MássonM. LoftssonT. The conventional model of drug/cyclodextrin complex formation (salicylic acid/β-cyclodextrin inclusion complex).J. Incl. Phenom. Macrocycl. Chem.2002441/421321810.1023/A:1023079322024
    [Google Scholar]
  10. SemaltyA. Cyclodextrin and phospholipid complexation in solubility and dissolution enhancement: A critical and meta-analysis.Expert Opin. Drug Deliv.20141181255127210.1517/17425247.2014.916271 24909802
    [Google Scholar]
  11. LakkakulaJ.R. M KrauseR.W. A vision for cyclodextrin nanoparticles in drug delivery systems and pharmaceutical applications.Nanomedicine20149687789410.2217/nnm.14.41 24981652
    [Google Scholar]
  12. VaranG. VaranC. ErdoğarN. HıncalA.A. BilensoyE. Amphiphilic cyclodextrin nanoparticles.Int. J. Pharm.2017531245746910.1016/j.ijpharm.2017.06.010 28596142
    [Google Scholar]
  13. LachowiczM. StańczakA. KołodziejczykM. Characteristic of Cyclodextrins: Their role and use in the pharmaceutical technology.Curr. Drug Targets202021141495151010.2174/1389450121666200615150039 32538725
    [Google Scholar]
  14. dos Santos LimaB. ShanmugamS. de Souza Siqueira QuintansJ. Quintans-JúniorL.J. de Souza AraújoA.A. Inclusion complex with cyclodextrins enhances the bioavailability of flavonoid compounds: A systematic review.Phytochem. Rev.20191851337135910.1007/s11101‑019‑09650‑y
    [Google Scholar]
  15. LoftssonT. VogensenS.B. BrewsterM.E. KonráðsdóttirF. Effects of cyclodextrins on drug delivery through biological membranes.J. Pharm. Sci.200796102532254610.1002/jps.20992 17630644
    [Google Scholar]
  16. ShelleyH. BabuR.J. Role of cyclodextrins in nanoparticle-based drug delivery systems.J. Pharm. Sci.201810771741175310.1016/j.xphs.2018.03.021 29625157
    [Google Scholar]
  17. TarannumN. Suhani, KumarD. Synthesis, characterization and applications of copolymer of β – cyclodextrin: A review.J. Polym. Res.2020274899510.1007/s10965‑020‑02058‑9
    [Google Scholar]
  18. RyzhakovA. Do ThiT. StappaertsJ. BertolettiL. KimpeK. Sá CoutoA.R. SaokhamP. Van den MooterG. AugustijnsP. SomsenG.W. KurkovS. InghelbrechtS. ArienA. JimidarM.I. SchrijnemakersK. LoftssonT. Self-assembly of cyclodextrins and their complexes in aqueous solutions.J. Pharm. Sci.201610592556256910.1016/j.xphs.2016.01.019 26975246
    [Google Scholar]
  19. MessnerM. KurkovS.V. JansookP. LoftssonT. Self-assembled cyclodextrin aggregates and nanoparticles.Int. J. Pharm.20103871-219920810.1016/j.ijpharm.2009.11.035 19963052
    [Google Scholar]
  20. AdhikariL. KumarN. SahaA. SemaltyA. SemaltyM. Naringenin loaded cyclodextrin nanoparticles for improved drug delivery.Indian Drugs2022598828510.53879/id.59.08.12746
    [Google Scholar]
  21. Al-ShdefatR.I. Enhanced diuretic action of furosemide by complexation with β-cyclodextrin in the presence of sodium lauryl sulfate. Green Proce.Synt.20209174475010.1515/gps‑2020‑0069
    [Google Scholar]
  22. HiguchiT. ConnorsK.A. Phase-solubility techniques.Adv. Anal. Chem. Instrum.1965421172129
    [Google Scholar]
  23. LiZ. LiH. WangC. XuJ. SinghV. ChenD. ZhangJ. Sodium dodecyl sulfate/β -cyclodextrin vesicles embedded in chitosan gel for insulin delivery with pH-selective release.Acta Pharm. Sin. B20166434435110.1016/j.apsb.2016.03.003 27471675
    [Google Scholar]
  24. PecoraR. Dynamic light scattering measurement of nanometer particles in liquids.J. Nanopart. Res.20002212313110.1023/A:1010067107182
    [Google Scholar]
  25. López-LorenteÁ.I. MizaikoffB. Recent advances on the characterization of nanoparticles using infrared spectroscopy.Trends Analyt. Chem.2016849710610.1016/j.trac.2016.01.012
    [Google Scholar]
  26. WashitakeM. TakashimaY. TanakaS. AnmoT. TanakaI. Drug permeation through egg shell membranes.Chem. Pharm. Bull.198028102855286110.1248/cpb.28.2855 7448936
    [Google Scholar]
  27. AnsariM. KazemipourM. AklamliM. The study of drug permeation through natural membranes.Int. J. Pharm.20063271-261110.1016/j.ijpharm.2006.07.034 16959447
    [Google Scholar]
  28. RosselC.P. S CarreñoJ. Rodríguez-BaezaM. AldereteJ.B. Inclusion complex of the antiviral drug acyclovir with cyclodextrin in aqueous solution and in solid phase.Quim. Nova200023674975210.1590/S0100‑40422000000600007
    [Google Scholar]
  29. MaherM. PandeyM. AdhikariL. SemaltyA. SemaltyM. Effect of hydrophilic excipients on cyclodextrin complexes of acyclovir in improving solubility, dissolution and permeability.Lett. Drug Des. Discov.201613877178010.2174/1570180813666160517161058
    [Google Scholar]
  30. CavalliR. DonalisioM. CivraA. FerrutiP. RanucciE. TrottaF. LemboD. Enhanced antiviral activity of Acyclovir loaded into β-cyclodextrin-poly(4-acryloylmorpholine) conjugate nanoparticles.J. Control. Release2009137211612210.1016/j.jconrel.2009.04.004 19361545
    [Google Scholar]
  31. MirandaD.C.J. MartinA.E.T. FerrazG.H. Cyclodextrins and ternary complexes: Technology to improve solubility of poorly soluble drugs.Braz. J. Pharm. Sci.20064744589
    [Google Scholar]
  32. AsbahrA.C.C. FrancoL. BarisonA. SilvaC.W.P. FerrazH.G. RodriguesL.N.C. RodriguesL.N. Binary and ternary inclusion complexes of finasteride in HPβCD and polymers: Preparation and characterization.Bioorg. Med. Chem.20091772718272310.1016/j.bmc.2009.02.044 19282187
    [Google Scholar]
  33. BhakayA. RahmanM. DaveR.N. BilgiliE. Bioavailability enhancement of poorly water-soluble drugs via nanocomposites: Formulation processing aspects and challenges.Pharmaceutics20181038610.3390/pharmaceutics10030086 29986543
    [Google Scholar]
  34. SemaltyM. PanchpuriM. SinghD. SemaltyA. Cyclodextrin inclusion complex of racecadotril: Effect of drug-β- cyclodextrin ratio and the method of complexation.Curr. Drug Discov. Technol.201411215416110.2174/15701638113106660043 24188445
    [Google Scholar]
  35. SemaltyM. SemaltyA. SinghD. PanchpuriM. Effect of drug β-CD ratio and method of complexation in the development of cyclodextrin inclusion complex of ofloxacin.INDIAN DRUGS201350123440
    [Google Scholar]
  36. NairA.B. AttimaradM. Al-DhubiabB.E. WadhwaJ. HarshaS. AhmedM. Enhanced oral bioavailability of acyclovir by inclusion complex using hydroxypropyl-β-cyclodextrin.Drug Deliv.201421754054710.3109/10717544.2013.853213 24215288
    [Google Scholar]
  37. SanghviR. EvansD. YalkowskyS.H. Stacking complexation by nicotinamide: A useful way of enhancing drug solubility.Int. J. Pharm.20073361354110.1016/j.ijpharm.2006.11.025 17145146
    [Google Scholar]
  38. LoftssonT. MássonM. SigurdssonH.H. Cyclodextrins and drug permeability through semi-permeable cellophane membranes.Int. J. Pharm.20022321-2354310.1016/S0378‑5173(01)00895‑X 11790488
    [Google Scholar]
  39. CelebiogluA. UyarT. Electrospun formulation of acyclovir/cyclodextrin nanofibers for fast-dissolving antiviral drug delivery.Mater. Sci. Eng. C202111811151410.1016/j.msec.2020.111514 33255070
    [Google Scholar]
  40. CengizB. GevrekT.N. ChambreL. SanyalA. Self-assembly of cyclodextrin-coated nanoparticles: Fabrication of functional nanostructures for sensing and delivery.Molecules2023283107610.3390/molecules28031076 36770743
    [Google Scholar]
  41. AbruzzoA. CroattiV. ZuccheriG. P NicolettaF. SallustioV. CorazzaE. VitaliB. CerchiaraT. LuppiB. BigucciF. Drug-in-cyclodextrin-in-polymeric nanoparticles: A promising strategy for rifampicin administration.Eur. J. Pharm. Biopharm.202218019020010.1016/j.ejpb.2022.10.001 36210035
    [Google Scholar]
  42. DucheneD. CavalliR. GrefR. Cyclodextrin-based polymeric nanoparticles as efficient carriers for anticancer drugs.Curr. Pharm. Biotechnol.201617324825510.2174/1389201017666151030104944 26517333
    [Google Scholar]
  43. PuglisiA. BognanniN. VecchioG. BayirE. van OostrumP. ShepherdD. PlattF. ReimhultE. Grafting of cyclodextrin to theranostic nanoparticles improves blood-brain barrier model crossing.Biomolecules202313357310.3390/biom13030573 36979508
    [Google Scholar]
  44. PuglisiA. BassiniS. ReimhultE. Cyclodextrin-appended superparamagnetic iron oxide nanoparticles as cholesterol-mopping agents.Front Chem.2021979559810.3389/fchem.2021.795598 34869239
    [Google Scholar]
/content/journals/mns/10.2174/0118764029339726241208062307
Loading
/content/journals/mns/10.2174/0118764029339726241208062307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test