Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1876-4029
  • E-ISSN: 1876-4037

Abstract

Increasing the oral bioavailability of drugs that dissolve slowly may be possible with the use of nanocrystal technology. It is being employed for drug engineering and research after making rapid advancements in recent years. The manufacturing process for pharmaceuticals is significantly hampered by the low solubility and quick rate of dissolution of poorly soluble medications. When taken orally, medications that are poorly soluble often have low and inconsistent bioavailability, which could lead to therapeutic failure. Pure drug nanocrystals prepared “bottom-up” or “top-down” procedures are able to significantly improve the way poorly soluble medications dissolve thanks to their enormous surface area, which in turn enhances oral absorption. Nanocrystal medications allow for the creation of various dosage formulations. The use of nanocrystal technology in pharmaceutical research, particularly for oral drug delivery systems, is the main focus of this review. First, a quick discussion on the characteristics of pharmaceutical nanocrystals and several nanocrystal technology preparation techniques is provided. The application of nanocrystal technology in pharmaceutical science is covered after a discussion of the creation of prolonged-release formulations. Next follows a brief overview of the scaling-up procedure, commercial nanocrystal drug products, and regulatory aspects of nanodrugs. This paper offers a thorough explanation of preparation techniques, their characterisation, and how they are used in oral drug delivery systems.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029318012240925050735
2024-10-22
2025-06-21
Loading full text...

Full text loading...

References

  1. Van EerdenbrughB. FroyenL. Van HumbeeckJ. MartensJ.A. AugustijnsP. Van den MooterG. Drying of crystalline drug nanosuspensions—The importance of surface hydrophobicity on dissolution behavior upon redispersion.Eur. J. Pharm. Sci.2008351-212713510.1016/j.ejps.2008.06.009 18644441
    [Google Scholar]
  2. KawabataY. WadaK. NakataniM. YamadaS. OnoueS. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications.Int. J. Pharm.2011420111010.1016/j.ijpharm.2011.08.032 21884771
    [Google Scholar]
  3. KocbekP. BaumgartnerS. KristlJ. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs.Int. J. Pharm.20063121-217918610.1016/j.ijpharm.2006.01.008 16469459
    [Google Scholar]
  4. FasanoA. Innovative strategies for the oral delivery of drugs and peptides.Trends Biotechnol.199816415215710.1016/S0167‑7799(97)01170‑0 9586237
    [Google Scholar]
  5. DressmanJ.B. ReppasC. In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs.Eur. J. Pharm. Sci.200011S2Suppl. 2S73S8010.1016/S0928‑0987(00)00181‑0 11033429
    [Google Scholar]
  6. WangM. ThanouM. Targeting nanoparticles to cancer.Pharmacol. Res.2010622909910.1016/j.phrs.2010.03.005 20380880
    [Google Scholar]
  7. LipinskiC. Poor aqueous solubility—an industry wide problem in drug discovery.Am. Pharm. Rev.2002538285
    [Google Scholar]
  8. KeckC. MüllerR. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation.Eur. J. Pharm. Biopharm.200662131610.1016/j.ejpb.2005.05.009 16129588
    [Google Scholar]
  9. RabinowB.E. Nanosuspensions in drug delivery.Nat. Rev. Drug Discov.20043978579610.1038/nrd1494 15340388
    [Google Scholar]
  10. ZhengA. ShiJ. Research progress in nanocrystal drugs.J. Int. Pharm. Res.201239177183
    [Google Scholar]
  11. GaoL. ZhangD. ChenM. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system.J. Nanopart. Res.200810584586210.1007/s11051‑008‑9357‑4
    [Google Scholar]
  12. BitterlichA. LaabsC. KrautstrunkI. DenglerM. JuhnkeM. GrandeuryA. BunjesH. KwadeA. Process parameter dependent growth phenomena of naproxen nanosuspension manufactured by wet media milling.Eur. J. Pharm. Biopharm.20159217117910.1016/j.ejpb.2015.02.031 25766272
    [Google Scholar]
  13. ChenZ. WuW. LuY. What is the future for nanocrystal-based drug-delivery systems?Ther. Deliv.202011422522910.4155/tde‑2020‑0016 32157960
    [Google Scholar]
  14. RavalA. PatelM.M. Preparation and characterization of nanoparticles for solubility and dissolution rate enhancement of meloxicam.Int. Res. J. Pharm.201114249
    [Google Scholar]
  15. LiuJ. XuY. LiM. QianH. Research progress of nanomedicine.Pharm. Clin. Res.2020285155
    [Google Scholar]
  16. JarvisM. KrishnanV. MitragotriS. Nanocrystals: A perspective on translational research and clinical studies.Bioeng. Transl. Med.20194151610.1002/btm2.10122 30680314
    [Google Scholar]
  17. RaghavaS.K.M. MishraB. Drug nanocrystals: A way toward scale-up.Saudi Pharm. J.201624438640410.1016/j.jsps.2014.04.007 27330370
    [Google Scholar]
  18. ShegokarR. MüllerR.H. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives.Int. J. Pharm.20103991-212913910.1016/j.ijpharm.2010.07.044 20674732
    [Google Scholar]
  19. AguiarG.P.S. MarconM. MocelinR. HerrmannA.P. ChavesL.M.P.C. PiatoA.L. LanzaM. OliveiraJ.V. Micronization of N -acetylcysteine by supercritical fluid: Evaluation of in vitro and in vivo biological activity.J. Supercrit. Fluids201713028229110.1016/j.supflu.2017.06.010
    [Google Scholar]
  20. GaoL. ZhangD. ChenM. ZhengT. WangS. Preparation and characterization of an oridonin nanosuspension for solubility and dissolution velocity enhancement.Drug Dev. Ind. Pharm.200733121332133910.1080/03639040701741810 18097807
    [Google Scholar]
  21. PawarV.K. SinghY. MeherJ.G. GuptaS. ChourasiaM.K. Engineered nanocrystal technology: In-vivo fate, targeting and applications in drug delivery.J. Control. Release2014183516610.1016/j.jconrel.2014.03.030 24667572
    [Google Scholar]
  22. JinnoJ. KamadaN. MiyakeM. YamadaK. MukaiT. OdomiM. ToguchiH. LiversidgeG.G. HigakiK. KimuraT. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs.J. Control. Release20061111-2566410.1016/j.jconrel.2005.11.013 16410029
    [Google Scholar]
  23. MauludinR. MüllerR.H. KeckC.M. Kinetic solubility and dissolution velocity of rutin nanocrystals.Eur. J. Pharm. Sci.2009364-550251010.1016/j.ejps.2008.12.002 19130880
    [Google Scholar]
  24. GhoshI. BoseS. VippaguntaR. HarmonF. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth.Int. J. Pharm.20114091-226026810.1016/j.ijpharm.2011.02.051 21371540
    [Google Scholar]
  25. MüllerR.H. KeckC.M. Twenty years of drug nanocrystals: Where are we, and where do we go?Eur. J. Pharm. Biopharm.20128011310.1016/j.ejpb.2011.09.012 21971369
    [Google Scholar]
  26. Soo ChoiH. LiuW. MisraP. TanakaE. ZimmerJ.P. Itty IpeB. BawendiM.G. FrangioniJ.V. Renal clearance of quantum dots.Nat. Biotechnol.200725101165117010.1038/nbt1340 17891134
    [Google Scholar]
  27. ItaliaJ.L. BhattD.K. BhardwajV. TikooK. KumarM.N.V.R. PLGA nanoparticles for oral delivery of cyclosporine: Nephrotoxicity and pharmacokinetic studies in comparison to Sandimmune Neoral®.J. Control. Release2007119219720610.1016/j.jconrel.2007.02.004 17399839
    [Google Scholar]
  28. El-ShabouriM.H. Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A.Int. J. Pharm.20022491-210110810.1016/S0378‑5173(02)00461‑1 12433438
    [Google Scholar]
  29. DadashzadehS. DerakhshandehK. ShiraziF.H. 9-Nitrocamptothecin polymeric nanoparticles: Cytotoxicity and pharmacokinetic studies of lactone and total forms of drug in rats.Anticancer Drugs200819880581110.1097/CAD.0b013e3283099e5c 18690092
    [Google Scholar]
  30. FuQ. SunJ. AiX. ZhangP. LiM. WangY. LiuX. SunY. SuiX. SunL. HanX. ZhuM. ZhangY. WangS. HeZ. Nimodipine nanocrystals for oral bioavailability improvement: Role of mesenteric lymph transport in the oral absorption.Int. J. Pharm.2013448129029710.1016/j.ijpharm.2013.01.065 23384726
    [Google Scholar]
  31. IgeP.P. BariaR.K. GattaniS.G. Fabrication of fenofibrate nanocrystals by probe sonication method for enhancement of dissolution rate and oral bioavailability.Colloids Surf. B Biointerfaces201310836637310.1016/j.colsurfb.2013.02.043 23602990
    [Google Scholar]
  32. YangW. JohnstonK.P. WilliamsIII R.O. Comparison of bioavailability of amorphous versus crystalline itraconazole nanoparticles via pulmonary administration in rats.Eur. J. Pharm. Biopharm.2010751334110.1016/j.ejpb.2010.01.011 20102737
    [Google Scholar]
  33. LiversidgeG.G. CundyK.C. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs.Int. J. Pharm.19951251919710.1016/0378‑5173(95)00122‑Y
    [Google Scholar]
  34. SunJ. WangF. SuiY. SheZ. ZhaiW. WangC. DengY. Effect of particle size on solubility, dissolution rate, and oral bioavailability: Evaluation using coenzyme Q10 as naked nanocrystals.Int. J. Nanomedicine2012757335744 23166438
    [Google Scholar]
  35. LamprechtA. UbrichN. YamamotoH. SchäferU. TakeuchiH. MaincentP. KawashimaY. LehrC.M. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease.J. Pharmacol. Exp. Ther.20012992775781 11602694
    [Google Scholar]
  36. DhawanA. SharmaV. ParmarD. Nanomaterials: A challenge for toxicologists.Nanotoxicology2009311910.1080/17435390802578595
    [Google Scholar]
  37. BalbusJ.M. MaynardA.D. ColvinV.L. CastranovaV. DastonG.P. DenisonR.A. DreherK.L. GoeringP.L. GoldbergA.M. KulinowskiK.M. Monteiro-RiviereN.A. OberdörsterG. OmennG.S. PinkertonK.E. RamosK.S. RestK.M. SassJ.B. SilbergeldE.K. WongB.A. Meeting report: Hazard assessment for nanoparticles--report from an interdisciplinary workshop.Environ. Health Perspect.2007115111654165910.1289/ehp.10327 18007999
    [Google Scholar]
  38. ParkM.V.D.Z. AnnemaW. SalvatiA. LesniakA. ElsaesserA. BarnesC. McKerrG. HowardC.V. LynchI. DawsonK.A. PiersmaA.H. de JongW.H. In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles.Toxicol. Appl. Pharmacol.2009240110811610.1016/j.taap.2009.07.019 19631676
    [Google Scholar]
  39. BalasubramanyamA. SailajaN. MahboobM. RahmanM.F. HussainS.M. GroverP. In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test.Mutagenesis200924324525110.1093/mutage/gep003 19237533
    [Google Scholar]
  40. PisanicT.R.II BlackwellJ.D. ShubayevV.I. FiñonesR.R. JinS. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons.Biomaterials200728162572258110.1016/j.biomaterials.2007.01.043 17320946
    [Google Scholar]
  41. LeiR. WuC. YangB. MaH. ShiC. WangQ. WangQ. YuanY. LiaoM. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid in vivo screening method for nanotoxicity.Toxicol. Appl. Pharmacol.2008232229230110.1016/j.taap.2008.06.026 18706438
    [Google Scholar]
  42. ChenZ. MengH. XingG. ChenC. ZhaoY. JiaG. WangT. YuanH. YeC. ZhaoF. ChaiZ. ZhuC. FangX. MaB. WanL. Acute toxicological effects of copper nanoparticles in vivo.Toxicol. Lett.2006163210912010.1016/j.toxlet.2005.10.003 16289865
    [Google Scholar]
  43. KumarV. WangL. RiebeM. TungH.H. Prud’hommeR.K. Formulation and stability of itraconazole and odanacatib nanoparticles: Governing physical parameters.Mol. Pharm.2009641118112410.1021/mp900002t 19366261
    [Google Scholar]
  44. LiH. WangJ. BaoY. GuoZ. ZhangM. Rapid sonocrystallization in the salting-out process.J. Cryst. Growth20032471-219219810.1016/S0022‑0248(02)01941‑3
    [Google Scholar]
  45. DhumalR. BiradarS. YamamuraS. ParadkarA. YorkP. Preparation of amorphous cefuroxime axetil nanoparticles by sonoprecipitation for enhancement of bioavailability.Eur. J. Pharm. Biopharm.200870110911510.1016/j.ejpb.2008.04.001 18502628
    [Google Scholar]
  46. ChenJ.F. WangY-H. GuoF. WangX-M. ZhengC. Synthesis of nanoparticles with novel technology: High-gravity reactive precipitation.Ind. Eng. Chem. Res.200039494895410.1021/ie990549a
    [Google Scholar]
  47. HuT.T. WangJ-X. ShenZ-G. ChenJ-F. Engineering of drug nanoparticles by HGCP for pharmaceutical applications.Particuology20086423925110.1016/j.partic.2008.04.001
    [Google Scholar]
  48. SarkariM. BrownJ. ChenX. SwinneaS. WilliamsR.O.III JohnstonK.P. Enhanced drug dissolution using evaporative precipitation into aqueous solution.Int. J. Pharm.20022431-2173110.1016/S0378‑5173(02)00072‑8 12176292
    [Google Scholar]
  49. SinswatP. GaoX. YacamanM.J. WilliamsR.O.III JohnstonK.P. Stabilizer choice for rapid dissolving high potency itraconazole particles formed by evaporative precipitation into aqueous solution.Int. J. Pharm.20053021-211312410.1016/j.ijpharm.2005.06.027 16109466
    [Google Scholar]
  50. KakranM. SahooN.G. LiL. JudehZ. WangY. ChongK. LohL. Fabrication of drug nanoparticles by evaporative precipitation of nanosuspension.Int. J. Pharm.20103831-228529210.1016/j.ijpharm.2009.09.030 19781606
    [Google Scholar]
  51. KrukonisV. Supercritical fluid nucleation of difficult-to-comminute solids.Annual Meeting AIChE. San Francisco,1984
    [Google Scholar]
  52. TürkM. Manufacture of submicron drug particles with enhanced dissolution behaviour by rapid expansion processes.J. Supercrit. Fluids200947353754510.1016/j.supflu.2008.09.008
    [Google Scholar]
  53. YoungT.J. MawsonS. JohnstonK.P. HenriksenI.B. PaceG.W. MishraA.K. Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs.Biotechnol. Prog.200016340240710.1021/bp000032q 10835242
    [Google Scholar]
  54. KimM.S. JinS.J. KimJ.S. ParkH.J. SongH.S. NeubertR.H.H. HwangS.J. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process.Eur. J. Pharm. Biopharm.200869245446510.1016/j.ejpb.2008.01.007 18359211
    [Google Scholar]
  55. TenorioA. Controlled submicro particle formation of ampicillin by supercritical antisolvent precipitation J.Supercrit. Fluid200740308316
    [Google Scholar]
  56. Van EerdenbrughB. Van den MooterG. AugustijnsP. Top-down production of drug nanocrystals: Nanosuspension stabilization, miniaturization and transformation into solid products.Int. J. Pharm.20083641647510.1016/j.ijpharm.2008.07.023 18721869
    [Google Scholar]
  57. PeltonenL. HirvonenJ. Pharmaceutical nanocrystals by nanomilling: Critical process parameters, particle fracturing and stabilization methods.J. Pharm. Pharmacol.201062111569157910.1111/j.2042‑7158.2010.01022.x 21039542
    [Google Scholar]
  58. JunyaprasertV.B. MorakulB. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs.Asian J. Pharm. Sci.2015101132310.1016/j.ajps.2014.08.005
    [Google Scholar]
  59. KalamA. Al-SehemiA.G. AssiriM. DuG. AhmadT. AhmadI. PanniparaM. Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light.Results Phys.201881046105310.1016/j.rinp.2018.01.045
    [Google Scholar]
  60. HuL. KongD. HuQ. GaoN. PangS. Evaluation of high-performance curcumin nanocrystals for pulmonary drug delivery both in vitro and in vivo.Nanoscale Res. Lett.201510138110.1186/s11671‑015‑1085‑y 26428016
    [Google Scholar]
  61. DanleyR.L. New heat flux DSC measurement technique.Thermochim. Acta20023951-220120810.1016/S0040‑6031(02)00212‑5
    [Google Scholar]
  62. ZuccaN. ErriuG. OnnisS. LongoniA. An analytical expression of the output of a power compensated DSC in a wide temperature range.Thermochim. Acta2002143117125
    [Google Scholar]
  63. MaheshK.V. SinghS.K. GulatiM. A comparative study of top-down and bottom-up approaches for the preparation of nanosuspensions of glipizide.Powder Technol.201425643644910.1016/j.powtec.2014.02.011
    [Google Scholar]
  64. de WaardH. De BeerT. HinrichsW.L.J. VervaetC. RemonJ.P. FrijlinkH.W. Controlled crystallization of the lipophilic drug fenofibrate during freeze-drying: Elucidation of the mechanism by in-line Raman spectroscopy.AAPS J.201012456957510.1208/s12248‑010‑9215‑z 20625865
    [Google Scholar]
  65. KeckC. MullerR. Characterisation of nanosuspensions by laser diffractometry.Proceedings of the Annual Meeting of the American Association of Pharmaceutical Scientists (AAPS)Nashville, TN, USA2005
    [Google Scholar]
  66. LiJ. FuQ. LiuX. LiM. WangY. Formulation of nimodipine nanocrystals for oral administration.Arch. Pharm. Res.201639220221210.1007/s12272‑015‑0685‑5 26584914
    [Google Scholar]
  67. RachmawatiH. ShaalL.A. MüllerR.H. KeckC.M. Development of curcumin nanocrystal: Physical aspects.J. Pharm. Sci.2013102120421410.1002/jps.23335 23047816
    [Google Scholar]
  68. XuK. XiongX. ZhaiY. WangL. LiS. YanJ. WuD. MaX. LiH. Effect of milling conditions on solid-state amorphization of glipizide, and characterization and stability of solid forms.J. Pharm. Biomed. Anal.201612912936737710.1016/j.jpba.2016.07.026 27454088
    [Google Scholar]
  69. DudognonE. WillartJ.F. CaronV. CapetF. LarssonT. DescampsM. Formation of budesonide/α-lactose glass solutions by ball-milling.Solid State Commun.20061382687110.1016/j.ssc.2006.02.007
    [Google Scholar]
  70. RezaeiM.A. KebriaeeZ.A. KeshavarzM. AhmadiA. MohtatB. Preparation and in-vitro evaluation of indomethacin nanoparticles.Daru2010183185192 22615616
    [Google Scholar]
  71. WeiL. JiY. GongW. KangZ. MengM. ZhengA. ZhangX. SunJ. Preparation, physical characterization and pharmacokinetic study of paclitaxel nanocrystals.Drug Dev. Ind. Pharm.20154181343135210.3109/03639045.2014.950272 25156484
    [Google Scholar]
  72. PatelC.M. ChakrabortyM. MurthyZ.V.P. Preparation of fenofibrate nanoparticles by combined stirred media milling and ultrasonication method.Ultrason. Sonochem.20142131100110710.1016/j.ultsonch.2013.12.001 24365225
    [Google Scholar]
  73. De SmetL. SaerensL. De BeerT. CarleerR. AdriaensensP. Van BocxlaerJ. VervaetC. RemonJ.P. Formulation of itraconazole nanococrystals and evaluation of their bioavailability in dogs.Eur. J. Pharm. Biopharm.201487110711310.1016/j.ejpb.2013.12.016 24388913
    [Google Scholar]
  74. HongC. DangY. LinG. YaoY. LiG. JiG. ShenH. XieY. Effects of stabilizing agents on the development of myricetin nanosuspension and its characterization: An in vitro and in vivo evaluation.Int. J. Pharm.20144771-225126010.1016/j.ijpharm.2014.10.044 25445518
    [Google Scholar]
  75. KumarS. BurgessD.J. Wet milling induced physical and chemical instabilities of naproxen nano-crystalline suspensions.Int. J. Pharm.20144661-222323210.1016/j.ijpharm.2014.03.021 24614581
    [Google Scholar]
  76. RahmanM. ArevaloF. CoelhoA. BilgiliE. Hybrid nanocrystal–amorphous solid dispersions (HyNASDs) as alternative to ASDs for enhanced release of BCS Class II drugs.Eur. J. Pharm. Biopharm.2019145122610.1016/j.ejpb.2019.10.002 31622652
    [Google Scholar]
  77. BilgiliE. LiM. AfolabiA. Is the combination of cellulosic polymers and anionic surfactants a good strategy for ensuring physical stability of BCS Class II drug nanosuspensions?Pharm. Dev. Technol.2016214499510 25774989
    [Google Scholar]
  78. PyoS.M. HespelerD. KeckC.M. MüllerR.H. Dermal miconazole nitrate nanocrystals – formulation development, increased antifungal efficacy & skin penetration.Int. J. Pharm.2017531135035910.1016/j.ijpharm.2017.08.108 28855137
    [Google Scholar]
  79. MedarevićD. DjurišJ. IbrićS. MitrićM. KachrimanisK. Optimization of formulation and process parameters for the production of carvedilol nanosuspension by wet media milling.Int. J. Pharm.20185401-215016110.1016/j.ijpharm.2018.02.011 29438724
    [Google Scholar]
  80. OktayA.N. Ilbasmis-TamerS. CelebiN. The effect of critical process parameters of the high pressure homogenization technique on the critical quality attributes of flurbiprofen nanosuspensions.Pharm. Dev. Technol.201924101278128610.1080/10837450.2019.1667384 31535942
    [Google Scholar]
/content/journals/mns/10.2174/0118764029318012240925050735
Loading
/content/journals/mns/10.2174/0118764029318012240925050735
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test