Skip to content
2000
image of Review of Advancements and Future Directions in the Fabrication of Microchannel Heat Sinks for Electronic Cooling

Abstract

With the increasing demand for enhanced thermal performance and energy efficiency, microchannel heat sinks (MCHSs) have garnered significant attention as an effective method for dissipating the heat flux from thermal systems. Microchannel heat sinks have widespread applications in electronic devices, offering superior heat removal rates and ensuring optimal performance and durability. The fabrication of microchannels has been a long-standing challenge that has spurred continuous research efforts. Innovative techniques have emerged to address this challenge, leading to ongoing research aimed at the development of more efficient and contemporary cooling methods. This review comprehensively explores various microchannel fabrication techniques including photolithography, wire EDM, ultrasonic microfabrication, and etching. In addition, it provides insights into the selection of appropriate substrate materials. Extensive literature surveys have been conducted to compile a wealth of knowledge regarding these fabrication techniques. Furthermore, a detailed discussion is presented on the advantages and disadvantages of these fabrication methods, considering factors such as time efficiency, cost analysis, surface finish, product quality, and practical applications. While the review covers a broad spectrum of microchannel fabrication techniques, it places particular emphasis on the emerging 3D printing technology for microchannel fabrication, recognizing its potential to revolutionize the field.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029349253241209063510
2024-12-30
2025-02-21
Loading full text...

Full text loading...

References

  1. Marshall S.D. 3d Topology optimisation of liquid-cooled microchannel heat sinks. Thermal Sci. Eng. Prog. 2022 33 101377
    [Google Scholar]
  2. Liu S. Xie W. Wang Q. Liu Y. Hu N. Thermal performance of a central-jetting microchannel heat sink designed for a high-power laser crystal. Int. J. Heat Mass Transf. 2022 185 122409 10.1016/j.ijheatmasstransfer.2021.122409
    [Google Scholar]
  3. Japar W.M.A.A. Hybrid microchannel heat sink with sustainable cooling solutions: Experimental analysis. J. Adv. Res. Appl. Mech. 2022 89 1 1 6 10.37934/aram.89.1.16
    [Google Scholar]
  4. Hsu J.C. Chang C.Y. Enhanced acoustofluidic mixing in a semicircular microchannel using plate mode coupling in a surface acoustic wave device. Sens. Actuators A Phys. 2022 336 113401 10.1016/j.sna.2022.113401
    [Google Scholar]
  5. Zhang N. Embedded microchannel cooler with manifold for IC chips. IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS) Tokyo, Japan 09-13 January 2022 923 926 10.1109/MEMS51670.2022.9699560
    [Google Scholar]
  6. Jin Y. Xiong P. Xu T. Wang J. Time-efficient fabrication method for 3D-printed microfluidic devices. Sci. Rep. 2022 12 1 1233 10.1038/s41598‑022‑05350‑4 35075184
    [Google Scholar]
  7. Chen S. Shi Z. Sun J. Jia S. Zhong M. Ma Y. High-throughput particle focusing and separation in split-recombination channel. J. Micromech. Microeng. 2022 32 2 025007 10.1088/1361‑6439/ac4644
    [Google Scholar]
  8. Feijó B.C. Pavlovic A. Rocha L.A.O. Isoldi L.A. Lorente S. Santos D.E.D. Geometrical investigation of microchannel with two trapezoidal blocks subjected to laminar convective flows with and without boiling. Rep. Mech. Eng. 2022 3 1 20 36 10.31181/rme200103020f
    [Google Scholar]
  9. Bing P. Liu Q. Wu G. Yuan S. Li Z. Du H. Yao J. A plasmonic sensor based on D-shaped dual-core microchannel photonic crystal fiber. Plasmonics 2022 17 4 1471 1478 10.1007/s11468‑022‑01637‑4
    [Google Scholar]
  10. She H. Cui X. Weng J. Chang Z. Research on coupling performance of heat transfer and throttling of microchannel J-T effect cryocoolers. Appl. Therm. Eng. 2022 202 117854 10.1016/j.applthermaleng.2021.117854
    [Google Scholar]
  11. Zhang X. Zhang X. Zhang Y. Peng W. In-fibre micro-channel: Its potential for in-fibre detection. Analyst 2022 147 5 828 833 10.1039/D1AN01996A 35103720
    [Google Scholar]
  12. Sun B. Wang H. Shi Z. Li J. Pumping power and heating area dependence of thermal resistance for a large-scale microchannel heat sink under extremely high heat flux. Heat Mass Transf. 2022 58 2 195 208 10.1007/s00231‑021‑03104‑y
    [Google Scholar]
  13. Ghorbanpoor H. Corri̇gan D. Guzel D.F. Effect of microchannel dimensions in electrochemical impedance spectroscopy using gold microelectrode. Sakarya Uni. J. Sci. 2022 26 1 120 127 10.16984/saufenbilder.982707
    [Google Scholar]
  14. Tuckerman D.B. Pease R.F.W. High-performance heat sinking for VLSI. IEEE Elect. Dev. Lett. 1981 2 5 126 129 10.1109/EDL.1981.25367
    [Google Scholar]
  15. Prakash S. Kumar S. Fabrication of microchannels: A review. Proc. Inst. Mech. Eng., B J. Eng. Manuf. 2015 229 8 1273 1288 10.1177/0954405414535581
    [Google Scholar]
  16. Chen Y.H. Chen S.H. Analysis of DNA fragments by microchip electrophoresis fabricated on poly(methyl methacrylate) substrates using a wire-imprinting method. Electrophoresis 2000 21 1 165 170 10.1002/(SICI)1522‑2683(20000101)21:1<165::AID‑ELPS165>3.0.CO;2‑I 10634483
    [Google Scholar]
  17. Aramcharoen A. Sean S.K.C. Kui L. An experimental study of micromilling of polymer materials for microfluidic applications. Int. J. Abrasive Technol. 2012 5 4 286 298 10.1504/IJAT.2012.052037
    [Google Scholar]
  18. Anand R.S. Patra K. Cutting force and hole quality analysis in micro-drilling of CFRP. Mater. Manuf. Process. 2018 33 12 1369 1377 10.1080/10426914.2017.1401715
    [Google Scholar]
  19. Dash B. Nanda J. Rout S.K. The role of microchannel geometry selection on heat transfer enhancement in heat sinks: A review. Heat Transf. 2022 51 2 1406 1424 10.1002/htj.22357
    [Google Scholar]
  20. Kar T. Deshmukh S.S. Goswami A. Investigation of fiber laser micro-channel depth on silicon wafer. Mater. Today Proc. 2022 60 2105 2110 10.1016/j.matpr.2022.02.024
    [Google Scholar]
  21. Ma W. Ling S. Zhang J. Chen Z. Xu J. Microfluidic fabrication of calcium alginate helical microfibers for highly stretchable wound dressing. J. Polym. Sci. 2022 60 11 1741 1749 10.1002/pol.20220041
    [Google Scholar]
  22. Boland S. Majidi S. Thermal improvement in double-layered microchannel heat sink with incorporating wavy porous fins. Heat Transf. Eng. 2022 43 6 485 502 10.1080/01457632.2021.1887626
    [Google Scholar]
  23. Wang M. Improved thermal‐hydraulic performance of a microchannel with hierarchical honeycomb porous ribs. Canadian J. Chem. Eng. 2022 2 1083 1094 10.1002/cjce.24378
    [Google Scholar]
  24. Ren J. Liu Y. Huang W. Lam R.H.W. A narrow straight microchannel array for analysis of transiting speed of floating cancer cells. Micromachines 2022 13 2 183 10.3390/mi13020183 35208307
    [Google Scholar]
  25. Teng F. Wang H. Shi S. Jiang L. Sun J. Sun J. Di H. Zhang S. Simulation and experimental researches on multi-plate rubber pad forming of two-step micro-channel based on different forming driving models. Int. J. Adv. Manuf. Technol. 2022 120 5-6 4147 4157 10.1007/s00170‑022‑09007‑4
    [Google Scholar]
  26. Li Y. Wu H. Enhanced flow boiling heat transfer and suppressed boiling instability in counter-flow stepped microchannels. Int. J. Heat Mass Transf. 2022 194 123025
    [Google Scholar]
  27. Zhou C. Liang S. Li Y. Chen H. Li J. Fabrication of sharp-edged 3D microparticles via folded PDMS microfluidic channels. Lab Chip 2021 22 1 148 155 10.1039/D1LC00807B 34870665
    [Google Scholar]
  28. Koldaeva A. Tsai H.F. Shen A.Q. Pigolotti S. Population genetics in microchannels. Proc. Natl. Acad. Sci. 2022 119 12 e2120821119 10.1073/pnas.2120821119 35302890
    [Google Scholar]
  29. Zhu G. Zhang Z. Shi X. Tan W. Experimental study on inertial focusing pattern in asymmetric contraction–expansion array microchannel. Microfluid. Nanofluidics 2022 26 1 5 10.1007/s10404‑021‑02510‑2
    [Google Scholar]
  30. Huang Q. Shi X. Xue Y. Zhang K. Wu C. Synergetic lubricating performance of M50-SnAgCu-Nb2C bionic composites fabricated by laser additive manufacturing under oil lubrication. J. Mater. Eng. Perform. 2022 31 1 139 151 10.1007/s11665‑021‑06195‑0
    [Google Scholar]
  31. Becker H. Locascio L.E. Polymer microfluidic devices. Talanta 2002 56 2 267 287 10.1016/S0039‑9140(01)00594‑X 18968500
    [Google Scholar]
  32. Ren K. Zhou J. Wu H. Materials for microfluidic chip fabrication. Acc. Chem. Res. 2013 46 11 2396 2406 10.1021/ar300314s 24245999
    [Google Scholar]
  33. McDonald J.C. Whitesides G.M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 2002 35 7 491 499 10.1021/ar010110q 12118988
    [Google Scholar]
  34. Samel B. Chowdhury M.K. Stemme G. The fabrication of microfluidic structures by means of full-wafer adhesive bonding using a poly(dimethylsiloxane) catalyst. J. Micromech. Microeng. 2007 17 8 1710 1714 10.1088/0960‑1317/17/8/038
    [Google Scholar]
  35. Klasner S.A. Metto E.C. Roman G.T. Culbertson C.T. Synthesis and characterization of a poly(dimethylsiloxane)-poly(ethylene oxide) block copolymer for fabrication of amphiphilic surfaces on microfluidic devices. Langmuir 2009 25 17 10390 10396 10.1021/la900920q 19572528
    [Google Scholar]
  36. Abbas A. Supiot P. Mille V. Guillochon D. Bocquet B. Capillary microchannel fabrication using plasma polymerized TMDS for fluidic MEMS technology. J. Micromech. Microeng. 2009 19 4 045022 10.1088/0960‑1317/19/4/045022
    [Google Scholar]
  37. Baragwanath A.J. Swift G.P. Dai D. Gallant A.J. Chamberlain J.M. Silicon based microfluidic cell for terahertz frequencies. J. Appl. Phys. 2010 108 1 013102 10.1063/1.3456175
    [Google Scholar]
  38. De Ville M. Coquet P. Brunet P. Boukherroub R. Simple and low-cost fabrication of PDMS microfluidic round channels by surface-wetting parameters optimization. Microfluid. Nanofluidics 2012 12 6 953 961 10.1007/s10404‑011‑0929‑8
    [Google Scholar]
  39. Becker H. Dietz W. Dannberg P. Microfluidic manifolds by polymer hot embossing for μ-TAS applications. Kluwer Academic Publishers The Netherlands 1998 253 256 10.1007/978‑94‑011‑5286‑0_60
    [Google Scholar]
  40. Shiu P.P. Knopf G.K. Ostojic M. Nikumb S. Rapid fabrication of tooling for microfluidic devices via laser micromachining and hot embossing. J. Micromech. Microeng. 2008 18 2 025012 10.1088/0960‑1317/18/2/025012
    [Google Scholar]
  41. Wang H. Tong H. Liu C. Yuan X. Ye X. Xiong S. Xu J. Li H. Innovative two-step method for efficient silicon microfluidic device fabrication: Integrating laser ablation with wet etching. Mater. Sci. Semicond. Process. 2024 174 108208 10.1016/j.mssp.2024.108208
    [Google Scholar]
  42. Terray A. Oakey J. Marr D.W.M. Fabrication of linear colloidal structures for microfluidic applications. Appl. Phys. Lett. 2002 81 9 1555 1557 10.1063/1.1503176
    [Google Scholar]
  43. Zeng F. Luo Y. Yobas L. Wong M. Self-formed cylindrical microcapillaries through surface migration of silicon and their application to single-cell analysis. J. Micromech. Microeng. 2013 23 5 055001 10.1088/0960‑1317/23/5/055001
    [Google Scholar]
  44. Adam T. Microstructure and polymer choice in microfluidic interfacing for nanoscale biosensing. International Conference on Biomedical Engineering (ICoBE) Penang, Malaysia 27-28 February 2012 227 232 10.1109/ICoBE.2012.6179010
    [Google Scholar]
  45. Malek K.C.G. Laser processing for bio-microfluidics applications (part II). Anal. Bioanal. Chem. 2006 385 8 1362 1369 10.1007/s00216‑006‑0517‑z 16773302
    [Google Scholar]
  46. Tsui H.P. Hsu S.Y. Study on Fe-Based metallic glass micro hole machining by using Micro-EDM combined with electrophoretic deposition polishing. Processes 2022 10 1 96 10.3390/pr10010096
    [Google Scholar]
  47. Darvishi S. Cubaud T. Longtin J.P. Ultrafast laser machining of tapered microchannels in glass and PDMS. Opt. Lasers Eng. 2012 50 2 210 214 10.1016/j.optlaseng.2011.09.003
    [Google Scholar]
  48. Rihakova L. Chmelickova H. Laser micromachining of glass, silicon, and ceramics. Adv. Mat. Sci. Eng. 2015 2015 2 1 6 10.1155/2015/584952
    [Google Scholar]
  49. Bulushev E. Bessmeltsev V. Dostovalov A. Goloshevsky N. Wolf A. High-speed and crack-free direct-writing of microchannels on glass by an IR femtosecond laser. Opt. Lasers Eng. 2016 79 39 47 10.1016/j.optlaseng.2015.11.004
    [Google Scholar]
  50. Ni S. Sheng J. Zhang C. Wu X. Yang C. Pei S. Gao R. Liu W. Qiu L. Zhou G. Dendrite‐free lithium deposition and stripping regulated by aligned microchannels for stable lithium metal batteries. Adv. Funct. Mater. 2022 32 21 2200682 10.1002/adfm.202200682
    [Google Scholar]
  51. Fabbrica E. Carminati M. Butta D. Uslenghi M. Fiorini M. Corso A.J. Pelizzo M.G. Fiorini C. Design of MIRA, a low-noise pixelated ASIC for the readout of micro-channel plates. J. Instrum. 2022 17 1 C01047 10.1088/1748‑0221/17/01/C01047
    [Google Scholar]
  52. Ibrahim O.A. Segarra N.M. Sadeghi P. Sabaté N. Esquivel J.P. Kjeang E. Microfluidics for electrochemical energy conversion. Chem. Rev. 2022 122 7 7236 7266 10.1021/acs.chemrev.1c00499 34995463
    [Google Scholar]
  53. Pope D.P. Darolia R. High-temperature applications of intermetallic compounds. MRS Bull. 1996 21 5 30 36 10.1557/S088376940003548X
    [Google Scholar]
  54. Zhou W. Deng W. Lu L. Zhang J. Qin L. Ma S. Tang Y. Laser micro-milling of microchannel on copper sheet as catalyst support used in microreactor for hydrogen production. Int. J. Hydrogen Energy 2014 39 10 4884 4894 10.1016/j.ijhydene.2014.01.041
    [Google Scholar]
  55. Phillips R.J. Microchannel heat sinks. Linc. Lab. J. 1988 1 1 31 48
    [Google Scholar]
  56. Pal P. Sato K. Silicon microfluidic channels and microstructures in single photolithography step. IEEE Xplore Rome, Italy 1-3 April 2009 419 423
    [Google Scholar]
  57. Dwivedi V.K. Gopal R. Ahmad S. Fabrication of very smooth walls and bottoms of silicon microchannels for heat dissipation of semiconductor devices. Microelectronics J. 2000 31 6 405 410 10.1016/S0026‑2692(00)00015‑X
    [Google Scholar]
  58. Qin S.J. Li W.J. Micromachining of complex channel systems in 3D quartz substrates using Q-switched Nd:YAG laser. Appl. Phys., A Mater. Sci. Process. 2002 74 6 773 777 10.1007/s003390100943
    [Google Scholar]
  59. Pradas F.J.M. Serrano D. Serra P. Morenza J.L. Laser fabricated microchannels inside photostructurable glass-ceramic. Appl. Surf. Sci. 2009 255 10 5499 5502 10.1016/j.apsusc.2008.08.099
    [Google Scholar]
  60. Misawa H. 3D laser microfabrication: Principles and applications. John Wiley & Sons 2006 388
    [Google Scholar]
  61. Kee R.J. Almand B.B. Blasi J.M. Rosen B.L. Hartmann M. Sullivan N.P. Zhu H. Manerbino A.R. Menzer S. Coors W.G. Martin J.L. The design, fabrication, and evaluation of a ceramic counter-flow microchannel heat exchanger. Appl. Therm. Eng. 2011 31 11-12 2004 2012 10.1016/j.applthermaleng.2011.03.009
    [Google Scholar]
  62. Fattahi M. Vaferi K. Vajdi M. Moghanlou S.F. Namini S.A. Asl S.M. Aluminum nitride as an alternative ceramic for fabrication of microchannel heat exchangers: A numerical study. Ceram. Int. 2020 46 8 11647 11657 10.1016/j.ceramint.2020.01.195
    [Google Scholar]
  63. Bianchi F. Wagner F. Hoffmann P. Girault H.H. Electroosmotic flow in composite microchannels and implications in microcapillary electrophoresis systems. Anal. Chem. 2001 73 4 829 836 10.1021/ac0011181 11248900
    [Google Scholar]
  64. Kim J.-M. Surface characteristics of a micro-channel by hybrid micro-EDM. Proceedings of the 11th euspen International Conference Como 2011 1 4
    [Google Scholar]
  65. Pilligrin J.C. Asokan P. Jerald J. Kanagaraj G. Effects of electrode materials on performance measures of electrical discharge micro-machining. Mater. Manuf. Process. 2018 33 6 606 615 10.1080/10426914.2017.1364757
    [Google Scholar]
  66. Huang Y. Gao H. Wu Z. Xiao H. Xia C. Xia Y. Wang Z. Optimization of hot embossing condition using taguchi method and evaluation of microchannels for flexible on-chip proton-exchange membrane fuel cell. Micromachines 2024 15 8 1033 10.3390/mi15081033 39203684
    [Google Scholar]
  67. Klaassen E.H. Petersen K. Noworolski J.M. Logan J. Maluf N.I. Brown J. Storment C. McCulley W. Kovacs G.T.A. Silicon fusion bonding and deep reactive ion etching: A new technology for microstructures. Sens. Actuators A Phys. 1996 52 1-3 132 139 10.1016/0924‑4247(96)80138‑5
    [Google Scholar]
  68. Kugelmass S.M. Lin C. DeWitt S.H. Fabrication and characterization of three-dimensional microfluidic arrays. Engineering, Materials Science 1999 359325 10.1117/12.359325
    [Google Scholar]
  69. McGeough J.A. Leu M.C. Rajurkar K.P. De Silva A.K.M. Liu Q. Electroforming process and application to micro/macro manufacturing. CIRP Ann. 2001 50 2 499 514 10.1016/S0007‑8506(07)62990‑4
    [Google Scholar]
  70. Tseng F.G. Chuang Y.J. Lin W.K. A novel fabrication method of embedded micro channels employing simple UV dosage control and antireflection coating. International Conference on Micro Electro Mechanical Systems Las Vegas, NV, USA 07 August 2002 69 72 10.1109/MEMSYS.2002.984091
    [Google Scholar]
  71. Chae J. Park S.S. Freiheit T. Investigation of micro-cutting operations. Int. J. Mach. Tools Manuf. 2006 46 3-4 313 332 10.1016/j.ijmachtools.2005.05.015
    [Google Scholar]
  72. Boswell B. Islam M.N. Davies I.J. A review of micro-mechanical cutting. Int. J. Adv. Manuf. Technol. 2018 94 1-4 789 806 10.1007/s00170‑017‑0912‑y
    [Google Scholar]
  73. Razali A.R. Qin Y. A review on micro-manufacturing, micro-forming and their key issues. Procedia Eng. 2013 53 665 672 10.1016/j.proeng.2013.02.086
    [Google Scholar]
  74. Qin Y. Micro-forming and miniature manufacturing systems — development needs and perspectives. J. Mater. Process. Technol. 2006 177 1-3 8 18 10.1016/j.jmatprotec.2006.03.212
    [Google Scholar]
  75. Qin Y. Brockett A. Ma Y. Razali A. Zhao J. Harrison C. Pan W. Dai X. Loziak D. Micro-manufacturing: Research, technology outcomes and development issues. Int. J. Adv. Manuf. Technol. 2010 47 9-12 821 837 10.1007/s00170‑009‑2411‑2
    [Google Scholar]
  76. Vipindas K. Anand K.N. Mathew J. Effect of cutting edge radius on micro end milling: Force analysis, surface roughness, and chip formation. Int. J. Adv. Manuf. Technol. 2018 97 1-4 711 722 10.1007/s00170‑018‑1877‑1
    [Google Scholar]
  77. Owens C.E. Hart A.J. High-precision modular microfluidics by micromilling of interlocking injection-molded blocks. Lab Chip 2018 18 6 890 901 10.1039/C7LC00951H 29372201
    [Google Scholar]
  78. Shen X.H. Xu G.F. Study of milling force variation in ultrasonic vibration-assisted end milling. Mater. Manuf. Process. 2018 33 6 644 650 10.1080/10426914.2017.1364846
    [Google Scholar]
  79. Giraldo M.M. Serje D.A. Bolívar P.J.A. Cabrera B.J.L. Burr formation and control for polymers micro-milling: A case study with vortex tube cooling. Dyna 2017 84 203 150 159 10.15446/dyna.v84n203.66095
    [Google Scholar]
  80. Serje D. Pacheco J. Diez E. Micromilling research: Current trends and future prospects. Int. J. Adv. Manuf. Technol. 2020 111 7-8 1889 1916 10.1007/s00170‑020‑06205‑w
    [Google Scholar]
  81. Singh S. Ghai V. Agrawal A. Singh H. Effect of machining parameters on cutting force during micro-turning of a brass rod. Mater. Manuf. Process. 2019 34 16 1816 1823 10.1080/10426914.2019.1675887
    [Google Scholar]
  82. Pan M. Zeng D. Tang Y. Feasibility investigations on multi-cutter milling process: A novel fabrication method for microreactors with multiple microchannels. J. Power Sources 2009 192 2 562 572 10.1016/j.jpowsour.2009.03.024
    [Google Scholar]
  83. Tang Y. He Z. Lu L. Wang H. Pan M. Burr formation in milling cross-connected microchannels with a thin slotting cutter. Precis. Eng. 2011 35 1 108 115 10.1016/j.precisioneng.2010.08.004
    [Google Scholar]
  84. Lai D. Labuz J.M. Kim J. Luker G.D. Shikanov A. Takayama S. Simple multi-level microchannel fabrication by pseudo-grayscale backside diffused light lithography. RSC Advances 2013 3 42 19467 19473 10.1039/c3ra43834a 24976950
    [Google Scholar]
  85. Hirama H. Odera T. Torii T. Moriguchi H. A lithography-free procedure for fabricating three-dimensional microchannels using hydrogel molds. Biomed. Microdevices 2012 14 4 689 697 10.1007/s10544‑012‑9649‑4 22450656
    [Google Scholar]
  86. Wang G.J. Hsueh C-C. Hsu S. Hung H-S. Fabrication of PLGA microvessel scaffolds with circular microchannels using soft lithography. J. Micromech. Microeng. 2007 17 10 2000 2005 10.1088/0960‑1317/17/10/011
    [Google Scholar]
  87. Kaminaga M. Ishida T. Omata T. Fabrication of pneumatic microvalve for tall microchannel using inclined lithography. Micromachines 2016 7 12 224 10.3390/mi7120224 30404396
    [Google Scholar]
  88. Lim H. Ryu J. Kim G. Choi K.B. Lee S. Lee J. Nanoimprint lithography with a focused laser beam for the fabrication of nanopatterned microchannel molds. Lab Chip 2013 13 16 3188 3191 10.1039/c3lc50202c 23793420
    [Google Scholar]
  89. Mukhopadhyay S. Effect of surface modification on laminar flow in microchannels fabricated by UV-lithography. E-J. Surf. Sci. Nanotechnol. 2009 7 330 333
    [Google Scholar]
  90. Coltro W.K.T. Piccin E. Silva F.J.A. Lago L.C. Carrilho E. A toner-mediated lithographic technology for rapid prototyping of glass microchannels. Lab Chip 2007 7 7 931 934 10.1039/b702931d 17594016
    [Google Scholar]
  91. O’Brien M.J. II Bisong P. Ista L.K. Rabinovich E.M. Garcia A.L. Sibbett S.S. Lopez G.P. Brueck S.R.J. Fabrication of an integrated nanofluidic chip using interferometric lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2003 21 6 2941 2945 10.1116/1.1625964
    [Google Scholar]
  92. Martin C.R. Aksay I.A. Microchannel molding: A soft lithography-inspired approach to micrometer-scale patterning. J. Mater. Res. 2005 20 8 1995 2003 10.1557/JMR.2005.0251
    [Google Scholar]
  93. Chen J. Zhou Y. Wang D. He F. Rotello V.M. Carter K.R. Watkins J.J. Nugen S.R. UV-nanoimprint lithography as a tool to develop flexible microfluidic devices for electrochemical detection. Lab Chip 2015 15 14 3086 3094 10.1039/C5LC00515A 26095586
    [Google Scholar]
  94. Zhang R. Huang D. Fan Y. Liu X. Liu Z. Chu J. Integrated fabrication of micro/nano-fluidic chip based on nano-imprint lithography and bonding. J. Micromech. Microeng. 2021 31 8 085008 10.1088/1361‑6439/ac0ff7
    [Google Scholar]
  95. Mondal P. Fabrication of microfluidic channel of polydimethylsiloxane using X-ray lithography and its surface nanostructuring. J. Micromanu. 2021 5 2 107 115 10.1177/25165984211015760
    [Google Scholar]
  96. Li X. Fabrication and characterization of nanofluidics device using fused silica for single protein molecule detection. Medical Device Materials IV (Proceedings of Materials and Processes for Medical Devices 2007). Gilbert J. ASM International 2008 145 150
    [Google Scholar]
  97. Asim M. Mohammad S. Kanwal A. Uddin G.M. Khan A.A. Mujtaba M.A. Veza I. Kalam M.A. Almomani F. Comparative study of the parameters affecting the performance of microchannels’ heat exchangers: Latest advances review. Energy Sci. Eng. 2023 11 10 3869 3887 10.1002/ese3.1522
    [Google Scholar]
  98. Pal P. Sato K. Various shapes of silicon freestanding microfluidic channels and microstructures in one-step lithography. J. Micromech. Microeng. 2009 19 5 055003 10.1088/0960‑1317/19/5/055003
    [Google Scholar]
  99. Xia Y. Whitesides G.M. Soft Lithography. Angew. Chem. Int. Ed. 1998 37 5 550 575 10.1002/(SICI)1521‑3773(19980316)37:5<550::AID‑ANIE550>3.0.CO;2‑G 29711088
    [Google Scholar]
  100. Xu Y. Qi F. Mao H. Li S. Zhu Y. Gong J. Wang L. Malmstadt N. Chen Y. In-situ transfer vat photopolymerization for transparent microfluidic device fabrication. Nat. Commun. 2022 13 1 918 10.1038/s41467‑022‑28579‑z 35177598
    [Google Scholar]
  101. Kim P. Soft lithography for microfluidics: A review. BioChip J. 2008 2 1 1
    [Google Scholar]
  102. McDonald J.C. Duffy D.C. Anderson J.R. Chiu D.T. Wu H. Schueller O.J.A. Whitesides G.M. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 2000 21 1 27 40 10.1002/(SICI)1522‑2683(20000101)21:1<27::AID‑ELPS27>3.0.CO;2‑C 10634468
    [Google Scholar]
  103. Becker E.W. Ehrfeld W. Hagmann P. Maner A. Münchmeyer D. Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microelectron. Eng. 1986 4 1 35 56 10.1016/0167‑9317(86)90004‑3
    [Google Scholar]
  104. Malek C.K. Saile V. Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: A review. Microelectronics J. 2004 35 2 131 143 10.1016/j.mejo.2003.10.003
    [Google Scholar]
  105. Tang S.K.Y. Whitesides G.M. Basic microfluidic and soft lithographic techniques. New York, McGraw-Hill 2009 7 31
    [Google Scholar]
  106. Xue M. Xie Z. Zhang L. Ma X. Wu X. Guo Y. Song W. Li Z. Cao T. Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles. Nanoscale 2011 3 7 2703 2708 10.1039/c0nr00990c 21369565
    [Google Scholar]
  107. Madou M.J. Fundamentals of microfabrication: The science of miniaturization. 2nd ed. CRC press Boca Raton 2002 752 10.1201/9781482274004
    [Google Scholar]
  108. Fang H.B. Liu J-Q. Xu Z-Y. Dong L. Wang L. Chen D. Cai B-C. Liu Y. Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectronics J. 2006 37 11 1280 1284 10.1016/j.mejo.2006.07.023
    [Google Scholar]
  109. Datta M. Landolt D. Fundamental aspects and applications of electrochemical microfabrication. Electrochim. Acta 2000 45 15-16 2535 2558 10.1016/S0013‑4686(00)00350‑9
    [Google Scholar]
  110. Kim B.H. Ryu S.H. Choi D.K. Chu C.N. Micro electrochemical milling. J. Micromech. Microeng. 2005 15 1 124 129 10.1088/0960‑1317/15/1/019
    [Google Scholar]
  111. Belloy E. Thurre S. Walckiers E. Sayah A. Gijs M.A.M. The introduction of powder blasting for sensor and microsystem applications. Sens. Actuators A Phys. 2000 84 3 330 337 10.1016/S0924‑4247(00)00390‑3
    [Google Scholar]
  112. Slikkerveer P.J. Bouten P.C.P. de Haas F.C.M. High quality mechanical etching of brittle materials by powder blasting. Sens. Actuators A Phys. 2000 85 1-3 296 303 10.1016/S0924‑4247(00)00343‑5
    [Google Scholar]
  113. Franssila S. Introduction to microfabrication. 2. ed. John Wiley & Sons 2010 518 10.1002/9781119990413
    [Google Scholar]
  114. Laermer F. Urban A. Challenges, developments and applications of silicon deep reactive ion etching. Microelectron. Eng. 2003 67-68 349 355 10.1016/S0167‑9317(03)00089‑3
    [Google Scholar]
  115. Katoh T. Nishi N. Fukagawa M. Ueno H. Sugiyama S. Direct writing for three-dimensional microfabrication using synchrotron radiation etching. Sens. Actuators A Phys. 2001 89 1-2 10 15 10.1016/S0924‑4247(00)00528‑8
    [Google Scholar]
  116. Sucularli F. Arikan M.A.S. Yildirim E. Investigation of process-affected zone in ultrasonic embossing of microchannels on thermoplastic substrates. J. Manuf. Process. 2020 50 394 402 10.1016/j.jmapro.2019.12.055
    [Google Scholar]
  117. Arai T.F.S.H.F. Nakamura H. Industrial Electronics.
    [Google Scholar]
  118. Worgull M. Hétu J-F. Kabanemi K.K. Heckele M. Hot embossing of microstructures: Characterization of friction during demolding. Microsyst. Technol. 2008 14 6 767 773 10.1007/s00542‑007‑0492‑0
    [Google Scholar]
  119. Becker H. Heim U. Silicon as tool material for polymer hot embossing. IEEE International Conference on Micro Electro Mechanical Systems Orlando, FL, USA 21-21 January 1999 228 231 10.1109/MEMSYS.1999.746819
    [Google Scholar]
  120. Xu J. Locascio L. Gaitan M. Lee C.S. Room-temperature imprinting method for plastic microchannel fabrication. Anal. Chem. 2000 72 8 1930 1933 10.1021/ac991216q 10784164
    [Google Scholar]
  121. Martynova L. Locascio L.E. Gaitan M. Kramer G.W. Christensen R.G. MacCrehan W.A. Fabrication of plastic microfluid channels by imprinting methods. Anal. Chem. 1997 69 23 4783 4789 10.1021/ac970558y 9406529
    [Google Scholar]
  122. Jager E.W.H. Smela E. Inganäs O. Microfabricating conjugated polymer actuators. Science 2000 290 5496 1540 1545 10.1126/science.290.5496.1540 11090345
    [Google Scholar]
  123. De Marco C. Suriano R. Levi M. Turri S. Eaton S. Cerullo G. Osellame R. Femtosecond laser fabrication and characterization of microchannels and waveguides in methacrylate-based polymers. Microsyst. Technol. 2012 18 2 183 190 10.1007/s00542‑011‑1347‑2
    [Google Scholar]
  124. Wang H. Zhang Y-L. Wang W. Ding H. Sun H-B. On‐chip laser processing for the development of multifunctional microfluidic chips. Laser Photonics Rev. 2017 11 2 1600116 10.1002/lpor.201600116
    [Google Scholar]
  125. Gower M.C. Industrial applications of laser micromachining. Opt. Express 2000 7 2 56 67 10.1364/OE.7.000056 19404370
    [Google Scholar]
  126. Arnold J. Dasbach U. Ehrfeld W. Hesch K. Löwe H. Combination of excimer laser micromachining and replication processes suited for large scale production. Appl. Surf. Sci. 1995 86 1-4 251 258 10.1016/0169‑4332(94)00386‑6
    [Google Scholar]
  127. Le Harzic R. Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps. Appl. Surf. Sci. 2005 249 1-4 322 331
    [Google Scholar]
  128. Kawata S. Sun H.B. Tanaka T. Takada K. Finer features for functional microdevices. Nature 2001 412 6848 697 698 10.1038/35089130 11507627
    [Google Scholar]
  129. Ahmed N. Mughal M.P. Shoaib W. Farhan Raza S. Alahmari A.M. WEDM of copper for the fabrication of large surface-area micro-channels: A prerequisite for the high heat-transfer rate. Micromachines 2020 11 2 173 10.3390/mi11020173 32046057
    [Google Scholar]
  130. Saleh M. Anwar S. Tamimi E.A. Mohammed K.M. Ahmad S. Milling microchannels in monel 400 alloy by wire EDM: An experimental analysis. Micromachines 2020 11 5 469 10.3390/mi11050469 32365665
    [Google Scholar]
  131. Sreeraj P. Kumaran T.S. Kumar S.S. Uthayakumar M. Pethuraj M. Measurement of microchannels produced in AA6351/rutile composite by wire-EDM. Surf. Rev. Lett. 2021 28 1 2050034 10.1142/S0218625X20500341
    [Google Scholar]
  132. Stalin B. Vardhan T.V. Marichamy S. Vairamuthu J. Ravichandran M. Dhinakaran V. Investigations on ultrasonic machining of tellurium copper metal matrix. AIP Conf. Proc. 2020 2283 1 020053 10.1063/5.0024967
    [Google Scholar]
  133. Kumar S. Dvivedi A. On effect of tool rotation on performance of rotary tool micro-ultrasonic machining. Mater. Manuf. Process. 2019 34 5 475 486 10.1080/10426914.2018.1512130
    [Google Scholar]
  134. Singh T. Sharma A.K. Dvivedi A. Influence of process parameters during fabrication of SI microchannels using microultrasonic machining. i-Manager’s. Jixie Gongcheng Xuebao 2013 3 3 1
    [Google Scholar]
  135. Cheema M.S. Singh P.K. Tyagi O. Dvivedi A. Sharma A.K. Tool wear and form accuracy in ultrasonically machined microchannels. Measurement 2016 81 85 94 10.1016/j.measurement.2015.12.005
    [Google Scholar]
  136. Gaikwad V.P. Microchannel heat sink fabrication technique. IOSR J. Mech. Civ. Eng. 2009 51 57
    [Google Scholar]
  137. Wang S.C. Lee C.Y. Chen H.P. Thermoplastic microchannel fabrication using carbon dioxide laser ablation. J. Chromatogr. A 2006 1111 2 252 257 10.1016/j.chroma.2005.10.039 16288768
    [Google Scholar]
  138. Kadam S.T. Kumar R. Twenty first century cooling solution: Microchannel heat sinks. Int. J. Therm. Sci. 2014 85 73 92 10.1016/j.ijthermalsci.2014.06.013
    [Google Scholar]
  139. Tosello G. Hansen H.N. Micro-injection molding. micromanufacturing engineering and technology. Amsterdam Elsevier 2010 90 113 10.1016/B978‑0‑8155‑1545‑6.00006‑5
    [Google Scholar]
  140. Dekel Z. Kenig S. Micro-injection molding of polymer nanocomposites composition-process-properties relationship. Int. Polym. Process. 2021 36 3 276 286 10.1515/ipp‑2020‑4065
    [Google Scholar]
  141. Bellantone V. Lavecchia F. Surace R. Spadavecchia O. Modica F. Guerra M.G. Fassi I. Galantucci L.M. Design and experimental validation of a process chain for thin components manufacturing by micro injection molding process. J. Micro Nano-Manuf. 2021 9 3 030903 10.1115/1.4051485
    [Google Scholar]
  142. Ngo T.T. Nguyen H.M.K. Oh D.W. Prediction of fiber rotation in an orifice channel during injection molding process. J. Rheol. 2021 65 6 1361 1371 10.1122/8.0000314
    [Google Scholar]
  143. Attia U.M. Marson S. Alcock J.R. Micro-injection moulding of polymer microfluidic devices. Microfluid. Nanofluidics 2009 7 1 1 28 10.1007/s10404‑009‑0421‑x
    [Google Scholar]
  144. Giboz J. Copponnex T. Mélé P. Microinjection molding of thermoplastic polymers: A review. J. Micromech. Microeng. 2007 17 6 R96 R109 10.1088/0960‑1317/17/6/R02
    [Google Scholar]
  145. McCormick R.M. Nelson R.J. Amigo A.M.G. Benvegnu D.J. Hooper H.H. Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Anal. Chem. 1997 69 14 2626 2630 10.1021/ac9701997 9341052
    [Google Scholar]
  146. Piotter V. Mueller K. Plewa K. Ruprecht R. Hausselt J. Performance and simulation of thermoplastic micro injection molding. Microsyst. Technol. 2002 8 6 387 390 10.1007/s00542‑002‑0178‑6
    [Google Scholar]
  147. Yu L. Koh C.G. Lee L.J. Koelling K.W. Madou M.J. Experimental investigation and numerical simulation of injection molding with micro‐features. Polym. Eng. Sci. 2002 42 5 871 888 10.1002/pen.10998
    [Google Scholar]
  148. Piotter V. Bauer W. Benzler T. Emde A. Injection molding of components for microsystems. Microsyst. Technol. 2001 7 3 99 102 10.1007/s005420100094
    [Google Scholar]
  149. Fukuba T. Naganuma T. Fujii T. Microfabricated flow-through PCR device for underwater microbiological study. ACS Publications 2002 101 105 10.1109/UT.2002.1002401
    [Google Scholar]
  150. Kumar S. Ayala C.M.A. Thorsen T. Thermal modeling and design analysis of a continuous flow microfluidic chip. Int. J. Therm. Sci. 2013 67 72 86 10.1016/j.ijthermalsci.2012.12.003
    [Google Scholar]
  151. Song S.H. Lee C-K. Kim T-J. Shin I. Jun S-C. Jung H-I. A rapid and simple fabrication method for 3-dimensional circular microfluidic channel using metal wire removal process. Microfluid. Nanofluidics 2010 9 2-3 533 540 10.1007/s10404‑010‑0570‑y
    [Google Scholar]
  152. Rehmani M.A.A. Jaywant S.A. Arif K.M. Study of microchannels fabricated using desktop fused deposition modeling systems. Micromachines 2020 12 1 14 10.3390/mi12010014
    [Google Scholar]
  153. Thaweskulchai T. Schulte A. Cost L.A. A Low-cost 3-in-1 3D printer as a tool for the fabrication of flow-through channels of microfluidic systems. Micromachines 2021 12 8 947 10.3390/mi12080947 34442569
    [Google Scholar]
  154. Chen Q. Chen Q. Milanese D. Ferraris M. Micro-structures fabrication on glasses for micro-fluidics by imprinting technique. Microsyst. Technol. 2009 15 7 1067 1071 10.1007/s00542‑009‑0881‑7
    [Google Scholar]
  155. Prakash S. Kumar S. Determining the suitable CO2 laser based technique for microchannel fabrication on PMMA. Opt. Laser Technol. 2021 139 107017 10.1016/j.optlastec.2021.107017
    [Google Scholar]
  156. Talabazar R.F. Jafarpour M. Zuvin M. Chen H. Gevari M.T. Villanueva L.G. Grishenkov D. Koşar A. Ghorbani M. Design and fabrication of a vigorous “cavitation-on-a-chip” device with a multiple microchannel configuration. Microsyst. Nanoeng. 2021 7 1 44 10.1038/s41378‑021‑00270‑1 34567757
    [Google Scholar]
  157. Bhandari S. Murnal M. Cao J. Ehmann K. Comparative experimental investigation of micro-channel fabrication in Ti alloys by laser ablation and laser-induced plasma micro-machining. Procedia Manuf. 2019 34 418 423 10.1016/j.promfg.2019.06.186
    [Google Scholar]
  158. Sarma U. Chandra P. Joshi S.N. Advanced microchannel fabrication technologies for biomedical devices. Advanced Micro- and Nano-manufacturing Technologies: Applications in Biochemical and Biomedical Engineering. Joshi S.N. Chandra P. Singapore Springer Singapore 2022 127 143 10.1007/978‑981‑16‑3645‑5_6
    [Google Scholar]
  159. Debono M. Voicu D. Pousti M. Safdar M. Young R. Kumacheva E. Greener J. One-step fabrication of microchannels with integrated three dimensional features by hot intrusion embossing. Sensors 2016 16 12 2023 10.3390/s16122023 27916849
    [Google Scholar]
  160. Xie Y. Deng D. Pi G. Huang X. Zhao C. Fabrication of silicon carbide microchannels by thin diamond wheel grinding. Int. J. Adv. Manuf. Technol. 2020 111 1-2 309 323 10.1007/s00170‑020‑06085‑0
    [Google Scholar]
  161. Sabahi N. Hajian M. Razfar M.R. Experimental study on the heat-affected zone of glass substrate machined by electrochemical discharge machining (ECDM) process. Int. J. Adv. Manuf. Technol. 2018 97 1-4 1557 1564 10.1007/s00170‑018‑2027‑5
    [Google Scholar]
  162. Azizi Z. Barzegarian R. Behvandi M. Design-expert aided thermohydraulic assessment of a nanofluid-cooled cylindrical microchannel heat sink: Possible application for thermal management of electric vehicle batteries. Sustain. Energy Technol. Assess. 2022 50 101876 10.1016/j.seta.2021.101876
    [Google Scholar]
  163. Joo Y. Dieu K. Kim C.-J. Fabrication of monolithic microchannels for IC chip cooling. Proceedings IEEE Micro Electro Mechanical Systems Amsterdam, Netherlands 29 January - 02 February 1995 362 10.1109/MEMSYS.1995.472569
    [Google Scholar]
  164. Reed H.A. White C.E. Rao V. Allen S.A.B. Henderson C.L. Kohl P.A. Fabrication of microchannels using polycarbonates as sacrificial materials. J. Micromech. Microeng. 2001 11 6 733 737 10.1088/0960‑1317/11/6/317
    [Google Scholar]
  165. Chen Z. Gao Y. Su R. Li C. Lin J. Fabrication and characterization of poly(methyl methacrylate) microchannels byin situ polymerization with a novel metal template. Electrophoresis 2003 24 18 3246 3252 10.1002/elps.200305534 14518052
    [Google Scholar]
  166. Mahabadi K.A. Rodriguez I. Haur S.C. Kan J.A. Bettiol A.A. Watt F. Fabrication of PMMA micro- and nanofluidic channels by proton beam writing: Electrokinetic and morphological characterization. J. Micromech. Microeng. 2006 16 7 1170 1180 10.1088/0960‑1317/16/7/009
    [Google Scholar]
  167. Desmulliez M.P.Y. Pang A.J. Leonard M. Dhariwal R.S. Yu W. Abraham E. Bognar G. Poppe A. Horvath G. Kohari Z. Rencz M. Emerson D.R. Barber R.W. Slattery O. Waldron F. Cordero N. Fabrication and characterization of a low-cost, wafer-scale radial microchannel cooling plate. IEEE Trans. Compon. Packag. Tech. 2009 32 1 20 29 10.1109/TCAPT.2008.2002434
    [Google Scholar]
  168. Ribeiro B.L.E. Piazzetta M.H. Gobbi A.L. Costa J.S. Silva F.J.A. Fruett F. Fabrication and characterization of an impedance micro-bridge for lab-on-a-chip. ECS Trans. 2010 31 1 155 163 10.1149/1.3474154
    [Google Scholar]
  169. Montesinos L.P.O. Yossakda N. Schmidt A. Brushett F.R. Pelton W.E. Kenis P.J.A. Design, fabrication, and characterization of a planar, silicon-based, monolithically integrated micro laminar flow fuel cell with a bridge-shaped microchannel cross-section. J. Power Sources 2011 196 10 4638 4645 10.1016/j.jpowsour.2011.01.037
    [Google Scholar]
  170. Ci P. Shi J. Wang F. Xu S. Yang Z. Yang P. Wang L. Chu P.K. Novel thermoelectric materials based on boron-doped silicon microchannel plates. Mater. Lett. 2011 65 11 1618 1620 10.1016/j.matlet.2011.03.022
    [Google Scholar]
  171. Bahadorimehr A. Majlis B.Y. Fabrication of glass-based microfluidic devices with photoresist as mask. Elektron. Elektrotech. 2011 116 10 45 48 10.5755/j01.eee.116.10.878
    [Google Scholar]
  172. Picollo F. Monticone G.D. Olivero P. Fairchild B.A. Rubanov S. Prawer S. Vittone E. Fabrication and electrical characterization of three-dimensional graphitic microchannels in single crystal diamond. New J. Phys. 2012 14 5 053011 10.1088/1367‑2630/14/5/053011
    [Google Scholar]
  173. Hassanin H. Ostadi H. Jiang K. Surface roughness and geometrical characterization of ultra-thick micro moulds for ceramic micro fabrication using soft lithography. Int. J. Adv. Manuf. Technol. 2013 67 9-12 2293 2300 10.1007/s00170‑012‑4650‑x
    [Google Scholar]
  174. Jain V.K. Priyadarshini D. Fabrication of microchannels in ceramics (quartz) using electrochemical spark micromachining (ECSMM). J. Adv. Manuf. Syst. 2014 13 1 5 16 10.1142/S0219686714500012
    [Google Scholar]
  175. Nieto D. Delgado T. Arias F.M.T. Fabrication of microchannels on soda-lime glass substrates with a Nd:YVO4 laser. Opt. Lasers Eng. 2014 63 11 18 10.1016/j.optlaseng.2014.06.005
    [Google Scholar]
  176. Lee H.J. Son Y. Kim D. Kim Y.K. Choi N. Yoon E-S. Cho I-J. A new thin silicon microneedle with an embedded microchannel for deep brain drug infusion. Sens. Actuators B Chem. 2015 209 413 422 10.1016/j.snb.2014.11.132
    [Google Scholar]
  177. Hwang Y. Paydar O.H. Candler R.N. 3D printed molds for non-planar PDMS microfluidic channels. Sens. Actuators A Phys. 2015 226 137 142 10.1016/j.sna.2015.02.028
    [Google Scholar]
  178. He Y. Xiao X. Wu Y. Fu J. A facile and low-cost micro fabrication material: Flash foam. Sci. Rep. 2015 5 1 13522 10.1038/srep13522 26314247
    [Google Scholar]
  179. Deng D. Wan W. Tang Y. Shao H. Huang Y. Experimental and numerical study of thermal enhancement in reentrant copper microchannels. Int. J. Heat Mass Transf. 2015 91 656 670 10.1016/j.ijheatmasstransfer.2015.08.025
    [Google Scholar]
  180. Wang G. Niu D. Xie F. Wang Y. Zhao X. Ding G. Experimental and numerical investigation of a microchannel heat sink (MCHS) with micro-scale ribs and grooves for chip cooling. Appl. Therm. Eng. 2015 85 61 70 10.1016/j.applthermaleng.2015.04.009
    [Google Scholar]
  181. McCann R. Bagga K. Groarke R. Stalcup A. Vázquez M. Brabazon D. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation. Appl. Surf. Sci. 2016 387 603 608 10.1016/j.apsusc.2016.06.059
    [Google Scholar]
  182. Xing J. Rong W. Sun D. Wang L. Sun L. Rapid fabrication of rounded microchannels via extrusion printing of molds using a thixotropic ink. Sens. Actuators B Chem. 2017 248 613 621 10.1016/j.snb.2017.03.111
    [Google Scholar]
  183. Helmy M.O. El-Bab F.A.R. El-Hofy H.A. Fabrication and characterization of polymethyl methacrylate microchannel using dry and underwater CO 2 laser. Proc. Inst. Mech. Eng., Part N, Nanomater. Nanoeng. Nanosyst. 2018 232 1 23 30 10.1177/2397791417749700
    [Google Scholar]
  184. Yen C.Y. Chang M-C.O. Shih Z-F. Lien Y-H. Tsao C-W. Cyclic block copolymer microchannel fabrication and sealing for microfluidics applications. Inventions 2018 3 3 49 10.3390/inventions3030049
    [Google Scholar]
  185. Mishra D.K. Verma A.K. Arab J. Marla D. Dixit P. Numerical and experimental investigations into microchannel formation in glass substrate using electrochemical discharge machining. J. Micromech. Microeng. 2019 29 7 075004 10.1088/1361‑6439/ab1da7
    [Google Scholar]
  186. Sahu A.K. Jha S. Microchannel fabrication and metallurgical characterization on titanium by nanosecond fiber laser micromilling. Mater. Manuf. Process. 2020 35 3 279 290 10.1080/10426914.2020.1718702
    [Google Scholar]
  187. Matsumoto H. Okabe T. Taniguchi J. Microchannel fabrication via ultraviolet-nanoimprint lithography and electron-beam lithography using an ultraviolet-curable positive-tone electron-beam resist. Microelectron. Eng. 2020 226 111278 10.1016/j.mee.2020.111278
    [Google Scholar]
  188. Pratap T. Patra K. Micro ball-end milling—an emerging manufacturing technology for micro-feature patterns. Int. J. Adv. Manuf. Technol. 2018 94 5-8 2821 2845 10.1007/s00170‑017‑1064‑9
    [Google Scholar]
  189. Sahoo P. Patra K. Mechanistic modeling of cutting forces in micro-end-milling considering tool run out, minimum chip thickness and tooth overlapping effects. Mach. Sci. Technol. Taylor & Francis 2018 1486423
    [Google Scholar]
  190. Moges T.M. Desai K.A. Rao P.V.M. On modeling of cutting forces in micro-end milling operation. Mach. Sci. Technol. 2017 21 4 562 581 10.1080/10910344.2017.1336179
    [Google Scholar]
  191. Son S. Lim H.S. Kumar A.S. Rahman M. Influences of pulsed power condition on the machining properties in micro EDM. J. Mater. Process. Technol. 2007 190 1-3 73 76 10.1016/j.jmatprotec.2007.03.108
    [Google Scholar]
  192. Kadirvel A. Hariharan P. Gowri S. A review on various research trends in micro-EDM. Int. J. Mechat. Manuf. Syst. 2012 5 5/6 361 384 10.1504/IJMMS.2012.049968
    [Google Scholar]
  193. Rajashekar V. Yeole S.N. Multi-objective optimization of machining parameters in µ-EDM drilling of SS317L using novel JAYA and TLBO algorithms. Advances in Mechanical and Materials Technology. Singapore Springer Singapore 2022 1363 1376 10.1007/978‑981‑16‑2794‑1_115
    [Google Scholar]
  194. Davis R. Singh A. Debnath K. Sabino R.M. Popat K. Soares P. Keshri A.K. Borgohain B. Enhanced micro-electric discharge machining-induced surface modification on biomedical Ti-6Al-4V alloy. J. Manuf. Sci. Eng. 2022 144 7 071002 10.1115/1.4053110
    [Google Scholar]
  195. Niculescu A.G. Chircov C. Bîrcă A.C. Grumezescu A.M. Fabrication and applications of microfluidic devices: A review. Int. J. Mol. Sci. 2021 22 4 2011 10.3390/ijms22042011 33670545
    [Google Scholar]
  196. Dave H.K. Karumuri R.T. Prajapati A.R. Rajpurohit S.R. Specific energy absorption during compression testing of ABS and FPU parts fabricated using LCD-SLA based 3D printer. Rapid Prototyping J. 2022 28 8 1530 1540 10.1108/RPJ‑04‑2021‑0075
    [Google Scholar]
  197. Li Y. Wu H. Experiment investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink. Int. J. Heat Mass Transf. 2022 187 122500 10.1016/j.ijheatmasstransfer.2021.122500
    [Google Scholar]
  198. Li B. Yang H. Song Z. Xu H. Wang J. Wang Z. Implementation of flexible virtual microchannels based on optically induced dielectrophoresis. Nanotechnology 2022 33 29 295102 10.1088/1361‑6528/ac4f80 35086078
    [Google Scholar]
  199. Teoh B.Y. Lim Y.M. Chong W.Y. Subramaniam M. Tan Z.Z. Misran M. Suk V.R.E. Lo K.W. Lee P.F. Isolation of exosome from the culture medium of nasopharyngeal cancer (NPC) C666-1 cells using inertial based Microfluidic channel. Biomed. Microdevices 2022 24 1 12 10.1007/s10544‑022‑00609‑z 35080702
    [Google Scholar]
  200. Wu G. Sun S. Zhu X. Ma Z. Zhang Y. Bao N. Microfluidic fabrication of hierarchical‐ordered ZIF‐L(Zn)@Ti 3 C 2 T x core–sheath fibers for high‐performance asymmetric supercapacitors. Angew. Chem. Int. Ed. 2022 61 8 e202115559 10.1002/anie.202115559 34919307
    [Google Scholar]
  201. Ertsgaard C.T. Yoo D. Christenson P.R. Klemme D.J. Oh S.H. Open-channel microfluidics via resonant wireless power transfer. Nat. Commun. 2022 13 1 1869 10.1038/s41467‑022‑29405‑2 35387995
    [Google Scholar]
  202. Cong H. Zhang N. Perspectives in translating microfluidic devices from laboratory prototyping into scale-up production. Biomicrofluidics 2022 16 2 021301 10.1063/5.0079045 35350441
    [Google Scholar]
  203. Rad F.Z. Prewett P.D. Davies G.J. An overview of microneedle applications, materials, and fabrication methods. Beilstein J. Nanotechnol. 2021 12 1034 1046 10.3762/bjnano.12.77 34621614
    [Google Scholar]
  204. Maenaka K. Buried channels in monolithic Si. 3D and Circuit Integration of MEMS 2021 423 441
    [Google Scholar]
  205. Li C. Xu Z. Peng L. Lai X. An electric-pulse-assisted stamping process towards springback suppression and precision fabrication of micro channels. Int. J. Mech. Sci. 2022 218 107081 10.1016/j.ijmecsci.2022.107081
    [Google Scholar]
  206. Ali@Hasim, N.R., A. Ahaitouf, and M.Z. Abdullah, Irreversible bonding techniques for the fabrication of a leakage-free printed circuit board-based lab-on-chip in microfluidic platforms—A review. Meas. Sci. Technol. 2021 32 5 052001 10.1088/1361‑6501/abeb92
    [Google Scholar]
  207. Li W. Xing W. Zhao F. Zhang L. Huang Y. Li J. Zhu L. Xu Z. Zhang D. Fabrication of hollow polymer microchannels using the MIMIC technique with subsequent heat treatment. Int. J. Precis. Eng. Manuf. 2021 22 8 1453 1460 10.1007/s12541‑021‑00553‑7
    [Google Scholar]
  208. Marques C. Desta Y.M. Rogers J. Murphy M.C. Kelly K. Fabrication of high-aspect-ratio microstructures on planar and nonplanar surfaces using a modified LIGA process. J. Microelectromech. Syst. 1997 6 4 329 336 10.1109/84.650130
    [Google Scholar]
  209. Wangikar S.S. Patowari P.K. Misra R.D. Gidde R.R. Bhosale S.B. Parkhe A.K. Optimization of photochemical machining process for fabrication of microchannels with obstacles. Mater. Manuf. Process. 2021 36 5 544 557 10.1080/10426914.2020.1843674
    [Google Scholar]
  210. Stjernström M. Roeraade J. Method for fabrication of microfluidic systems in glass. J. Micromech. Microeng. 1998 8 1 33 38 10.1088/0960‑1317/8/1/006
    [Google Scholar]
  211. Menard L.D. Ramsey J.M. Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling. Nano Lett. 2011 11 2 512 517 10.1021/nl103369g 21171628
    [Google Scholar]
  212. Kandlikar S.G. Grande W.J. Evolution of microchannel flow passages--thermohydraulic performance and fabrication technology. Heat Transf. Eng. 2003 24 1 3 17 10.1080/01457630304040
    [Google Scholar]
  213. Mali P. Sarkar A. Lal R. Facile fabrication of microfluidic systems using electron beam lithography. Lab Chip 2006 6 2 310 315 10.1039/b510992b 16450043
    [Google Scholar]
  214. Rossier J. Reymond F. Michel P.E. Polymer microfluidic chips for electrochemical and biochemical analyses. Electrophoresis 2002 23 6 858 867 10.1002/1522‑2683(200203)23:6<858::AID‑ELPS858>3.0.CO;2‑3 11920870
    [Google Scholar]
  215. Campo A. Greiner C. SU-8: A photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng. 2007 17 6 R81 R95 10.1088/0960‑1317/17/6/R01
    [Google Scholar]
  216. Raj M K. Chakraborty S. PDMS microfluidics: A mini review. J. Appl. Polym. Sci. 2020 137 27 48958 10.1002/app.48958
    [Google Scholar]
  217. Vaid A. Singh R. Lehana P. Developement of microchannel fabrication technique and method to increase trench depth on PDMS. Int. J. Adv. Res. Comput. Commun. Eng. 2013 2 12 2278 1021
    [Google Scholar]
  218. Patil D.H. Mudigonda S. The effect of the rolling direction, temperature, and etching time on the photochemical machining of monel 400 microchannels. Adv. Mat. Sci. Eng. 2016 6751305 9 10.1155/2016/6751305
    [Google Scholar]
  219. Ali W.R. Prasad M. Fabrication of microchannel and diaphragm for a MEMS acoustic sensor using wet etching technique. Microelectron. Eng. 2022 253 111670 10.1016/j.mee.2021.111670
    [Google Scholar]
  220. Kuo C.C. Lyu S.Y. A cost-effective approach using recycled materials to fabricate micro-hot embossing dies for microfabrication. Int. J. Adv. Manuf. Technol. 2018 94 9-12 4365 4371 10.1007/s00170‑017‑1161‑9
    [Google Scholar]
  221. Han X. Zhang Y. Tian J. Wu T. Li Z. Xing F. Fu S. Polymer‐based microfluidic devices: A comprehensive review on preparation and applications. Polym. Eng. Sci. 2022 62 1 3 24 10.1002/pen.25831
    [Google Scholar]
  222. Balakrisnan B. Patil S. Smela E. Patterning PDMS using a combination of wet and dry etching. J. Micromech. Microeng. 2009 19 4 047002 10.1088/0960‑1317/19/4/047002
    [Google Scholar]
  223. Wei B.Q. Vajtai R. Jung Y. Ward J. Zhang R. Ramanath G. Ajayan P.M. Organized assembly of carbon nanotubes. Nature 2002 416 6880 495 496 10.1038/416495a 11932732
    [Google Scholar]
  224. Lee G.B. Chen S-H. Huang G-R. Sung W-C. Lin Y-H. Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection. Sens. Actuators B Chem. 2001 75 1-2 142 148 10.1016/S0925‑4005(00)00745‑0
    [Google Scholar]
  225. Ruprecht R. Gietzelt T. Müller K. Piotter V. Haußelt J. Injection molding of microstructured components from plastics, metals and ceramics. Microsyst. Technol. 2002 8 4-5 351 358 10.1007/s00542‑001‑0153‑7
    [Google Scholar]
  226. Maniraj S. Thanigaivelan R. Effect of electrode heating on performance of electrochemical micromachining. Mater. Manuf. Process. 2019 34 13 1494 1501 10.1080/10426914.2019.1655153
    [Google Scholar]
  227. Palani S. Lakshmanan P. Kaliyamurthy R. Experimental investigations of electrochemical micromachining of nickel aluminum bronze alloy. Mater. Manuf. Process. 2020 35 16 1860 1869 10.1080/10426914.2020.1813888
    [Google Scholar]
  228. Kumaar V.J.R. Thanigaivelan R. Performance of magnetic field-assisted citric acid electrolyte on electrochemical micro-machining of SS 316L. Mater. Manuf. Process. 2020 35 9 969 977 10.1080/10426914.2020.1750630
    [Google Scholar]
  229. Soundarrajan M. Thanigaivelan R. Investigation of electrochemical micromachining process using ultrasonic heated electrolyte. Advances in Micro and Nano Manufacturing and Surface Engineering. Springer 2019 423 434 10.1007/978‑981‑32‑9425‑7_38
    [Google Scholar]
  230. Jia B.X. Research on multifunctional micro machining equipment. Mat. Sci. Forum 2004 2004471-472 37 42 10.4028/www.scientific.net/MSF.471‑472.37
    [Google Scholar]
  231. Wang M.H. Zhu D. Fabrication of multiple electrodes and their application for micro-holes array in ECM. Int. J. Adv. Manuf. Technol. 2009 41 1-2 42 47 10.1007/s00170‑008‑1456‑y
    [Google Scholar]
  232. Lee W. An H.J. Kim D.B. Kim H. Bonding-free capillary microfluidics via a 3D-printed railed microchannel. Int. J. Precis. Eng. Manuf. 2024 25 7 1489 1497 10.1007/s12541‑024‑01013‑8
    [Google Scholar]
  233. Ghoshal B. Bhattacharyya B. Investigation on profile of microchannel generated by electrochemical micromachining. J. Mater. Process. Technol. 2015 222 410 421 10.1016/j.jmatprotec.2015.03.025
    [Google Scholar]
  234. Qu N.S. Hu Y. Zhu D. Xu Z.Y. Electrochemical machining of blisk channels with progressive-pressure electrolyte flow. Mater. Manuf. Process. 2014 29 5 572 578 10.1080/10426914.2014.892974
    [Google Scholar]
  235. Rathod V. Doloi B. Bhattacharyya B. Influence of electrochemical micromachining parameters during generation of microgrooves. Int. J. Adv. Manuf. Technol. 2015 76 1-4 51 60 10.1007/s00170‑013‑5304‑3
    [Google Scholar]
  236. Dharmalingam S. Marimuthu P. Raja K. Machinability study on Al-10% TiC composites and optimum setting of drilling parameters in electrochemical micro machining using grey relational analysis. Lat. Am. Appl. Res. 2014 44 4 331 338 10.52292/j.laar.2014.462
    [Google Scholar]
  237. Liu H.S. Yan B.H. Chen C.L. Huang F.Y. Application of micro-EDM combined with high-frequency dither grinding to micro-hole machining. Int. J. Mach. Tools Manuf. 2006 46 1 80 87 10.1016/j.ijmachtools.2005.03.017
    [Google Scholar]
  238. Bal S. Mishra P.C. Satapathy A.K. Micro-electro discharge machining of holes and grooves: Anassessment of process parameters. IACSIT Int. J. Eng. Technol. 2017 9 2 710 719 10.21817/ijet/2017/v9i2/170902051
    [Google Scholar]
  239. Kuo C.L. Huang J.D. Liang H.Y. Huang J-D. Fabrication of 3D metal microstructures using a hybrid process of micro-EDM and laser assembly. Int. J. Adv. Manuf. Technol. 2003 21 10-11 796 800 10.1007/s00170‑002‑1395‑y
    [Google Scholar]
  240. Benton M. Hossan M. Konari P. Gamagedara S. Effect of process parameters and material properties on laser micromachining of microchannels. Micromachines 2019 10 2 123 10.3390/mi10020123 30769833
    [Google Scholar]
  241. Mohammed M.K. Al-Ahmari A. Laser-machining of microchannels in NiTi-based shape-memory alloys: Experimental analysis and process optimization. Materials 2020 13 13 2945 10.3390/ma13132945 32630220
    [Google Scholar]
  242. Konari P.R. Clayton Y.D. Vaughan M.B. Khandaker M. Hossan M.R. Experimental analysis of laser micromachining of microchannels in common microfluidic substrates. Micromachines 2021 12 2 138 10.3390/mi12020138 33525394
    [Google Scholar]
  243. Pradhan S. Study of micro machining characteristics by Nd-YAG Laser on NiTinol shape memory alloy. Advances in Materials and Processing Technologies 2021 1 15
    [Google Scholar]
  244. Hossan M.R. Konari P.R. Laser micromachining of glass substrates for microfluidics devices. AIP Conf. Proc. 2021 2324 1 060002 10.1063/5.0037881
    [Google Scholar]
  245. Al-Najjar H.F.I. Effective working parameters of laser micro-/nano-machining. Laser Micro- and Nano-Scale Processing. IOP Publishing 2021 4-1 4-23 10.1088/978‑0‑7503‑1683‑5ch4
    [Google Scholar]
  246. Chung C.K. Lin S.L. On the fabrication of minimizing bulges and reducing the feature dimensions of microchannels using novel CO 2 laser micromachining. J. Micromech. Microeng. 2011 21 6 065023 10.1088/0960‑1317/21/6/065023
    [Google Scholar]
  247. Luo S.W. Chang T.L. Tsai H.Y. Fabrication of glass micro-prisms using ultra-fast laser pulses with chemical etching process. Opt. Lasers Eng. 2012 50 2 220 225 10.1016/j.optlaseng.2011.08.013
    [Google Scholar]
  248. Thompson B.L. Ouyang Y. Duarte G.R.M. Carrilho E. Krauss S.T. Landers J.P. Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method. Nat. Protoc. 2015 10 6 875 886 10.1038/nprot.2015.051 25974096
    [Google Scholar]
  249. Aymerich M. Aldana V.J.R. Canteli D. Molpeceres C. Alvarez E. Almengló C. Arias F.M.T. Soda-lime glass as biocompatible material to fabricate capillary-model devices by laser technologies. Opt. Mater. Express 2022 12 5 1790 1806 10.1364/OME.447286
    [Google Scholar]
  250. Vidya S. CO2 laser micromachining of polymethyl methacrylate (PMMA): A review. Advances in Manufacturing and Industrial Engineering. Singapore Springer Singapore 2021 939 945 10.1007/978‑981‑15‑8542‑5_82
    [Google Scholar]
  251. Çalışkan C.İ. Coşkun M. Özer G. Koç E. Vurkır T.A. Yöndem G. Investigation of manufacturability and efficiency of micro channels with different geometries produced by direct metal laser sintering. Int. J. Adv. Manuf. Technol. 2021 117 11-12 3805 3817 10.1007/s00170‑021‑07928‑0
    [Google Scholar]
  252. Dai W. Oropeza C. Lian K. Wang W. Experiment design and UV-LIGA microfabrication technology to study the fracture toughness of Ni microstructures. Microsyst. Technol. 2006 12 4 306 314 10.1007/s00542‑005‑0056‑0
    [Google Scholar]
  253. Yuan R. Lee J. Su H.W. Levy E. Khudiyev T. Voldman J. Fink Y. Microfluidics in structured multimaterial fibers. Proc. Natl. Acad. Sci. 2018 115 46 E10830 E10838 10.1073/pnas.1809459115 30373819
    [Google Scholar]
  254. Goral V.N. Hsieh Y-C. Petzold O.N. Faris R.A. Yuen P.K. Hot embossing of plastic microfluidic devices using poly(dimethylsiloxane) molds. J. Micromech. Microeng. 2011 21 1 017002 10.1088/0960‑1317/21/1/017002
    [Google Scholar]
  255. Cardosa G.M. Ortiz G.F.J. Casanova O.J. A review on additive manufacturing of micromixing devices. Micromachines 2021 13 1 73 10.3390/mi13010073 35056237
    [Google Scholar]
  256. Felton H. Hughes R. Gaxiola D.A. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds. PLoS One 2021 16 2 e0245206 10.1371/journal.pone.0245206 33534849
    [Google Scholar]
  257. Min Z. Wu Y. Yang K. Xu J. Parbat S.N. Chyu M.K. Dimensional characterizations using scanning electron microscope and surface improvement with electrochemical polishing of additively manufactured microchannels. J. Eng. Gas Turbine. Power 2021 143 4 041020 10.1115/1.4049908
    [Google Scholar]
  258. Parthiban P. Vijayan S. Doyle P.S. Hashimoto M. Evaluation of 3D-printed molds for fabrication of non-planar microchannels. Biomicrofluidics 2021 15 2 024111 10.1063/5.0047497 33912266
    [Google Scholar]
  259. Jaywant S.A. Fabrication and characterization of 3D printed microfluidics. Mechatronics and Machine Vision in Practice 4. Billingsley J. Brett P. Cham Springer International Publishing 2021 119 124 10.1007/978‑3‑030‑43703‑9_10
    [Google Scholar]
  260. Koo D. So H. Facile microfabrication of three dimensional-patterned micromixers using additive manufacturing technology. Sci. Rep. 2022 12 1 6346 10.1038/s41598‑022‑10356‑z 35428793
    [Google Scholar]
  261. Männel M.J. Weigel N. Hauck N. Heida T. Thiele J. Combining hydrophilic and hydrophobic materials in 3D printing for fabricating microfluidic devices with spatial wettability. Adv. Mater. Technol. 2021 6 9 2100094 10.1002/admt.202100094
    [Google Scholar]
  262. Mehta V. Rath S.N. 3D printed microfluidic devices: A review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Biodes. Manuf. 2021 4 2 311 343 10.1007/s42242‑020‑00112‑5
    [Google Scholar]
  263. Chu C.-H. Centrifugation-assisted three-dimensional printing of devices embedded with fully enclosed microchannels. 3D Printing and Additive Manufacturing 2022 133 10.1089/3dp.2021.0133
    [Google Scholar]
  264. Deng D.X. Zheng J. Chen X-L. Pi G. Liu Y-H. Fabrication of micro pin fins on inclined V-shaped microchannel walls via laser micromilling. Adv. Manuf. 2022 10 2 220 234 10.1007/s40436‑021‑00382‑x
    [Google Scholar]
  265. Chen Y.W. Chen M.C. Wu K.W. Tu T.Y. A facile approach for rapid prototyping of microneedle molds, microwells and micro-through-holes in various substrate materials using CO2 laser drilling. Biomedicines 2020 8 10 427 10.3390/biomedicines8100427 33081055
    [Google Scholar]
  266. Kulkarni M.B. Goel S. A review on recent advancements in chamber-based microfluidic PCR devices, in microelectronics and signal processing: Advanced concepts and applications. CRC Press Boca Raton, FL 2021 49 70 10.1201/9781003168225‑4
    [Google Scholar]
  267. Xu J. Wang X. Wang C. Yuan L. Chen W. Bao J. Su Q. Xu Z. Wang C. Wang Z. Shan D. Guo B. A review on micro/nanoforming to fabricate 3D metallic structures. Adv. Mater. 2021 33 6 2000893 10.1002/adma.202000893 32924211
    [Google Scholar]
  268. Lalagi G. Influence of design of microchannel heat exchangers and use of nanofluids to improve the heat transfer and pressure drop characteristics: A review. Int. J. Amb. Ener. 2022 43 6849 6877 10.1080/01430750.2022.2056918
    [Google Scholar]
  269. Min K. Lim J. Lim J.H. Hwang E. Kim Y. Lee H. Lee H. Hong S. Fabrication of perforated PDMS microchannel by successive laser pyrolysis. Materials 2021 14 23 7275 10.3390/ma14237275 34885430
    [Google Scholar]
  270. Vlachopoulou M.E. Tserepi A. Vourdas N. Gogolides E. Misiakos K. Patterning of thick polymeric substrates for the fabrication of microfluidic devices. J. Phys. Conf. Ser. 2005 10 293 296 10.1088/1742‑6596/10/1/072
    [Google Scholar]
  271. Bousse L. Cohen C. Nikiforov T. Chow A. Sill K.A.R. Dubrow R. Parce J.W. Electrokinetically controlled microfluidic analysis systems. Annu. Rev. Biophys. Biomol. Struct. 2000 29 1 155 181 10.1146/annurev.biophys.29.1.155 10940246
    [Google Scholar]
  272. Fiorini G.S. Chiu D.T. Disposable microfluidic devices: Fabrication, function, and application. Biotechniques 2005 38 3 429 446 10.2144/05383RV02 15786809
    [Google Scholar]
  273. Sackmann E.K. Fulton A.L. Beebe D.J. The present and future role of microfluidics in biomedical research. Nature 2014 507 7491 181 189 10.1038/nature13118 24622198
    [Google Scholar]
  274. Leo Kumar S.P. Jerald J. Kumanan S. Prabakaran R. A review on current research aspects in tool-based micromachining processes. Mater. Manuf. Process. 2014 29 11-12 1291 1337 10.1080/10426914.2014.952037
    [Google Scholar]
  275. Faustino V. Catarino S.O. Lima R. Minas G. Biomedical microfluidic devices by using low-cost fabrication techniques: A review. J. Biomech. 2016 49 11 2280 2292 10.1016/j.jbiomech.2015.11.031 26671220
    [Google Scholar]
  276. Gherman L. Manufacturing technology: Micro-machining. Micro-Manufacturing Technologies and Their Applications: A Theoretical and Practical Guide. Fassi I. Shipley D. Cham Springer International Publishing 2017 97 127 10.1007/978‑3‑319‑39651‑4_4
    [Google Scholar]
  277. Samuel J. Jun M.B.G. Ozdoganlar O.B. Honegger A. Vogler M. Kapoor S.G. Micro/meso-scale mechanical machining 2020: A two-decade state-of-the-field review. J. Manuf. Sci. Eng. 2020 142 11 110809 10.1115/1.4047621
    [Google Scholar]
  278. Venkatesh V. Swain N. Srinivas G. Kumar P. Barshilia H.C. Review on the machining characteristics and research prospects of conventional microscale machining operations. Mater. Manuf. Process. 2017 32 3 235 262 10.1080/10426914.2016.1151045
    [Google Scholar]
  279. Anand R.S. Patra K. Modeling and simulation of mechanical micro-machining—A review. Mach. Sci. Technol. 2014 18 3 323 347 10.1080/10910344.2014.925377
    [Google Scholar]
  280. Yao Y. Fan Y. CO2 laser fabrication of hydrogel-based open-channel microfluidic devices. Biomed. Microdevices 2021 23 4 47 10.1007/s10544‑021‑00584‑x 34550472
    [Google Scholar]
  281. Rahman Z.M. Das A.K. Chattopadhyaya S. Microhole drilling through electrochemical processes: A review. Mater. Manuf. Process. 2018 33 13 1379 1405 10.1080/10426914.2017.1401721
    [Google Scholar]
  282. Kuo C.C. Wang Y.J. Development of a micro-hot-embossing mold with high replication fidelity using surface modification. Mater. Manuf. Process. 2014 29 9 1101 1110 10.1080/10426914.2014.912312
    [Google Scholar]
  283. Lu W. Zhang R. Toan S. Xu R. Zhou F. Sun Z. Sun Z. Microchannel structure design for hydrogen supply from methanol steam reforming. Chem. Eng. J. 2022 429 132286 10.1016/j.cej.2021.132286
    [Google Scholar]
  284. Mohammadamini F. Shahrouzi R.J. Samadi M. A suspended polymeric microfluidic sensor for liquid flow rate measurement in microchannels. Sci. Rep. 2022 12 1 2642 10.1038/s41598‑022‑06656‑z 35173261
    [Google Scholar]
  285. Criales L.E. Orozco P.F. Medrano A. Rodríguez C.A. Özel T. Effect of fluence and pulse overlapping on fabrication of microchannels in PMMA/PDMS via UV laser micromachining: Modeling and experimentation. Mater. Manuf. Process. 2015 30 7 890 901 10.1080/10426914.2015.1004690
    [Google Scholar]
  286. Ghude A.J. Bhole K.S. Fabrication of microchannel using sequential micromilling and micromoulding. International Conference on Nascent Technologies in the Engineering Field (ICNTE) Navi Mumbai, India 09-10 January 2015 1 5 10.1109/ICNTE.2015.7029918
    [Google Scholar]
  287. Ziki A.J.D. Didar F.T. Wüthrich R. Micro-texturing channel surfaces on glass with spark assisted chemical engraving. Int. J. Mach. Tools Manuf. 2012 57 66 72 10.1016/j.ijmachtools.2012.01.012
    [Google Scholar]
  288. Cohen B.A. Kraus A.D. Advances in thermal modeling of electronic components and systems. Newyork 1988 6241665
    [Google Scholar]
  289. Nakashima S. Sugioka K. Midorikawa K. Fabrication of microchannels in single-crystal GaN by wet-chemical-assisted femtosecond-laser ablation. Appl. Surf. Sci. 2009 255 24 9770 9774 10.1016/j.apsusc.2009.04.159
    [Google Scholar]
  290. Mohammed M.K. Umer U. Al-Ahmari A. Optimization of Nd:YAG laser for microchannels fabrication in alumina ceramic. J. Manuf. Process. 2019 41 148 158 10.1016/j.jmapro.2019.03.036
    [Google Scholar]
  291. Javidanbardan A. Azevedo A.M. Chu V. Conde J.P. A systematic approach for developing 3D high-quality PDMS microfluidic chips based on micromilling technology. Micromachines 2021 13 1 6 10.3390/mi13010006 35056171
    [Google Scholar]
  292. Yao P. Schneider G.J. Prather D.W. Three-dimensional lithographical fabrication of microchannels. J. Microelectromech. Syst. 2005 14 4 799 805 10.1109/JMEMS.2005.845403
    [Google Scholar]
  293. Sabur A. Micro-EDM for micro-channel fabrication on nonconductive ZrO2 Ceramic. Int. J. Automot. Mech. Eng. 2022 10 1841 1851 10.15282/ijame.10.2014.2.0153
    [Google Scholar]
  294. Sreehari D. Sharma A.K. On form accuracy and surface roughness in micro-ultrasonic machining of silicon microchannels. Precis. Eng. 2018 53 300 309 10.1016/j.precisioneng.2018.04.014
    [Google Scholar]
  295. Ali M.Y. Fabrication of microfluidic channel using micro end milling and micro electrical discharge milling. Int. J. Mech. Mat. Eng. 2009 4 1 93 97
    [Google Scholar]
  296. Das A. Bajpai V. Analysis and prediction of surface roughness on lead free brass in high speed micro turning. World Congress On Micro & Nano Manufacturing 2021 1
    [Google Scholar]
  297. Graur I. New method of detection and classification of yield-impacting EUV mask defects. Proc. SPIE 9635, Photomask Technology California, United States 2015 9635 10.1117/12.2197871
    [Google Scholar]
  298. Schulz J. Bade K. Guttmann M. Hahn L. Janssen A. Köhler U. Meyer P. Winkler F. Ensuring repeatability in LIGA mold insert fabrication. Microsyst. Technol. 2004 10 5 419 422 10.1007/s00542‑004‑0424‑1
    [Google Scholar]
  299. Cheema M.S. Dvivedi A. Sharma A.K. Tool wear studies in fabrication of microchannels in ultrasonic micromachining. Ultrasonics 2015 57 57 64 10.1016/j.ultras.2014.10.018 25465965
    [Google Scholar]
  300. Ma X. Li R. Jin Z. Fan Y. Zhou X. Zhang Y. Injection molding and characterization of PMMA-based microfluidic devices. Microsyst. Technol. 2020 26 4 1317 1324 10.1007/s00542‑019‑04662‑2
    [Google Scholar]
  301. Sethi A. Acharya B.R. Saha P. Parametric investigation of pulse frequency and microtool rotational speed for precise fabrication of microchannels on nitinol shape memory alloy through ECMM. Mater. Today Commun. 2023 36 106844 10.1016/j.mtcomm.2023.106844
    [Google Scholar]
  302. Khomane S.M. Jadhav P.V. Wangikar S.S. Fabrication of PDMS based micro channel for lab-on-a-chip application using CO2 laser machining. AIP Publishing 2023 129777 10.1063/5.0129777
    [Google Scholar]
  303. Adel M. Allam A. Sayour A.E. Ragai H.F. Umezu S. El-Bab F.A.M.R. Fabrication of spiral low-cost microchannel with trapezoidal cross section for cell separation using a grayscale approach. Micromachines 2023 14 7 1340 10.3390/mi14071340 37512651
    [Google Scholar]
  304. Kumar N. Das A.K. Micro-channel fabrication on GFRP composite through electrochemical spark machining method and optimization of process parameters. Proc. Inst. Mech. Eng., B J. Eng. Manuf. 2023 237 1-2 55 68 10.1177/09544054221093302
    [Google Scholar]
  305. Morikawa K. Chen P. Tran H.L. Kazoe Y. Chen C. Kitamori T. Fused silica microchannel fabrication with smooth surface and high etching selectivity. J. Micromech. Microeng. 2023 33 4 047001 10.1088/1361‑6439/acbe4a
    [Google Scholar]
  306. Joy A. Shiblemon K.V. Baby B. Review on fabrication and experimental study of microchannel heat sinks for cooling of electronic components. Mater. Today Proc. 2023 72 2985 2991 10.1016/j.matpr.2022.08.186
    [Google Scholar]
  307. Lu Y. Li Y.F. Wang G. Yu Y. Bai Z. Wang Y. Lu Z. Femtosecond laser fabrication of microchannels in transparent hard materials. Adv. Mater. Technol. 2023 8 14 2300015 10.1002/admt.202300015
    [Google Scholar]
  308. Zhou L. Kato F. Iijima M. Nonaka T. Kuroda S. Ogi H. Mass-fabrication scheme of highly sensitive wireless electrodeless MEMS QCM biosensor with antennas on inner walls of microchannel. Anal. Chem. 2023 95 13 5507 5513 10.1021/acs.analchem.3c00139 36961992
    [Google Scholar]
  309. Yuan W. Yuan H. Jiao K. Zhu J. Lim E.G. Mitrovic I. Duan S. Wang Y. Cong S. Zhao C. Sun J. Liu X. Song P. Facile microembossing process for microchannel fabrication for nanocellulose-paper-based microfluidics. ACS Appl. Mater. Interfaces 2023 15 5 6420 6430 10.1021/acsami.2c19354 36693010
    [Google Scholar]
  310. Liao K. Wang W. Mei X. Zhao W. Yuan H. Wang M. Wang B. Stable and drag-reducing superhydrophobic silica glass microchannel prepared by femtosecond laser processing: Design, fabrication, and properties. Mater. Des. 2023 225 111501 10.1016/j.matdes.2022.111501
    [Google Scholar]
  311. Deshmukh S.S. Rana P. Goswami A. Fabrication of superhydrophobic surface by a dimensional change in surface topography of microchannel on polymer substrate through induction-aided hot embossing: Parametric investigation and optimization. Surf. Topogr. 2023 11 3 035008 10.1088/2051‑672X/acee9d
    [Google Scholar]
  312. Thaweeskulchai T. Schulte A. Basic guide to multilayer microfluidic fabrication with polyimide tape and diode laser. Micromachines 2023 14 2 324 10.3390/mi14020324 36838024
    [Google Scholar]
  313. Rai S. Vishnoi M. Mamatha T.G. A novel investigation of sacrificing layer effect on micro-channel fabrication of glass using rotary ultrasonic machining. J. Braz. Soc. Mech. Sci. Eng. 2023 45 7 350 10.1007/s40430‑023‑04273‑z
    [Google Scholar]
  314. Jeon D.G. Lee M.J. Heo J. Lee S.Y. Boo Y.C. Nam S.W. 3D sacrificial microchannels by scaffold removal process for electrical characterization of electrolytes. Electron. Mater. Lett. 2023 19 4 342 349 10.1007/s13391‑022‑00402‑3
    [Google Scholar]
  315. Aglawe K.R. Yadav R.K. Thool S.B. Fabrication, experimentation and numerical simulation of micro channel heat sink for enhancing thermal performance of electronic devices. Int. J. Int. Design Manuf. 2023 18 5 1 16 10.1007/s12008‑023‑01482‑7
    [Google Scholar]
  316. Barhoum K. Shishkina A.S. Zakoldaev R.A. Andreeva O.V. Microchannels fabrication in nanoporous silicate matrix by femtosecond direct laser writing and subsequent chemical etching. Opt. Quantum Electron. 2023 55 4 324 10.1007/s11082‑023‑04558‑6
    [Google Scholar]
  317. Hu Q. Wang Q. Liu S. Lu Y. Zeng Z. Feng J. Feng R. Zhang H. Fabrication process of triple-layer small-diameter vascular scaffold with microchannel structure in the inner layer for accelerated endothelialization. Fibers Polym. 2023 24 2 469 482 10.1007/s12221‑023‑00094‑y
    [Google Scholar]
  318. Geng Y. Zhang S. Wang J. Xiao G. Li C. Yan Y. Effect of the inclined angle of micromilling tool on the fabrication of the microfluidic channel. Int. J. Adv. Manuf. Technol. 2023 125 7-8 3069 3079 10.1007/s00170‑023‑10958‑5
    [Google Scholar]
  319. Zhou J. Zhou W. Zhang Y. Wang Y. Ma T. Design and fabrication of bifurcated overlapping open microchannels. Sens. Actuators A Phys. 2023 359 114466 10.1016/j.sna.2023.114466
    [Google Scholar]
  320. Mondal K. Hikmat S.K. Mallick B. Mahato J. Dutta P. Evolutionary algorithms based optimization of electrochemical discharge micromachining process during micro-channel fabrication on glass. Mater. Today Proc. 2023 80 613 619 10.1016/j.matpr.2022.11.058
    [Google Scholar]
  321. Wang M. Zhu L. Zhang C. Optimization and application of a micro-wire molding fabrication method of microfluidic devices. Microsyst. Technol. 2023 29 7 1053 1063 10.1007/s00542‑023‑05502‑0
    [Google Scholar]
  322. Ren M. Xie H. Lin F. Jia F. Huo M. Wu H. Novel fabrication of ultra-thin copper/SS304L composite microchannels. International Conference on the Technology of Plasticity Springer, Cham 2023 59 69 10.1007/978‑3‑031‑40920‑2_7
    [Google Scholar]
  323. Colgan E.G. Schleupen K. Mann P. Kuder R.P. Nah J.W. Sakuma K. Alvarez V. Turlapati L. Wong D.C. Lukashov S. Cordes S. Speidell J.L. Fabrication and performance of 300-mm wafer-scale silicon microchannel cooler. IEEE Trans. Compon. Packaging Manuf. Technol. 2023 13 4 472 480 10.1109/TCPMT.2023.3266666
    [Google Scholar]
  324. Narendran G. Mallikarjuna B. Nagesha B.K. Gnanasekaran N. Experimental investigation on additive manufactured single and curved double layered microchannel heat sink with nanofluids. Heat Mass Transf. 2023 59 7 1311 1332 10.1007/s00231‑022‑03336‑6
    [Google Scholar]
  325. Durmaz E.C. Heine C. Cao Z. Lehmann J. Kissinger D. Wietstruck M. SiGe BiCMOS technology with embedded microchannels based on Cu pillar PCB integration enabling sub-THz microfluidic sensor applications. IEEE International 3D Systems Integration Conference (3DIC) Cork, Ireland 10-12 May 2023 1 4 10.1109/3DIC57175.2023.10155073
    [Google Scholar]
  326. Shetty S. Mishra K.D. Dixit P. Shetty S.S. Jayarama A. shah A.P. gokhale M.R. Prabhu S. Duttagupta S.P. Pinto R. Etching of micro-channels in fused quartz for novel device applications. Mater. Today Proc. 2023 253 10.1016/j.matpr.2023.07.253
    [Google Scholar]
  327. Ozguc S. Teague T.F.G. Pan L. Weibel J.A. Experimental study of topology optimized, additively manufactured microchannel heat sinks designed using a homogenization approach. Int. J. Heat Mass Transf. 2023 209 124108 10.1016/j.ijheatmasstransfer.2023.124108
    [Google Scholar]
  328. Fan X. Rong Y. Zhang G. Wu C. Luo Y. Huang Y. High-profile-quality microchannels fabricated by Uv picosecond laser for microfluidic mixing. Opt. Laser Technol. 2024 170 110314 10.1016/j.optlastec.2023.110314
    [Google Scholar]
  329. Liao K. Wang W. Mei X. Tian W. Yuan H. Wang M. Wang B. Shape regulation of tapered microchannels in silica glass ablated by femtosecond laser with theoretical modeling and machine learning. J. Intell. Manuf. 2023 34 7 2907 2924 10.1007/s10845‑022‑01950‑z
    [Google Scholar]
  330. Zhang Y. Dou S. Qi J. Xu X. Qiu J. Wei Z.H. Experimental study on slip flow of nitrogen through microchannels at atmospheric pressure. Microfluid. Nanofluidics 2023 27 2 7 10.1007/s10404‑022‑02616‑1
    [Google Scholar]
  331. Yang K. Yang X. Liu Z. Zhang R. Yue Y. Wang F. Li K. Shi X. Yuan J. Liu N. Wang Z. Wang G. Xin G. Scalable microfluidic fabrication of vertically aligned two-dimensional nanosheets for superior thermal management. Mater. Horiz. 2023 10 9 3536 3547 10.1039/D3MH00615H 37272086
    [Google Scholar]
  332. Gao S. Zhan T. Zhou W. Niu F. Min S. Xiao A. Xu B. Mold embossing - Based soft lithography for fabrication of complex non-rectangular channels. ACS Appl. Mater. Interfaces 2023 15 26 31755 31764 10.1021/acsami.3c01306 37347208
    [Google Scholar]
  333. Yao Q. Song J. Yin W. Shi H. Yao H. Su Z. Dai Y. Optimization of fs + ps double-pulse sequence parameters for laser-assisted chemical etching of microchannels in fused silica. J. Phys. D Appl. Phys. 2023 56 26 265101 10.1088/1361‑6463/acc8e6
    [Google Scholar]
  334. Ren M. Lin F. Jia F. Xie H. Yang M. Jiang Z. Micro rolling fabrication of copper/SS304L micro composite channels. J. Manuf. Process. 2023 90 1 13 10.1016/j.jmapro.2023.02.002
    [Google Scholar]
  335. Chartrand C. Le A.V. Fenech M. Micro-particle image velocimetry for blood flow in thick round glass micro-channels: Channel fabrication and velocity profile characterization. MethodsX 2023 10 102110 10.1016/j.mex.2023.102110 37007623
    [Google Scholar]
  336. Jia Z. Wu J. Wu X. Yuan Q. Chan Y. Liu B. Zhang J. Yan S. Size-tunable elasto-inertial sorting of Haematococcus pluvialis in the ultrastretchable microchannel. Anal. Chem. 2023 95 35 13338 13345 10.1021/acs.analchem.3c02648 37585740
    [Google Scholar]
  337. Stark T. Kim D. Electrode filling using capillary action of 3D printed elastomer microchannels. Elect. Pol. Act. Dev. 2023 12482 103 109 10.1117/12.2658146
    [Google Scholar]
  338. Padhi N.B. Choudhury K.S. Ramkumar J. Fabrication of micro-textured surfaces using Gravity-assisted EDM process with foil electrode to induce hydrophobicity on Cu surface. Mater. Today Proc. 2023 77 597 602 10.1016/j.matpr.2022.10.095
    [Google Scholar]
  339. Garayo I.A. Imizcoz M. Maisterra M. Almazán F. Sanz D. Bimbela F. Cornejo A. Pellejero I. Gandía L.M. The 3D-printing fabrication of multichannel silicone microreactors for catalytic applications. Catalysts 2023 13 1 157 10.3390/catal13010157
    [Google Scholar]
  340. Jia X. Zhao X. Ultrafast laser direct drilling of high aspect ratio microchannels in fused silica: Insights on channel self-termination mechanisms. Opt. Laser Technol. 2023 157 108766 10.1016/j.optlastec.2022.108766
    [Google Scholar]
  341. Shahriari S. Patel V. Selvaganapathy P.R. Xurography as a tool for fabrication of microfluidic devices. J. Micromech. Microeng. 2023 33 8 083002 10.1088/1361‑6439/ace05d
    [Google Scholar]
  342. Ching T. Nie X. Chang S.Y. Toh Y.C. Hashimoto M. Techniques and materials for the fabrication of microfluidic devices. Principles of Human Organs-on-Chips. Woodhead Publishing 2023 1 36 10.1016/B978‑0‑12‑823536‑2.00014‑6
    [Google Scholar]
  343. Zohar B. Debbi L. Machour M. Nachum N. Redenski I. Epshtein M. Korin N. Levenberg S. A micro-channel array in a tissue engineered vessel graft guides vascular morphogenesis for anastomosis with self-assembled vascular networks. Acta Biomater. 2023 163 182 193 10.1016/j.actbio.2022.05.026 35597433
    [Google Scholar]
  344. Nawang F.A.M. Yusof A.M. Nasir S.F. Noor R.M. Zaine I.S. Low pressure, solvent-assisted thermal bonding of PMMA–PMMA substrates for microfluidics device fabrication Springer Nature Switzerland 2023 31 37 10.1007/978‑3‑031‑29348‑1_4
    [Google Scholar]
  345. Nagalingam N. Raghunathan A. Korede V. Overmars E.F.J. Hung S.T. Hartkamp R. Padding J.T. Smith C.S. Eral H.B. Low-cost fluorescence microscope with microfluidic device fabrication for optofluidic applications. HardwareX 2023 14 e00415 10.1016/j.ohx.2023.e00415 37078005
    [Google Scholar]
  346. Fortuna L. Buscarino A. Smart Materials. Materials 2022 15 18 6307 10.3390/ma15186307 36143618
    [Google Scholar]
/content/journals/mns/10.2174/0118764029349253241209063510
Loading
/content/journals/mns/10.2174/0118764029349253241209063510
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: micromachining ; EDM ; heat transfer ; laser ; composites ; Microchannel ; lithography ; roughness ; polymer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test