Skip to content
2000
Volume 14, Issue 1
  • ISSN: 2211-5366
  • E-ISSN: 2211-5374

Abstract

microRNAs are a family of small, non-coding RNA molecules that can regulate the translation of messenger RNAs (mRNAs). Numerous miRNAs have been proposed as potential indicators for periodontal disease, and their regulation might serve as a potent means of restricting the disease process.

MiRNAs act as important immune system regulators that promote the production of many cytokines, including interferon (IFN), tumour necrosis factor (TNF), and IL-1as well as RANK. Investigations pertaining to the use of specific miRNAs as therapeutic agents are underway. They can influence a variety of regulatory organs and target several genes. Additionally, distinct components of the same expression pathway can be controlled by combining miRNAs and their antagonists. In recent years, many miRNA delivery methods have been created for therapeutic applications.

Studies pertaining to the role of miRNAs in periodontal disease pathogenesis may pave the way for the use of miRNAs as biomarkers of periodontal disease. A complete understanding of the role of miRNA in periodontal disease and its mechanism of action can pave the way towards therapeutic strategies that can reduce or even prevent the progression of periodontal diseases.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366305491240708060422
2024-07-25
2025-06-20
Loading full text...

Full text loading...

References

  1. AbdulkareemA.A. Al-TaweelF.B. Al-SharqiA.J.B. GulS.S. ShaA. ChappleI.L.C. Current concepts in the pathogenesis of periodontitis: from symbiosis to dysbiosis.J. Oral Microbiol.2023151219777910.1080/20002297.2023.2197779 37025387
    [Google Scholar]
  2. EbersoleJ.L. Humoral immune responses in gingival crevice fluid: local and systemic implications.Periodontol. 2000200331113516610.1034/j.1600‑0757.2003.03109.x 12657000
    [Google Scholar]
  3. HajishengallisG. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response.Trends Immunol.201435131110.1016/j.it.2013.09.001 24269668
    [Google Scholar]
  4. HajishengallisG. LamontR.J. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology.Mol. Oral Microbiol.201227640941910.1111/j.2041‑1014.2012.00663.x 23134607
    [Google Scholar]
  5. OlsenI. SinghraoS.K. OsmundsenH. Periodontitis, pathogenesis and progression: miRNA-mediated cellular responses to Porphyromonas gingivalis.J. Oral Microbiol.201791133339610.1080/20002297.2017.1333396 28748037
    [Google Scholar]
  6. KebschullM. PapapanouP.N. Mini but mighty: micro RNA s in the pathobiology of periodontal disease.Periodontol. 2000201569120122010.1111/prd.12095 26252410
    [Google Scholar]
  7. HajishengallisG. DarveauR.P. CurtisM.A. The keystone-pathogen hypothesis.Nat. Rev. Microbiol.2012101071772510.1038/nrmicro2873 22941505
    [Google Scholar]
  8. AravindrajaC. JeepipalliS. VekariyaK.M. Botello-EscalanteR. ChanE.K.L. KesavaluL. Oral Spirochete Treponema denticola Intraoral Infection Reveals Unique miR-133a, miR-486, miR-126-3p, miR-126-5p miRNA Expression Kinetics during Periodontitis.Int. J. Mol. Sci.202324151210510.3390/ijms241512105 37569480
    [Google Scholar]
  9. AravindrajaC. JeepipalliS. DuncanW. Unique miRomics Expression Profiles in Tannerella forsythia-infected mandibles during periodontitis using machine Learning.Int. J. Mol. Sci.202324221639310.3390/ijms242216393 38003583
    [Google Scholar]
  10. DangariaS.J. ItoY. LuanX. DiekwischT.G.H. Differentiation of neural-crest-derived intermediate pluripotent progenitors into committed periodontal populations involves unique molecular signature changes, cohort shifts, and epigenetic modifications.Stem Cells Dev.2011201395210.1089/scd.2010.0180 20604680
    [Google Scholar]
  11. LuanX ZhouX Trombetta-eSilvaJ MicroRNAs and Periodontal Homeostasis.J. Dent. Res.201796549150010.1177/0022034516685711 28068481
    [Google Scholar]
  12. ZengY. QuX. LiH. MicroRNA‐100 regulates osteogenic differentiation of human adipose‐derived mesenchymal stem cells by targeting BMPR2.FEBS Lett.2012586162375238110.1016/j.febslet.2012.05.049 22684006
    [Google Scholar]
  13. SongQ. ZhongL. ChenC. miR-21 synergizes with BMP9 in osteogenic differentiation by activating the BMP9/Smad signaling pathway in murine multilineage cells.Int. J. Mol. Med.20153661497150610.3892/ijmm.2015.2363 26460584
    [Google Scholar]
  14. JiaJ. FengX. XuW. MiR-17-5p modulates osteoblastic differentiation and cell proliferation by targeting SMAD7 in non-traumatic osteonecrosis.Exp. Mol. Med.2014467e107e710.1038/emm.2014.43 25060766
    [Google Scholar]
  15. LinG.L. HankensonK.D. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation.J. Cell. Biochem.2011112123491350110.1002/jcb.23287 21793042
    [Google Scholar]
  16. BaeY. YangT. ZengH.C. miRNA-34c regulates Notch signaling during bone development.Hum. Mol. Genet.201221132991300010.1093/hmg/dds129 22498974
    [Google Scholar]
  17. ChenL, HolmstrØm K, Qiu W, et al. MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells.Stem Cells201432490291210.1002/stem.1615 24307639
    [Google Scholar]
  18. ZhouX. LuanX. ChenZ. MicroRNA-138 Inhibits Periodontal Progenitor Differentiation under Inflammatory Conditions.J. Dent. Res.201695223023710.1177/0022034515613043 26518300
    [Google Scholar]
  19. LiuY. LiuW. HuC. MiR-17 modulates osteogenic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from periodontal ligaments of patients with periodontitis.Stem Cells201129111804181610.1002/stem.728 21898695
    [Google Scholar]
  20. HungP.S. ChenF.C. KuangS.H. KaoS.Y. LinS.C. ChangK.W. miR-146a induces differentiation of periodontal ligament cells.J. Dent. Res.201089325225710.1177/0022034509357411 20110513
    [Google Scholar]
  21. WuT. XieM. WangX. JiangX. LiJ. HuangH. miR-155 modulates TNF-α-inhibited osteogenic differentiation by targeting SOCS1 expression.Bone201251349850510.1016/j.bone.2012.05.013 22634176
    [Google Scholar]
  22. SugataniT. HruskaK.A. MicroRNA‐223 is a key factor in osteoclast differentiation.J. Cell. Biochem.2007101499699910.1002/jcb.21335 17471500
    [Google Scholar]
  23. NakasaT. ShibuyaH. NagataY. NiimotoT. OchiM. The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis.Arthritis Rheum.20116361582159010.1002/art.30321 21425254
    [Google Scholar]
  24. ChenC. ChengP. XieH. MiR-503 regulates osteoclastogenesis via targeting RANK.J. Bone Miner. Res.201429233834710.1002/jbmr.2032 23821519
    [Google Scholar]
  25. GuoL.J. LiaoL. YangL. LiY. JiangT.J. MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis.Exp. Cell Res.2014321214215210.1016/j.yexcr.2013.12.001 24360988
    [Google Scholar]
  26. KimK. KimJ.H. KimI. MicroRNA-26a regulates RANKL-induced osteoclast formation.Mol. Cells2015381758010.14348/molcells.2015.2241 25518928
    [Google Scholar]
  27. ZhangJ. ZhaoH. ChenJ. Interferon‐β‐induced miR‐155 inhibits osteoclast differentiation by targeting SOCS1 and MITF.FEBS Lett.2012586193255326210.1016/j.febslet.2012.06.047 22771905
    [Google Scholar]
  28. MannM. BaradO. AgamiR. GeigerB. HornsteinE. miRNA-based mechanism for the commitment of multipotent progenitors to a single cellular fate.Proc. Natl. Acad. Sci. USA201010736158041580910.1073/pnas.0915022107 20720163
    [Google Scholar]
  29. SugataniT. VacherJ. HruskaK.A. A microRNA expression signature of osteoclastogenesis.Blood2011117133648365710.1182/blood‑2010‑10‑311415 21273303
    [Google Scholar]
  30. ChengP. ChenC. HeH.B. miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B.J. Bone Miner. Res.20132851180119010.1002/jbmr.1845 23225151
    [Google Scholar]
  31. FranceschettiT. KesslerC.B. LeeS.K. DelanyA.M. miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration.J. Biol. Chem.201328846333473336010.1074/jbc.M113.484568 24085298
    [Google Scholar]
  32. MizoguchiF. MurakamiY. SaitoT. MiyasakaN. KohsakaH. miR-31 controls osteoclast formation and bone resorption by targeting RhoA.Arthritis Res. Ther.2013155R10210.1186/ar4282 24004633
    [Google Scholar]
  33. ShapiroL.F. FreemanK. The relationship between estrogen, estrogen receptors and periodontal disease in adult women.J. Mich. Dent. Assoc.201496114044 25647885
    [Google Scholar]
  34. SugataniT. HruskaK.A. Down‐regulation of miR‐21 biogenesis by estrogen action contributes to osteoclastic apoptosis.J. Cell. Biochem.201311461217122210.1002/jcb.24471 23238785
    [Google Scholar]
  35. QuinnS.R. O’NeillL.A. A trio of microRNAs that control Toll-like receptor signalling.Int. Immunol.201123742142510.1093/intimm/dxr034 21652514
    [Google Scholar]
  36. O’ConnellR.M. TaganovK.D. BoldinM.P. ChengG. BaltimoreD. MicroRNA-155 is induced during the macrophage inflammatory response.Proc. Natl. Acad. Sci. USA200710451604160910.1073/pnas.0610731104 17242365
    [Google Scholar]
  37. NagarakantiS. RamyaS. BabuP. ArunK.V. SudarsanS. Differential expression of E-cadherin and cytokeratin 19 and net proliferative rate of gingival keratinocytes in oral epithelium in periodontal health and disease.J. Periodontol.200778112197220210.1902/jop.2007.070070 17970688
    [Google Scholar]
  38. DaiR. AhmedS.A. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases.Transl. Res.2011157416317910.1016/j.trsl.2011.01.007 21420027
    [Google Scholar]
  39. NahidM.A. PauleyK.M. SatohM. ChanE.K.L. miR-146a is critical for endotoxin-induced tolerance: Implication in innate immunity.J. Biol. Chem.200928450345903459910.1074/jbc.M109.056317 19840932
    [Google Scholar]
  40. DevlinC. GrecoS. MartelliF. IvanM. miR‐210: More than a silent player in hypoxia.IUBMB Life20116329410010.1002/iub.427 21360638
    [Google Scholar]
  41. FasanaroP. D’AlessandraY. Di StefanoV. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3.J. Biol. Chem.200828323158781588310.1074/jbc.M800731200 18417479
    [Google Scholar]
  42. FushimiS. NohnoT. NagatsukaH. KatsuyamaH. Involvement of miR‐140‐3p in Wnt3a and TGF β3 signaling pathways during osteoblast differentiation in MC 3T3‐E1 cells.Genes Cells201823751752710.1111/gtc.12591 29740905
    [Google Scholar]
  43. LiuX. ZhuW. WangL. WuJ. DingF. SongY. miR-145-5p suppresses osteogenic differentiation of adipose-derived stem cells by targeting semaphorin 3A.In Vitro Cell. Dev. Biol. Anim.201955318920210.1007/s11626‑019‑00318‑7 30747413
    [Google Scholar]
  44. LiuP. ZhuangY. ZhangB. miR-140-3p regulates the osteogenic differentiation ability of bone marrow mesenchymal stem cells by targeting spred2-mediated autophagy.Mol. Cell. Biochem.2021476124277428510.1007/s11010‑021‑04148‑8 34406574
    [Google Scholar]
  45. LiuX. SuK. KuangS. FuM. ZhangZ. miR-16-5p and miR-145-5p trigger apoptosis in human gingival epithelial cells by down-regulating BACH2.Int. J. Clin. Exp. Pathol.2020135901911 32509061
    [Google Scholar]
  46. FangC. LiY. Prospective applications of microRNAs in oral cancer: A review. (Review)Oncol. Lett.201910.3892/ol.2019.10751
    [Google Scholar]
  47. LiJ. HanQ. ChenH. Carbon Monoxide-Releasing Molecule-3 Enhances Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells via miR-195-5p/Wnt3a Pathway.Drug Des. Devel. Ther.2022162101211710.2147/DDDT.S367277 35812136
    [Google Scholar]
  48. ChangM. LinH. FuH. WangB. HanG. FanM. MicroRNA‐195‐5p Regulates Osteogenic Differentiation of Periodontal Ligament Cells Under Mechanical Loading.J. Cell. Physiol.2017232123762377410.1002/jcp.25856 28181691
    [Google Scholar]
  49. PanJ. DuM. CaoZ. miR‐146a‐5p attenuates IL‐1β‐induced IL‐6 and IL‐1β expression in a cementoblast‐derived cell line.Oral Dis.20202661308131710.1111/odi.13333 32176411
    [Google Scholar]
  50. Buragaite-StaponkieneB. RovasA. PurieneA. Gingival Tissue MiRNA Expression Profiling and an Analysis of Periodontitis-Specific Circulating MiRNAs.Int. J. Mol. Sci.202324151198310.3390/ijms241511983 37569358
    [Google Scholar]
  51. MayerY. Balbir-GurmanA. MachteiE.E. Anti-tumor necrosis factor-alpha therapy and periodontal parameters in patients with rheumatoid arthritis.J. Periodontol.20098091414142010.1902/jop.2009.090015 19722791
    [Google Scholar]
  52. SuárezY. WangC. ManesT.D. PoberJ.S. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation.J. Immunol.20101841212510.4049/jimmunol.0902369 19949084
    [Google Scholar]
  53. NaqviA.R. FordhamJ.B. NaresS. miR-24, miR-30b, and miR-142-3p Regulate Phagocytosis in Myeloid Inflammatory Cells.J. Immunol.201519441916192710.4049/jimmunol.1401893 25601927
    [Google Scholar]
  54. FordhamJ.B. NaqviA.R. NaresS. Regulation of miR-24, miR-30b, and miR-142-3p during macrophage and dendritic cell differentiation potentiates innate immunity.J. Leukoc. Biol.201598219520710.1189/jlb.1A1014‑519RR 25990241
    [Google Scholar]
  55. XieY. ShuR. JiangS. LiuD. ZhangX. Comparison of microRNA profiles of human periodontal diseased and healthy gingival tissues.Int. J. Oral Sci.20113312513410.4248/IJOS11046 21789961
    [Google Scholar]
  56. LuanX. ZhouX. NaqviA. MicroRNAs and immunity in periodontal health and disease.Int. J. Oral Sci.20181032410.1038/s41368‑018‑0025‑y 30078842
    [Google Scholar]
  57. TaganovK.D. BoldinM.P. ChangK.J. BaltimoreD. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses.Proc. Natl. Acad. Sci. USA200610333124811248610.1073/pnas.0605298103 16885212
    [Google Scholar]
  58. HouJ. WangP. LinL. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2.J. Immunol.200918332150215810.4049/jimmunol.0900707 19596990
    [Google Scholar]
  59. PauleyK.M. SatohM. ChanA.L. BubbM.R. ReevesW.H. ChanE.K.L. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients.Arthritis Res. Ther.2008104R10110.1186/ar2493 18759964
    [Google Scholar]
  60. ZhuJ. ChenT. YangL. Regulation of microRNA-155 in atherosclerotic inflammatory responses by targeting MAP3K10.PLoS One2012711e4655110.1371/journal.pone.0046551 23189122
    [Google Scholar]
  61. WangP. HouJ. LinL. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1.J. Immunol.2010185106226623310.4049/jimmunol.1000491 20937844
    [Google Scholar]
  62. AndroulidakiA. IliopoulosD. ArranzA. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs.Immunity200931222023110.1016/j.immuni.2009.06.024 19699171
    [Google Scholar]
  63. WangZ. BrandtS. MedeirosA. MicroRNA 21 is a homeostatic regulator of macrophage polarization and prevents prostaglandin E2-mediated M2 generation.PLoS One2015102e011585510.1371/journal.pone.0115855 25706647
    [Google Scholar]
  64. BanerjeeS. CuiH. XieN. miR-125a-5p regulates differential activation of macrophages and inflammation.J. Biol. Chem.201328849354283543610.1074/jbc.M112.426866 24151079
    [Google Scholar]
  65. BanerjeeS. XieN. CuiH. MicroRNA let-7c regulates macrophage polarization.J. Immunol.2013190126542654910.4049/jimmunol.1202496 23667114
    [Google Scholar]
  66. Martinez-NunezR.T. LouafiF. FriedmannP.S. Sanchez-ElsnerT. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN).J. Biol. Chem.200928424163341634210.1074/jbc.M109.011601 19386588
    [Google Scholar]
  67. SmythL.A. BoardmanD.A. TungS.L. LechlerR. LombardiG. Micro RNA s affect dendritic cell function and phenotype.Immunology2015144219720510.1111/imm.12390 25244106
    [Google Scholar]
  68. Dunand-SauthierI. Santiago-RaberM.L. CapponiL. Silencing of c-Fos expression by microRNA-155 is critical for dendritic cell maturation and function.Blood2011117174490450010.1182/blood‑2010‑09‑308064 21385848
    [Google Scholar]
  69. NaqviA.R. FordhamJ.B. GaneshB. NaresS. miR-24, miR-30b and miR-142-3p interfere with antigen processing and presentation by primary macrophages and dendritic cells.Sci. Rep.2016613292510.1038/srep32925 27611009
    [Google Scholar]
  70. TeteloshviliN. Smigielska-CzepielK. KroesenB.J. T-cell Activation Induces Dynamic Changes in miRNA Expression Patterns in CD4 and CD8 T-cell Subsets.MicroRNA20154211712210.2174/2211536604666150819194636 26290349
    [Google Scholar]
  71. BaumjohannD. AnselK.M. MicroRNA-mediated regulation of T helper cell differentiation and plasticity.Nat. Rev. Immunol.201313966667810.1038/nri3494 23907446
    [Google Scholar]
  72. FuG. RybakinV. BrzostekJ. PasterW. AcutoO. GascoigneN.R.J. Fine-tuning T cell receptor signaling to control T cell development.Trends Immunol.201435731131810.1016/j.it.2014.05.003 24951034
    [Google Scholar]
  73. JindraP.T. BagleyJ. GodwinJ.G. IacominiJ. Costimulation-dependent expression of microRNA-214 increases the ability of T cells to proliferate by targeting Pten.J. Immunol.2010185299099710.4049/jimmunol.1000793 20548023
    [Google Scholar]
  74. LiuS.Q. JiangS. LiC. ZhangB. LiQ.J. miR-17-92 cluster targets phosphatase and tensin homology and Ikaros Family Zinc Finger 4 to promote TH17-mediated inflammation.J. Biol. Chem.201428918124461245610.1074/jbc.M114.550723 24644282
    [Google Scholar]
  75. JiangS. LiC. OliveV. Molecular dissection of the miR-17-92 cluster’s critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation.Blood2011118205487549710.1182/blood‑2011‑05‑355644 21972292
    [Google Scholar]
  76. BanerjeeA. SchambachF. DeJongC.S. HammondS.M. ReinerS.L. Micro‐RNA‐155 inhibits IFN‐γ signaling in CD4 + T cells.Eur. J. Immunol.201040122523110.1002/eji.200939381 19877012
    [Google Scholar]
  77. KumarM AhmadT SharmaA Let-7 microRNA–mediated regulation of IL-13 and allergic airway inflammation.J. Allergy Clin. Immunol.2011128510771085.e10, 10.10.1016/j.jaci.2011.04.03421616524
    [Google Scholar]
  78. MattesJ. CollisonA. PlankM. PhippsS. FosterP.S. Antagonism of microRNA-126 suppresses the effector function of T H 2 cells and the development of allergic airways disease.Proc. Natl. Acad. Sci. USA200910644187041870910.1073/pnas.0905063106 19843690
    [Google Scholar]
  79. SethiA. KulkarniN. SonarS. LalG. Role of miRNAs in CD4 T cell plasticity during inflammation and tolerance.Front. Genet.20134810.3389/fgene.2013.00008 23386861
    [Google Scholar]
  80. LuL.F. ThaiT.H. CaladoD.P. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein.Immunity2009301809110.1016/j.immuni.2008.11.010 19144316
    [Google Scholar]
  81. LuL.F. BoldinM.P. ChaudhryA. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses.Cell2010142691492910.1016/j.cell.2010.08.012 20850013
    [Google Scholar]
  82. AllamJ.P. DuanY. HeinemannF. IL-23-producing CD68+ macrophage-like cells predominate within an IL-17-polarized infiltrate in chronic periodontitis lesions.J. Clin. Periodontol.2011381087988610.1111/j.1600‑051X.2011.01752.x 21883359
    [Google Scholar]
  83. ZhaoL. ZhouY. XuY. SunY. LiL. ChenW. Effect of non-surgical periodontal therapy on the levels of Th17/Th1/Th2 cytokines and their transcription factors in Chinese chronic periodontitis patients.J. Clin. Periodontol.201138650951610.1111/j.1600‑051X.2011.01712.x 21392046
    [Google Scholar]
  84. LaurenceA. O’SheaJ.J. TH-17 differentiation: of mice and men.Nat. Immunol.20078990390510.1038/ni0907‑903 17712339
    [Google Scholar]
  85. MyckoM.P. CichalewskaM. MachlanskaA. CwiklinskaH. MariasiewiczM. SelmajK.W. microRNA-301a regulation of a T-helper 17 immune response controls autoimmune demyelination.Proceedings of the National Academy of Sciences10910.1073/pnas.1114325109
    [Google Scholar]
  86. GururajanM. HagaC.L. DasS. MicroRNA 125b inhibition of B cell differentiation in germinal centers.Int. Immunol.201022758359210.1093/intimm/dxq042 20497960
    [Google Scholar]
  87. PorstnerM. WinkelmannR. DaumP. miR‐148a promotes plasma cell differentiation and targets the germinal center transcription factors Mitf and Bach2.Eur. J. Immunol.20154541206121510.1002/eji.201444637 25678371
    [Google Scholar]
  88. de YébenesV.G. Bartolomé-IzquierdoN. Nogales-CadenasR. miR-217 is an oncogene that enhances the germinal center reaction.Blood2014124222923910.1182/blood‑2013‑12‑543611 24850757
    [Google Scholar]
  89. NaqviA.R. FordhamJ.B. KhanA. NaresS. MicroRNAs responsive to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis LPS modulate expression of genes regulating innate immunity in human macrophages.Innate Immun.201420554055110.1177/1753425913501914 24062196
    [Google Scholar]
  90. NaH.S. ParkM.H. SongY.R. Elevated MicroRNA‐128 in Periodontitis Mitigates Tumor Necrosis Factor‐α Response via p38 Signaling Pathway in Macrophages.J. Periodontol.2016879e173e18210.1902/jop.2016.160033 27240473
    [Google Scholar]
  91. ParkM.H. ParkE. KimH.J. NaH.S. ChungJ. Porphyromonas gingivalis-induced miR-132 regulates TNFα expression in THP-1 derived macrophages.Springerplus20165176110.1186/s40064‑016‑2363‑6 27386246
    [Google Scholar]
  92. XieY.F. ShuR. JiangS.Y. LiuD.L. NiJ. ZhangX.L. MicroRNA-146 inhibits pro-inflammatory cytokine secretion through IL-1 receptor-associated kinase 1 in human gingival fibroblasts.J. Inflamm.20131012010.1186/1476‑9255‑10‑20 23680172
    [Google Scholar]
  93. NahidM.A. RiveraM. LucasA. ChanE.K.L. KesavaluL. Polymicrobial infection with periodontal pathogens specifically enhances microRNA miR-146a in ApoE-/- mice during experimental periodontal disease.Infect. Immun.20117941597160510.1128/IAI.01062‑10 21263019
    [Google Scholar]
  94. JiangS.Y. XueD. XieY.F. The negative feedback regulation of microRNA-146a in human periodontal ligament cells after Porphyromonas gingivalis lipopolysaccharide stimulation.Inflamm. Res.201564644145110.1007/s00011‑015‑0824‑y 25948157
    [Google Scholar]
  95. MoffattC.E. LamontR.J. Porphyromonas gingivalis induction of microRNA-203 expression controls suppressor of cytokine signaling 3 in gingival epithelial cells.Infect. Immun.20117972632263710.1128/IAI.00082‑11 21536793
    [Google Scholar]
  96. TakayanagiH. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems.Nat. Rev. Immunol.20077429230410.1038/nri2062 17380158
    [Google Scholar]
  97. LinH.Y. LaiR.H. LinS.T. Suppressor of cytokine signaling 6 (SOCS6) promotes mitochondrial fission via regulating DRP1 translocation.Cell Death Differ.201320113915310.1038/cdd.2012.106 22955947
    [Google Scholar]
  98. OuharaK. SavitriI.J. FujitaT. miR-584 expressed in human gingival epithelial cells is induced by Porphyromonas gingivalis stimulation and regulates interleukin-8 production via lactoferrin receptor.J. Periodontol.2014856e198e20410.1902/jop.2013.130335 24228808
    [Google Scholar]
  99. OlsenI. AmanoA. Outer membrane vesicles – offensive weapons or good Samaritans?J. Oral Microbiol.2015712746810.3402/jom.v7.27468 25840612
    [Google Scholar]
  100. ChoiJ.W. KimS.C. HongS.H. LeeH.J. Secretable Small RNAs via Outer Membrane Vesicles in Periodontal Pathogens.J. Dent. Res.201796445846610.1177/0022034516685071 28068479
    [Google Scholar]
  101. ChenS.C.Y. ConstantinidesC. KebschullM. PapapanouP.N. MicroRNAs Regulate Cytokine Responses in Gingival Epithelial Cells.Infect. Immun.201684123282328910.1128/IAI.00263‑16 27600506
    [Google Scholar]
  102. MahendraJ. MahendraL. FageehH.N. miRNA-146a and miRNA-126 as Potential Biomarkers in Patients with Coronary Artery Disease and Generalized Periodontitis.Materials (Basel)20211416469210.3390/ma14164692 34443215
    [Google Scholar]
  103. NishaK.J. JanamP. HarshakumarK. Identification of a novel salivary biomarker miR‐143‐3p for periodontal diagnosis: A proof of concept study.J. Periodontol.201990101149115910.1002/JPER.18‑0729 31021403
    [Google Scholar]
  104. Stoecklin-WasmerC. GuarnieriP. CelentiR. DemmerR.T. KebschullM. PapapanouP.N. MicroRNAs and their target genes in gingival tissues.J. Dent. Res.2012911093494010.1177/0022034512456551 22879578
    [Google Scholar]
  105. ByunJ.S. LeeH.Y. TianJ. Effect of Salivary Exosomal miR-25-3p on Periodontitis With Insulin Resistance.Front. Immunol.20221277504610.3389/fimmu.2021.775046 35069547
    [Google Scholar]
  106. Marques-RochaJ.L. SamblasM. MilagroF.I. BressanJ. MartínezJ.A. MartiA. Noncoding RNAs, cytokines, and inflammation-related diseases.FASEB J.20152993595361110.1096/fj.14‑260323 26065857
    [Google Scholar]
  107. WuT. ZhouH. HongY. LiJ. JiangX. HuangH. miR-30 family members negatively regulate osteoblast differentiation.J. Biol. Chem.2012287107503751110.1074/jbc.M111.292722 22253433
    [Google Scholar]
  108. LiuX. YangB. ZhangY. miR-30a-5p inhibits osteogenesis and promotes periodontitis by targeting Runx2.BMC Oral Health202121151310.1186/s12903‑021‑01882‑9 34635105
    [Google Scholar]
  109. CostantiniE. SinjariB. Di GiovanniP. TNFα, IL-6, miR-103a-3p, miR-423-5p, miR-23a-3p, miR-15a-5p and miR-223-3p in the crevicular fluid of periodontopathic patients correlate with each other and at different stages of the disease.Sci. Rep.202313112610.1038/s41598‑022‑26421‑6 36599866
    [Google Scholar]
  110. PerriR. NaresS. ZhangS. BarrosS.P. OffenbacherS. MicroRNA modulation in obesity and periodontitis.J. Dent. Res.2012911333810.1177/0022034511425045 22043006
    [Google Scholar]
  111. KangL. LiN. WangL. The Expression of miR-23a and miR-146a in the Saliva of Patients with Periodontitis and Its Clinical Significance.BioMed Res. Int.202120211810.1155/2021/5135278 34888382
    [Google Scholar]
  112. WuP. FengJ. WangW. Expression of miR-155 and miR-146a in the saliva of patients with periodontitis and its clinical value.Am. J. Transl. Res.202113666706677 34306411
    [Google Scholar]
  113. GhotlooS. MotedayyenH. AmaniD. SaffariM. SattariM. Assessment of micro RNA ‐146a in generalized aggressive periodontitis and its association with disease severity.J. Periodontal Res.2019541273210.1111/jre.12538 30328616
    [Google Scholar]
  114. VenugopalP. KoshyT. LavuV. Differential expression of microRNAs let‐7a, miR‐125b, miR‐100, and miR‐21 and interaction with NF‐kB pathway genes in periodontitis pathogenesis.J. Cell. Physiol.201823385877588410.1002/jcp.26391 29226952
    [Google Scholar]
  115. NaqviA.R. BrambilaM.F. MartínezG. ChapaG. NaresS. Dysregulation of human miRNAs and increased prevalence of HHV miRNAs in obese periodontitis subjects.J. Clin. Periodontol.2019461516110.1111/jcpe.13040 30499589
    [Google Scholar]
  116. LawY.Y. LeeW.F. HsuC.J. miR-let-7c-5p and miR-149-5p inhibit proinflammatory cytokine production in osteoarthritis and rheumatoid arthritis synovial fibroblasts.Aging (Albany NY)20211313172271723610.18632/aging.203201 34198264
    [Google Scholar]
  117. GhiamS. EslahchiC. ShahpasandK. Habibi-RezaeiM. GharaghaniS. Exploring the role of non-coding RNAs as potential candidate biomarkers in the cross-talk between diabetes mellitus and Alzheimer’s disease.Front. Aging Neurosci.20221495546110.3389/fnagi.2022.955461 36092798
    [Google Scholar]
  118. AavikE. LumivuoriH. LeppänenO. Global DNA methylation analysis of human atherosclerotic plaques reveals extensive genomic hypomethylation and reactivation at imprinted locus 14q32 involving induction of a miRNA cluster.Eur. Heart J.20153616993100010.1093/eurheartj/ehu437 25411193
    [Google Scholar]
  119. YangY. AgoT. ZhaiP. AbdellatifM. SadoshimaJ. Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7.Circ. Res.2011108330531310.1161/CIRCRESAHA.110.228437 21183740
    [Google Scholar]
  120. KazemianS. AhmadiR. FernsG.A. Correlation of miR-24-3p and miR-595 expression with CCL3, CCL4, IL1-beta, TNFalphaIP3, and NF-kappaBIalpha genes in PBMCs of patients with coronary artery disease.EXCLI J.20222111841195 36381642
    [Google Scholar]
  121. LinS.C. LiuC.J. LinJ.A. ChiangW.F. HungP.S. ChangK.W. miR-24 up-regulation in oral carcinoma: Positive association from clinical and in vitro analysis.Oral Oncol.201046320420810.1016/j.oraloncology.2009.12.005 20138800
    [Google Scholar]
  122. ChenJ. TangZ. ChenZ. MicroRNA-218-5p regulates inflammation response via targeting TLR4 in atherosclerosis.BMC Cardiovasc. Disord.202323112210.1186/s12872‑023‑03124‑y 36890438
    [Google Scholar]
  123. ChengY. KuangW. HaoY. Downregulation of miR-27a* and miR-532-5p and Upregulation of miR-146a and miR-155 in LPS-induced RAW264.7 Macrophage Cells.Inflammation20123541308131310.1007/s10753‑012‑9443‑8 22415194
    [Google Scholar]
  124. LiuD. TangH. LiX.Y. Targeting the HDAC2/HNF-4A/miR-101b/AMPK Pathway Rescues Tauopathy and Dendritic Abnormalities in Alzheimer’s Disease.Mol. Ther.201725375276410.1016/j.ymthe.2017.01.018 28202389
    [Google Scholar]
  125. NayarG. GaunaA. ChukkapalliS. VelskoI. KesavaluL. ChaS. Polymicrobial infection alter inflammatory microRNA in rat salivary glands during periodontal disease.Anaerobe201638707510.1016/j.anaerobe.2015.10.005 26481834
    [Google Scholar]
  126. DienerC. KellerA. MeeseE. Emerging concepts of miRNA therapeutics: from cells to clinic.Trends Genet.202238661362610.1016/j.tig.2022.02.006 35303998
    [Google Scholar]
  127. HanJ.Y. ReynoldsM.A. Effect of anti-rheumatic agents on periodontal parameters and biomarkers of inflammation: a systematic review and meta-analysis.J. Periodontal Implant Sci.201242131210.5051/jpis.2012.42.1.3 22413068
    [Google Scholar]
  128. TarlingE.J. EdwardsP.A. ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter.Proc. Natl. Acad. Sci. USA201110849197191972410.1073/pnas.1113021108 22095132
    [Google Scholar]
  129. OramJ.F. LawnR.M. ABCA1: the gatekeeper for eliminating excess tissue cholesterol.J. Lipid Res.20014281173117910.1016/S0022‑2275(20)31566‑2 11483617
    [Google Scholar]
  130. LiX. JiZ. LiS. miR-146a-5p Antagonized AGEs- and P.g-LPS-Induced ABCA1 and ABCG1 Dysregulation in Macrophages via IRAK-1 Downregulation.Inflammation20153851761176810.1007/s10753‑015‑0153‑x 25805648
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366305491240708060422
Loading

  • Article Type:
    Review Article
Keyword(s): Biomarkers; immunity; miRNA; mRNA; periodontal disease; red complex pathogens
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test