Skip to content
2000
Volume 14, Issue 1
  • ISSN: 2211-5366
  • E-ISSN: 2211-5374

Abstract

Background

Estrogen plays a protective role in vascular health due, in part, to its regulation of endothelial inflammation. However, the mechanism(s) by which estrogen negatively regulates inflammatory signaling pathways is not completely understood. MicroRNAs (miRNAs) are recognized as sensitive and selective regulators of cardiovascular function, inflammation, and disease, yet the effects of 17β-estradiol on the endothelial miRNA profile are largely unknown.

Objective

The aim of this study was to determine the effect of 17β-estradiol on the expression of inflammation-associated miRNAs in endothelial cells

Methods

Human Umbilical Vein Endothelial cells (HUVECs) were treated with media in the absence (control) and presence of 17β-estradiol (100 nM) for 24 hr. Thereafter, endothelial cell release of cytokines (IL-6 and IL-8), the intracellular expression of the central protein inflammatory mediator NF-κB, and the levels of inflammatory-associated miRNAs: miR-126, miR-146a, miR-181b, miR-204, and miR-Let-7a, were determined.

Results

17β-estradiol-treated cells released significantly lower levels of IL-6 (47.6±1.5 pg/mL 59.3±4.9 pg/mL) and IL-8 (36.3±2.3 pg/mL 44.0±2.0 pg/mL). Cellular expression of total NF-κB (26.0±2.8 AU 21.2±3.1 AU) was not different between groups; however, activated NF-κB (Ser536) (12.9±1.7 AU 20.2±2.2 AU) was markedly reduced in 17β-estradiol-treated cells as compared to untreated cells. Furthermore, cellular expressions of miR-126 (1.8±0.3 fold), miR-146a (1.7±0.3 fold), miR-181b (2.1±0.4 fold), miR-204 (1.9±0.4 fold), and miR-Let-7a (1.8±0.3 fold) were markedly increased in response to 17β-estradiol treatment.

Conclusion

These data suggest that the anti-inflammatory effect of 17β-estradiol in endothelial cells may be mediated by miRNAs.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366320085240716180112
2025-07-25
2025-05-08
Loading full text...

Full text loading...

References

  1. ChenP. LiB. Ou-YangL. Role of estrogen receptors in health and disease.Front. Endocrinol. (Lausanne)20221383900510.3389/fendo.2022.839005 36060947
    [Google Scholar]
  2. DerooB.J. KorachK.S. Estrogen receptors and human disease.J. Clin. Invest.2006116356157010.1172/JCI27987 16511588
    [Google Scholar]
  3. HoetzerG.L. IrmigerH.M. StaufferB.L. DeSouzaC.A. Estrogen receptor-α thymidine and adenine repeat polymorphism and endothelial fibrinolytic regulation in postmenopausal women.Am. J. Obstet. Gynecol.2005193236637010.1016/j.ajog.2005.01.028 16098857
    [Google Scholar]
  4. VisniauskasB. Kilanowski-DorohI. OgolaB.O. Estrogen-mediated mechanisms in hypertension and other cardiovascular diseases.J. Hum. Hypertens.202237860961810.1038/s41371‑022‑00771‑0 36319856
    [Google Scholar]
  5. TivestenÅ. VandenputL. LabrieF. Low serum testosterone and estradiol predict mortality in elderly men.J. Clin. Endocrinol. Metab.20099472482248810.1210/jc.2008‑2650 19401373
    [Google Scholar]
  6. WuA. ShiZ. MartinS. VincentA. HeilbronnL. WittertG. Age-related changes in estradiol and longitudinal associations with fat mass in men.PLoS One2018138e020191210.1371/journal.pone.0201912 30071117
    [Google Scholar]
  7. MikkolaT.S. TuomikoskiP. LyytinenH. Estradiol-based postmenopausal hormone therapy and risk of cardiovascular and all-cause mortality.Menopause201522997698310.1097/GME.0000000000000450 25803671
    [Google Scholar]
  8. BowlingM.R. XingD. KapadiaA. Estrogen effects on vascular inflammation are age dependent: role of estrogen receptors.Arterioscler. Thromb. Vasc. Biol.20143471477148510.1161/ATVBAHA.114.303629 24876352
    [Google Scholar]
  9. NasserS.A. AfifyE.A. KobeissyF. HamamB. EidA.H. El-MasM.M. Inflammatory Basis of Atherosclerosis: Modulation by Sex Hormones.Curr. Pharm. Des.202127182099211110.2174/18734286MTEzgNTce0 33480335
    [Google Scholar]
  10. SuminoH. IchikawaS. OhyamaY. Effect of transdermal hormone replacement therapy on the monocyte chemoattractant protein-1 concentrations and other vascular inflammatory markers and on endothelial function in postmenopausal women.Am. J. Cardiol.200596114815310.1016/j.amjcard.2005.02.059 15979455
    [Google Scholar]
  11. StörkS. von SchackyC. AngererP. The effect of 17β-estradiol on endothelial and inflammatory markers in postmenopausal women: a randomized, controlled trial.Atherosclerosis2002165230130710.1016/S0021‑9150(02)00242‑3 12417281
    [Google Scholar]
  12. AbdiF. MobediH. MosaffaN. DolatianM. Ramezani TehraniF. Effects of hormone replacement therapy on immunological factors in the postmenopausal period.Climacteric201619323423910.3109/13697137.2016.1164136 27086591
    [Google Scholar]
  13. NishiguchiT. ImanishiT. AkasakaT. MicroRNAs and cardiovascular diseases.BioMed Res. Int.2015201511410.1155/2015/682857 25710020
    [Google Scholar]
  14. SearlesC.D. MicroRNAs and Cardiovascular Disease Risk.Curr. Cardiol. Rep.2024262516010.1007/s11886‑023‑02014‑1 38206553
    [Google Scholar]
  15. SonkolyE. PivarcsiA. microRNAs in Inflammation.Int. Rev. Immunol.200928653556110.3109/08830180903208303 19954362
    [Google Scholar]
  16. SunX. BelkinN. FeinbergM.W. Endothelial microRNAs and atherosclerosis.Curr. Atheroscler. Rep.2013151237210.1007/s11883‑013‑0372‑2 24158362
    [Google Scholar]
  17. OhtaM. KiharaT. ToriuchiK. IL-6 promotes cell adhesion in human endothelial cells via microRNA-126–3p suppression.Exp. Cell Res.2020393211209410.1016/j.yexcr.2020.112094 32439495
    [Google Scholar]
  18. HoD. LyndT.O. JunC. MiR-146a encapsulated liposomes reduce vascular inflammatory responses through decrease of ICAM-1 expression, macrophage activation, and foam cell formation.Nanoscale20231573461347410.1039/D2NR03280E 36723042
    [Google Scholar]
  19. SunX. IcliB. WaraA.K. MicroRNA-181b regulates NF-κB-mediated vascular inflammation.J. Clin. Invest.2012122619731990 22622040
    [Google Scholar]
  20. KogaT. MigitaK. SatoT. MicroRNA-204-3p inhibits lipopolysaccharide-induced cytokines in familial Mediterranean fever via the phosphoinositide 3-kinase γ pathway.Rheumatology (Oxford)201857471872610.1093/rheumatology/kex451 29294109
    [Google Scholar]
  21. BernsteinD.L. JiangX. RomS. let-7 microRNAs: Their Role in Cerebral and Cardiovascular Diseases, Inflammation, Cancer, and Their Regulation.Biomedicines20219660610.3390/biomedicines9060606 34073513
    [Google Scholar]
  22. HijmansJ.G. StockelmanK.A. GarciaV. Circulating Microparticles Are Elevated in Treated HIV‐1 Infection and Are Deleterious to Endothelial Cell Function.J. Am. Heart Assoc.201984e01113410.1161/JAHA.118.011134 30779672
    [Google Scholar]
  23. JuanS.H. ChenJ.J. ChenC.H. 17β-Estradiol inhibits cyclic strain-induced endothelin-1 gene expression within vascular endothelial cells.Am. J. Physiol. Heart Circ. Physiol.20042873H1254H126110.1152/ajpheart.00723.2003 15130882
    [Google Scholar]
  24. MurphyA.J. GuyreP.M. PioliP.A. Estradiol Suppresses NF-κB Activation through Coordinated Regulation of let-7a and miR-125b in Primary Human Macrophages.J. Immunol.201018495029503710.4049/jimmunol.0903463 20351193
    [Google Scholar]
  25. BoscaroC. TrentiA. BaggioC. Sex Differences in the Pro-Angiogenic Response of Human Endothelial Cells: Focus on PFKFB3 and FAK Activation.Front. Pharmacol.20201158722110.3389/fphar.2020.587221 33390959
    [Google Scholar]
  26. BammertT.D. HijmansJ.G. KavlichP.J. Influence of sex on the number of circulating endothelial microparticles and micro RNA expression in middle‐aged adults.Exp. Physiol.2017102889490010.1113/EP086359 28568648
    [Google Scholar]
  27. DasK. RaoL.V.M. The Role of microRNAs in Inflammation.Int. J. Mol. Sci.202223241547910.3390/ijms232415479 36555120
    [Google Scholar]
  28. WronskaA. Kurkowska-JastrzebskaI. SantulliG. Application of micro RNA s in diagnosis and treatment of cardiovascular disease.Acta Physiol. (Oxf.)20152131608310.1111/apha.12416 25362848
    [Google Scholar]
  29. ViereckJ. ThumT. Circulating Noncoding RNAs as Biomarkers of Cardiovascular Disease and Injury.Circ. Res.2017120238139910.1161/CIRCRESAHA.116.308434 28104771
    [Google Scholar]
  30. NongA. LiQ. HuangZ. MicroRNA miR-126 attenuates brain injury in septic rats via NF-κB signaling pathway.Bioengineered20211212639264810.1080/21655979.2021.1937905 34115555
    [Google Scholar]
  31. MaS. TianX.Y. ZhangY. E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis.Sci. Rep.2016612291010.1038/srep22910 26956647
    [Google Scholar]
  32. WangQ.S. FanK.J. TengH. Mir204 and Mir211 suppress synovial inflammation and proliferation in rheumatoid arthritis by targeting Ssrp1.eLife202211e7808510.7554/eLife.78085 36511897
    [Google Scholar]
  33. ChoudhurySN. LiY. miR-21 and let-7 in the Ras and NF-κB pathways.MicroRNA201211656910.2174/2211536611201010065 25048092
    [Google Scholar]
  34. CimminoG. ConteS. MorelloM. Vitamin D Inhibits IL-6 Pro-Atherothrombotic Effects in Human Endothelial Cells: A Potential Mechanism for Protection against COVID-19 Infection?J. Cardiovasc. Dev. Dis.2022912710.3390/jcdd9010027 35050236
    [Google Scholar]
  35. CollinsT. CybulskyM.I. NF-κB: pivotal mediator or innocent bystander in atherogenesis?J. Clin. Invest.2001107325526410.1172/JCI10373 11160146
    [Google Scholar]
  36. HedayatM. MahmoudiM.J. RoseN.R. RezaeiN. Proinflammatory cytokines in heart failure: double-edged swords.Heart Fail. Rev.201015654356210.1007/s10741‑010‑9168‑4 20405319
    [Google Scholar]
  37. KongP. CuiZ.Y. HuangX.F. ZhangD.D. GuoR.J. HanM. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention.Signal Transduct. Target. Ther.20227113110.1038/s41392‑022‑00955‑7 35459215
    [Google Scholar]
  38. XingD. NozellS. ChenY.F. HageF. OparilS. Estrogen and mechanisms of vascular protection.Arterioscler. Thromb. Vasc. Biol.200929328929510.1161/ATVBAHA.108.182279 19221203
    [Google Scholar]
  39. CossetteÉ. CloutierI. TardifK. DonPierreG. TanguayJ.F. Estradiol inhibits vascular endothelial cells pro-inflammatory activation induced by C-reactive protein.Mol. Cell. Biochem.20133731-213714710.1007/s11010‑012‑1482‑9 23111890
    [Google Scholar]
  40. KeckC. HerchenbachD. PfistererJ. BreckwoldtM. Effects of 17β-estradiol and progesterone on interleukin-6 production and proliferation of human umbilical vein endothelial cells.Exp. Clin. Endocrinol. Diabetes1998106433433910.1055/s‑0029‑1211994 9792467
    [Google Scholar]
  41. KarimR. StanczykF.Z. HodisH.N. Associations between markers of inflammation and physiological and pharmacological levels of circulating sex hormones in postmenopausal women.Menopause201017478579010.1097/gme.0b013e3181cc50b2 20632462
    [Google Scholar]
  42. TakP.P. FiresteinG.S. NF-κB: a key role in inflammatory diseases.J. Clin. Invest.2001107171110.1172/JCI11830 11134171
    [Google Scholar]
  43. MussbacherM. SalzmannM. BrostjanC. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis.Front. Immunol.2019108510.3389/fimmu.2019.00085 30778349
    [Google Scholar]
  44. YanJ. McCombeP.A. PenderM.P. GreerJ.M. Reduced IκB-α Protein Levels in Peripheral Blood Cells of Patients with Multiple Sclerosis—A Possible Cause of Constitutive NF-κB Activation.J. Clin. Med.202098253410.3390/jcm9082534 32781504
    [Google Scholar]
  45. ChoK.J. SongJ. OhY. LeeJ.E. MicroRNA-Let-7a regulates the function of microglia in inflammation.Mol. Cell. Neurosci.20156816717610.1016/j.mcn.2015.07.004 26221772
    [Google Scholar]
  46. ZhangJ. DongweiZho ZhangZ. miR-let-7a suppresses α-Synuclein-induced microglia inflammation through targeting STAT3 in Parkinson’s disease.Biochem. Biophys. Res. Commun.2019519474074610.1016/j.bbrc.2019.08.140 31547989
    [Google Scholar]
  47. DanH.C. CooperM.J. CogswellP.C. DuncanJ.A. TingJ.P.Y. BaldwinA.S. Akt-dependent regulation of NF-κB is controlled by mTOR and Raptor in association with IKK.Genes Dev.200822111490150010.1101/gad.1662308 18519641
    [Google Scholar]
  48. OeckinghausA. PostlerT.S. RaoP. κB-Ras proteins regulate both NF-κB-dependent inflammation and Ral-dependent proliferation.Cell Rep.2014861793180710.1016/j.celrep.2014.08.015 25220458
    [Google Scholar]
  49. HoetzerG.L. StaufferB.L. IrmigerH.M. NgM. SmithD.T. DeSouzaC.A. Acute and chronic effects of oestrogen on endothelial tissue‐type plasminogen activator release in postmenopausal women.J. Physiol.2003551272172810.1113/jphysiol.2003.044107 12815179
    [Google Scholar]
  50. KawanoH. YasueH. HiraiN. Effects of transdermal and oral estrogen supplementation on endothelial function, inflammation and cellular redox state.Int. J. Clin. Pharmacol. Ther.200341834635310.5414/CPP41346 12940591
    [Google Scholar]
  51. VigneswaranK. HamodaH. Hormone replacement therapy – Current recommendations.Best Pract. Res. Clin. Obstet. Gynaecol.20228182110.1016/j.bpobgyn.2021.12.001 35000809
    [Google Scholar]
  52. RokavecM. ÖnerM.G. LiH. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis.J. Clin. Invest.201412441853186710.1172/JCI73531 24642471
    [Google Scholar]
  53. IliopoulosD. JaegerS.A. HirschH.A. BulykM.L. StruhlK. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer.Mol. Cell201039449350610.1016/j.molcel.2010.07.023 20797623
    [Google Scholar]
  54. RaitoharjuE. LyytikäinenL.P. LevulaM. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study.Atherosclerosis2011219121121710.1016/j.atherosclerosis.2011.07.020 21820659
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366320085240716180112
Loading
/content/journals/mirna/10.2174/0122115366320085240716180112
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test