Skip to content
2000
Volume 14, Issue 1
  • ISSN: 2211-5366
  • E-ISSN: 2211-5374

Abstract

Background

Publications reveal different outcomes achieved by genetically knocking out a long non-coding microRNA-host-gene (lncMIRHG) versus the administration of pharmacologic antagomirs specifically targeting the guide strand of such intragenic microRNA. This suggests that lncMIRHGs may perform diverse functions unrelated to their role as intragenic miRNA precursors.

Objective

This review synthesizes , , and findings from our lab and others to compare the effects of knocking out the long non-coding RNA MIR22HG, which hosts miR-22, versus administering pharmacological antagomirs targeting miR-22-3p.

Methods

analyses at the gene, pathway, and network levels reveal both distinct and overlapping targets of hsa-miR-22-3p and its host gene, MIR22HG. While pharmacological antagomirs targeting miR-22-3p consistently improve various metabolic parameters in cell culture and animal models across multiple studies, genetic knockout of MIR22HG yields inconsistent results among different research groups.

Results

Additionally, MIR22HG functions as a circulating endogenous RNA (ceRNA) or “sponge” that simultaneously modulates multiple miRNA-mRNA interactions by competing for binding to several miRNAs.

Conclusions

From a therapeutic viewpoint, genetic inactivation of a lncMIRHG and pharmacologic antagonism of the guide strand of its related intragenic miRNA produce different results. This should be expected as lncMIRHGs play dual roles, both as lncRNA and as a source for primary miRNA transcripts.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366282339240604042154
2024-06-28
2025-04-20
Loading full text...

Full text loading...

References

  1. YedavilliS. SinghA.D. SinghD. SamalR. Nano-messengers of the heart: Promising theranostic candidates for cardiovascular maladies.Front. Physiol.20221389532210.3389/fphys.2022.895322 35899033
    [Google Scholar]
  2. HenningR.J. Cardiovascular exosomes and microRNAs in cardiovascular physiology and pathophysiology.J. Cardiovasc. Transl. Res.202114219521210.1007/s12265‑020‑10040‑5 32588374
    [Google Scholar]
  3. LiC. NiY.Q. XuH. Roles and mechanisms of exosomal non-coding RNAs in human health and diseases.Signal Transduct. Target. Ther.20216138310.1038/s41392‑021‑00779‑x 34753929
    [Google Scholar]
  4. ShuZ. TanJ. MiaoY. ZhangQ. The role of microvesicles containing microRNAs in vascular endothelial dysfunction.J. Cell. Mol. Med.201923127933794510.1111/jcmm.14716 31576661
    [Google Scholar]
  5. ZhangJ. LiS. LiL. Exosome and exosomal microRNA: Trafficking, sorting, and function.Genomics Proteomics Bioinformatics2015131172410.1016/j.gpb.2015.02.001 25724326
    [Google Scholar]
  6. AssmannT.S. MilagroF.I. MartínezJ.A. Crosstalk between microRNAs, the putative target genes and the lncRNA network in metabolic diseases.Mol. Med. Rep.20192043543355410.3892/mmr.2019.10595 31485667
    [Google Scholar]
  7. BennettC.F. KordasiewiczH.B. ClevelandD.W. Antisense drugs make sense for neurological diseases.Annu. Rev. Pharmacol. Toxicol.202161183185210.1146/annurev‑pharmtox‑010919‑023738 33035446
    [Google Scholar]
  8. GarofaloM. CondorelliG. CroceC. MicroRNAs in diseases and drug response.Curr. Opin. Pharmacol.20088566166710.1016/j.coph.2008.06.005 18619557
    [Google Scholar]
  9. JaéN. DimmelerS. Noncoding RNAs in vascular diseases.Circ. Res.202012691127114510.1161/CIRCRESAHA.119.315938 32324505
    [Google Scholar]
  10. ChandanK. GuptaM. SarwatM. Role of host and pathogen-derived microRNAs in immune regulation during infectious and inflammatory diseases.Front. Immunol.202010308110.3389/fimmu.2019.03081 32038627
    [Google Scholar]
  11. ShahV. ShahJ. Recent trends in targeting miRNAs for cancer therapy.J. Pharm. Pharmacol.202072121732174910.1111/jphp.13351 32783235
    [Google Scholar]
  12. KousarK. AhmadT. AbduhM.S. miRNAs in regulation of tumor microenvironment, chemotherapy resistance, immunotherapy modulation and miRNA therapeutics in cancer.Int. J. Mol. Sci.202223221382210.3390/ijms232213822 36430305
    [Google Scholar]
  13. VeigaR.N. ZambaldeÉ.P. CoxL. Regulation of immune cells by micrornas and microrna-based cancer immunotherapy.Adv. Exp. Med. Biol.202213857510810.1007/978‑3‑031‑08356‑3_3 36352211
    [Google Scholar]
  14. OtmaniK. RouasR. LewalleP. OncomiRs as noncoding RNAs having functions in cancer: Their role in immune suppression and clinical implications.Front. Immunol.20221391395110.3389/fimmu.2022.913951 36189271
    [Google Scholar]
  15. MominM.Y. GaddamR.R. KravitzM. GuptaA. VikramA. The challenges and opportunities in the development of MicroRNA therapeutics: A multidisciplinary viewpoint.Cells20211011309710.3390/cells10113097 34831320
    [Google Scholar]
  16. BajanS. HutvagnerG. RNA-based therapeutics: From antisense oligonucleotides to miRNAs.Cells20209113710.3390/cells9010137 31936122
    [Google Scholar]
  17. SunQ. SongY.J. PrasanthK.V. One locus with two roles: microRNA‐independent functions of microRNA‐host‐gene locus‐encoded long noncoding RNAs.Wiley Interdiscip. Rev. RNA2021123e162510.1002/wrna.1625 32945142
    [Google Scholar]
  18. ZeidlerM. HüttenhoferA. KressM. KummerK.K. Intragenic MicroRNAs autoregulate their host genes in both direct and indirect ways—A cross-species analysis.Cells20209123210.3390/cells9010232 31963421
    [Google Scholar]
  19. KolendaT. PaszkowskaA. BraskaA. Host gene and its guest: Short story about relation of long-noncoding MIR31HG transcript and microRNA miR-31.Rep. Pract. Oncol. Radiother.202328111413410.5603/RPOR.a2023.0006 37122913
    [Google Scholar]
  20. JanasM.M. KhaledM. SchubertS. Feed-forward microprocessing and splicing activities at a microRNA-containing intron.PLoS Genet.2011710e100233010.1371/journal.pgen.1002330 22028668
    [Google Scholar]
  21. MattioliC. PianigianiG. PaganiF. A competitive regulatory mechanism discriminates between juxtaposed splice sites and pri-miRNA structures.Nucleic Acids Res.201341188680869110.1093/nar/gkt614 23863840
    [Google Scholar]
  22. CiafrèS.A. RussoM. MichienziA. GalardiS. Long noncoding RNAs and cancer stem cells: Dangerous liaisons managing cancer.Int. J. Mol. Sci.2023243182810.3390/ijms24031828 36768150
    [Google Scholar]
  23. KoppF. MendellJ.T. Functional classification and experimental dissection of long noncoding RNAs.Cell2018172339340710.1016/j.cell.2018.01.011 29373828
    [Google Scholar]
  24. GilN. UlitskyI. Regulation of gene expression by cis-acting long non-coding RNAs.Nat. Rev. Genet.202021210211710.1038/s41576‑019‑0184‑5 31729473
    [Google Scholar]
  25. RashidF. ShahA. ShanG. Long Non-coding RNAs in the cytoplasm.Genomics Proteomics Bioinformatics2016142738010.1016/j.gpb.2016.03.005 27163185
    [Google Scholar]
  26. LutterD. MarrC. KrumsiekJ. LangE.W. TheisF.J. Intronic microRNAs support their host genes by mediating synergistic and antagonistic regulatory effects.BMC Genomics201011122410.1186/1471‑2164‑11‑224 20370903
    [Google Scholar]
  27. WongA.C.H. RaskoJ.E.J. Splice and dice: Intronic microRNAs, splicing and cancer.Biomedicines202199126810.3390/biomedicines9091268 34572454
    [Google Scholar]
  28. LiuB. ShyrY. CaiJ. LiuQ. Interplay between miRNAs and host genes and their role in cancer.Brief. Funct. Genomics201918425526610.1093/bfgp/elz002 30785618
    [Google Scholar]
  29. Steiman-ShimonyA. ShtrikmanO. MargalitH. Assessing the functional association of intronic miRNAs with their host genes.RNA2018248991100410.1261/rna.064386.117 29752351
    [Google Scholar]
  30. KellerA. GrögerL. TschernigT. miRNATissueAtlas2: An update to the human miRNA tissue atlas.Nucleic Acids Res.202250D1D211D22110.1093/nar/gkab808 34570238
    [Google Scholar]
  31. AgarwalV. BellG.W. NamJ.W. BartelD.P. Predicting effective microRNA target sites in mammalian mRNAs.eLife20154e0500510.7554/eLife.05005 26267216
    [Google Scholar]
  32. ChenY. WangX. miRDB: An online database for prediction of functional microRNA targets.Nucleic Acids Res.202048D1D127D13110.1093/nar/gkz757 31504780
    [Google Scholar]
  33. StichtC. De La TorreC. ParveenA. GretzN. miRWalk: An online resource for prediction of microRNA binding sites.PLoS One20181310e020623910.1371/journal.pone.0206239 30335862
    [Google Scholar]
  34. KangJ. TangQ. HeJ. RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility.Nucleic Acids Res.202250D1D326D33210.1093/nar/gkab997 34718726
    [Google Scholar]
  35. GongJ. ShaoD. XuK. RISE: A database of RNA interactome from sequencing experiments.Nucleic Acids Res.201846D1D194D20110.1093/nar/gkx864 29040625
    [Google Scholar]
  36. FukunagaT. IwakiriJ. HamadaM. Web services for RNA-RNA interaction prediction.Methods Mol. Biol.2023258617519510.1007/978‑1‑0716‑2768‑6_11 36705905
    [Google Scholar]
  37. ZhaoH. YinX. XuH. LncTarD 2.0: an updated comprehensive database for experimentally-supported functional lncRNA–target regulations in human diseases.Nucleic Acids Res.202351D1D199D20710.1093/nar/gkac984 36321659
    [Google Scholar]
  38. ZhangW. YueX. TangG. WuW. HuangF. ZhangX. SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions.PLOS Comput. Biol.20181412e100661610.1371/journal.pcbi.1006616 30533006
    [Google Scholar]
  39. ChenE.Y. TanC.M. KouY. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool.BMC Bioinformatics201314112810.1186/1471‑2105‑14‑128 23586463
    [Google Scholar]
  40. SzklarczykD. KirschR. KoutrouliM. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac1000 36370105
    [Google Scholar]
  41. ScardoniG. PetterliniM. LaudannaC. Analyzing biological network parameters with CentiScaPe.Bioinformatics200925212857285910.1093/bioinformatics/btp517 19729372
    [Google Scholar]
  42. CalinG.A. SevignaniC. DumitruC.D. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc. Natl. Acad. Sci.200410192999300410.1073/pnas.0307323101 14973191
    [Google Scholar]
  43. QuintanaP.J.E. NeuwirthE.A.H. GrosovskyA.J. Interchromosomal gene conversion at an endogenous human cell locus.Genetics2001158275776710.1093/genetics/158.2.757 11404339
    [Google Scholar]
  44. ZhaoX. HeM. WanD. The minimum LOH region defined on chromosome 17p13.3 in human hepatocellular carcinoma with gene content analysis.Cancer Lett.2003190222123210.1016/S0304‑3835(02)00622‑5 12565177
    [Google Scholar]
  45. ShuklaG.C. SinghJ. BarikS. MicroRNAs: Processing, maturation, target recognition and regulatory functions.Mol. Cell. Pharmacol.2011338392 22468167
    [Google Scholar]
  46. BuddW.T. Seashols-WilliamsS.J. ClarkG.C. Dual action of miR-125b as a tumor suppressor and OncomiR-22 promotes prostate cancer tumorigenesis.PLoS One20151011e014237310.1371/journal.pone.0142373 26544868
    [Google Scholar]
  47. CentomoM.L. VitielloM. PolisenoL. PandolfiP.P. An immunocompetent environment unravels the proto-oncogenic role of miR-22.Cancers20221424625510.3390/cancers14246255 36551740
    [Google Scholar]
  48. FengY. WangL. WangT. RETRACTED: Tumor cell-secreted exosomal miR-22-3p inhibits transgelin and induces vascular abnormalization to promote tumor budding.Mol. Ther.20212962151216610.1016/j.ymthe.2021.02.009 33578038
    [Google Scholar]
  49. PanellaR. CottonC.A. MaymiV.A. Targeting of microRNA-22 suppresses tumor spread in a mouse model of triple-negative breast cancer.Biomedicines2023115147010.3390/biomedicines11051470 37239141
    [Google Scholar]
  50. ThibonnierM. GhoshS. Strategy for pre-clinical development of active targeting MicroRNA oligonucleotide therapeutics for unmet medical needs.Int. J. Mol. Sci.2023248712610.3390/ijms24087126 37108289
    [Google Scholar]
  51. ThibonnierM. EsauC. Metabolic benefits of MicroRNA-22 inhibition.Nucleic Acid Ther.202030210411610.1089/nat.2019.0820 31873061
    [Google Scholar]
  52. ThibonnierM. EsauC. GhoshS. WargentE. StockerC. Metabolic and energetic benefits of microRNA-22 inhibition.BMJ Open Diabetes Res. Care202081e00147810.1136/bmjdrc‑2020‑001478 33004402
    [Google Scholar]
  53. YangZ. QinW. HuoJ. ZhuoQ. WangJ. WangL. MiR‐22 modulates the expression of lipogenesis‐related genes and promotes hepatic steatosis in vitro.FEBS Open Bio202111132233210.1002/2211‑5463.13026 33159388
    [Google Scholar]
  54. KaurK. VigS. SrivastavaR. Elevated hepatic miR-22-3p expression impairs gluconeogenesis by silencing the wnt-responsive transcription factor Tcf7.Diabetes201564113659366910.2337/db14‑1924 26193896
    [Google Scholar]
  55. HuY. LiuH.X. JenaP.K. ShengL. AliM.R. WanY.J.Y. miR-22 inhibition reduces hepatic steatosis via FGF21 and FGFR1 induction.JHEP Reports20202210009310.1016/j.jhepr.2020.100093 32195457
    [Google Scholar]
  56. GjorgjievaM. SobolewskiC. DolickaD. de SousaC.M. FotiM. miRNAs and NAFLD: From pathophysiology to therapy.Gut201968112065207910.1136/gutjnl‑2018‑318146 31300518
    [Google Scholar]
  57. GjorgjievaM. SobolewskiC. AyA.S. Genetic ablation of MiR-22 fosters diet-induced obesity and NAFLD development.J. Pers. Med.202010417010.3390/jpm10040170 33066497
    [Google Scholar]
  58. LouP. BiX. TianY. MiR-22 modulates brown adipocyte thermogenesis by synergistically activating the glycolytic and mTORC1 signaling pathways.Theranostics20211183607362310.7150/thno.50900 33664851
    [Google Scholar]
  59. HuangZ.P. ChenJ. SeokH.Y. MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress.Circ. Res.201311291234124310.1161/CIRCRESAHA.112.300682 23524588
    [Google Scholar]
  60. DinizG.P. HuangZ.P. LiuJ. Loss of microRNA-22 prevents high-fat diet induced dyslipidemia and increases energy expenditure without affecting cardiac hypertrophy.Clin. Sci.2017131242885290010.1042/CS20171368 29101298
    [Google Scholar]
  61. LinoC.A. de SilvaO.T. LunardonG. Ablation of miRNA-22 protects against obesity-induced adipocyte senescence and ameliorates metabolic disorders in middle-aged mice.Mech. Ageing Dev.202321011177510.1016/j.mad.2023.111775 36641038
    [Google Scholar]
  62. PanellaR. PetriA. DesaiB.N. MicroRNA-22 Is a Key Regulator of Lipid and Metabolic Homeostasis.Int. J. Mol. Sci.202324161287010.3390/ijms241612870 37629051
    [Google Scholar]
  63. DixonS.J. StockwellB.R. Identifying druggable disease-modifying gene products.Curr. Opin. Chem. Biol.2009135-654955510.1016/j.cbpa.2009.08.003 19740696
    [Google Scholar]
  64. WangL. WangY.S. MugiyantoE. ChangW.C. WanY-J.Y. MiR-22 as a metabolic silencer and liver tumor suppressor.Liver Res.202042748010.1016/j.livres.2020.06.001 33005474
    [Google Scholar]
  65. ZhangL. LiC. SuX. Emerging impact of the long noncoding RNA MIR22HG on proliferation and apoptosis in multiple human cancers.J. Exp. Clin. Cancer Res.202039127110.1186/s13046‑020‑01784‑8 33267888
    [Google Scholar]
  66. GeY. LiuL. LuoL. FangY. NiT. MIR22HG aggravates oxygen-glucose deprivation and reoxygenation-induced cardiomyocyte injury through the miR-9-3p/SH2B3 axis.Cardiovasc. Ther.2022202211310.1155/2022/7332298 35692373
    [Google Scholar]
  67. WangS. WangY. LiS. NianS. XuW. LiangF. Long non-coding RNA MIR22HG inhibits the proliferation and migration, and promotes apoptosis by targeting microRNA-9-3p/SOCS1 axis in small cell lung cancer cells.Mol. Biol. Rep.20235097445745610.1007/s11033‑023‑08612‑0 37479878
    [Google Scholar]
  68. HeY. NanH. YanL. Long non coding RNA MIR22HG inhibits glioma progression by downregulating microRNA 9/CPEB3.Oncol. Lett.202021215710.3892/ol.2020.12418 33552275
    [Google Scholar]
  69. WuY. ZhouY. HuanL. LncRNA MIR22HG inhibits growth, migration and invasion through regulating the miR‐10a‐5p/NCOR2 axis in hepatocellular carcinoma cells.Cancer Sci.2019110397398410.1111/cas.13950 30680848
    [Google Scholar]
  70. ChenZ.B. CaoW.L. SuK. MaoM. ZengX.Y. LiJ.H. MIR22HG inhibits cell growth, migration and invasion through regulating the miR-24-3p/p27kip1 axis in thyroid papillary carcinomas.Eur. Rev. Med. Pharmacol. Sci.2019231358515862 31298336
    [Google Scholar]
  71. LiuY. HuangF. DuP. Long noncoding RNA MIR22HG promotes Leydig cell apoptosis by acting as a competing endogenous RNA for microRNA-125a-5p that targets N-Myc downstream-regulated gene 2 in late-onset hypogonadism.Lab. Invest.2021101111484149310.1038/s41374‑021‑00645‑y 34446806
    [Google Scholar]
  72. LiY. WangX. PanC. Myoblast-derived exosomal Prrx2 attenuates osteoporosis via transcriptional regulation of lncRNA-MIR22HG to activate Hippo pathway.Mol. Med.20232915410.1186/s10020‑023‑00649‑y 37081396
    [Google Scholar]
  73. CuiZ. AnX. LiJ. LiuQ. LiuW. LncRNA MIR22HG negatively regulates miR-141-3p to enhance DAPK1 expression and inhibits endometrial carcinoma cells proliferation.Biomed. Pharmacother.201810422322810.1016/j.biopha.2018.05.046 29775889
    [Google Scholar]
  74. LiaoC. HuangX. GongY. LinQ. Discovery of core genes in colorectal cancer by weighted gene co expression network analysis.Oncol. Lett.20191833137314910.3892/ol.2019.10605 31402962
    [Google Scholar]
  75. TangQ. JiangX. MaS. WangL. LiR. MaJ. MIR22HG regulates miR-486/PTEN axis in bladder cancer to promote cell proliferation.Biosci. Rep.2020406BSR2019399110.1042/BSR20193991 32500915
    [Google Scholar]
  76. DengX. YeD. HuaK. MIR22HG inhibits breast cancer progression by stabilizing LATS2 tumor suppressor.Cell Death Dis.202112981010.1038/s41419‑021‑04105‑9 34446703
    [Google Scholar]
  77. YuK. CuiS. XueT. LncRNA MIR22HG is downregulated in adenomyosis and upregulates miR ‐2861 through demethylation to inhibit endometrial cell proliferation.J. Obstet. Gynaecol. Res.20214751837184510.1111/jog.14665 33624428
    [Google Scholar]
  78. ChenH. AliM. RubenA. StelmakhD. PakM. E2F6-mediated downregulation of MIR22HG facilitates the progression of laryngocarcinoma by targeting the miR-5000-3p/FBXW7 axis.Mol. Cell. Biol.20204010e00496e1910.1128/MCB.00496‑19 32094308
    [Google Scholar]
  79. ZhangW. ShiC. XuQ. ChenX. ZhuH. ZhengB. Long non-coding RNA MIR22HG suppresses cell proliferation and promotes apoptosis in prostate cancer cells by sponging microRNA-9-3p.Bioengineered2022135131081311710.1080/21655979.2022.2079244 35611601
    [Google Scholar]
  80. SuW. GuoC. WangL. LncRNA MIR22HG abrogation inhibits proliferation and induces apoptosis in esophageal adenocarcinoma cells via activation of the STAT3/c-Myc/FAK signaling.Aging201911134587459610.18632/aging.102071 31291201
    [Google Scholar]
  81. XuJ. ShaoT. SongM. MIR22HG acts as a tumor suppressor via TGFβ/SMAD signaling and facilitates immunotherapy in colorectal cancer.Mol. Cancer20201915110.1186/s12943‑020‑01174‑w 32127004
    [Google Scholar]
  82. LuoY. HuJ. JiaoY. Andrographolide anti-proliferation and metastasis of hepatocellular carcinoma through LncRNA MIR22HG regulation.J. Nat. Med.202478112314510.1007/s11418‑023‑01752‑4 37821666
    [Google Scholar]
  83. ChenT. HuoK. KongD. Comprehensive analysis of lncRNA expression profiles in postmenopausal osteoporosis.Genomics2022114511045210.1016/j.ygeno.2022.110452 35988655
    [Google Scholar]
  84. DienerC. KellerA. MeeseE. The miRNA–target interactions: An underestimated intricacy.Nucleic Acids Res.20245241544155710.1093/nar/gkad1142 38033323
    [Google Scholar]
  85. BuhagiarA.F. KleavelandB. To kill a microRNA: Emerging concepts in target-directed microRNA degradation.Nucleic Acids Res.20245241558157410.1093/nar/gkae003 38224449
    [Google Scholar]
  86. Bofill-De RosX. Vang ØromU.A. Recent progress in miRNA biogenesis and decay.RNA Biol.20242111810.1080/15476286.2023.2288741 38031325
    [Google Scholar]
  87. SeyhanA.A. Trials and tribulations of MicroRNA therapeutics.Int. J. Mol. Sci.2024253146910.3390/ijms25031469 38338746
    [Google Scholar]
  88. HongD.S. KangY.K. BoradM. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours.Br. J. Cancer2020122111630163710.1038/s41416‑020‑0802‑1 32238921
    [Google Scholar]
  89. LiW.J. WangY. LiuX. Developing folate-conjugated miR-34a therapeutic for prostate cancer: Challenges and promises.Int. J. Mol. Sci.2024254212310.3390/ijms25042123 38396800
    [Google Scholar]
  90. AbdelaalA.M. SohalI.S. IyerS. A first-in-class fully modified version of miR-34a with outstanding stability, activity, and anti-tumor efficacy.Oncogene202342402985299910.1038/s41388‑023‑02801‑8 37666938
    [Google Scholar]
  91. OrtegaR. LiuB. PersaudS.J. Effects of miR-33 deficiency on metabolic and cardiovascular diseases: Implications for therapeutic intervention.Int. J. Mol. Sci.202324131077710.3390/ijms241310777 37445956
    [Google Scholar]
  92. JinC. JiaL. TangZ. ZhengY. Long non-coding RNA MIR22HG promotes osteogenic differentiation of bone marrow mesenchymal stem cells via PTEN/AKT pathway.Cell Death Dis.202011760110.1038/s41419‑020‑02813‑2 32732881
    [Google Scholar]
  93. LongH. LiQ. XiaoZ. YangB. LncRNA MIR22HG promotes osteoarthritis progression via regulating miR-9-3p/ADAMTS5 pathway.Bioengineered20211213148315810.1080/21655979.2021.1945362 34187303
    [Google Scholar]
  94. YanX. HouJ. miR-22 host gene enhances nuclear factor-kappa B activation to aggravate hypoxia-induced injury in AC16 cardiomyocytes.Cell Transplant.20213010.1177/0963689721990323 33631962
    [Google Scholar]
  95. CaoJ. YuanL. Identification of key genes for hypertrophic cardiomyopathy using integrated network analysis of differential lncRNA and gene expression.Front. Cardiovasc. Med.2022994622910.3389/fcvm.2022.946229 35990977
    [Google Scholar]
  96. GonçalvesG.F. de Faria PoloniJ. DornM. Transcriptomic analysis of long non-coding RNA during Candida albicans infection.Genes202314225110.3390/genes14020251 36833177
    [Google Scholar]
  97. BalkoJ. StanekM. KrskovaL. ZamecnikJ. Unusual fusion gene rearrangements in patients with nodular fasciitis: A study of rare and novel USP6 fusion partners with a review of the literature.J. Clin. Pathol.2023jcp-2023-20876810.1136/jcp‑2023‑208768 36828621
    [Google Scholar]
  98. ChouJ. KallerM. JaeckelS. RokavecM. HermekingH. AP4 suppresses DNA damage, chromosomal instability and senescence via inducing MDC1/Mediator of DNA damage Checkpoint 1 and repressing MIR22HG/miR-22-3p.Mol. Cancer202221112010.1186/s12943‑022‑01581‑1 35624466
    [Google Scholar]
  99. ShenH. WengX.D. YangD. WangL. LiuX.H. Long noncoding RNA MIR22HG is down-regulated in prostate cancer.Math. Biosci. Eng.20201721776178610.3934/mbe.2020093 32233607
    [Google Scholar]
  100. HanM. WangS. FritahS. Interfering with long non-coding RNA MIR22HG processing inhibits glioblastoma progression through suppression of Wnt/β-catenin signalling.Brain2020143251253010.1093/brain/awz406 31891366
    [Google Scholar]
  101. HuangG.D. LiaoP. HuangY.H. MIR22HG regulates the proliferation, epithelial-mesenchymal transition, and apoptosis in colorectal carcinoma.Cancer Biother. Radiopharm.202136978379210.1089/cbr.2019.3509 33493419
    [Google Scholar]
  102. LiH. WangY. Long noncoding RNA (lncRNA) MIR22HG suppresses gastric cancer progression through attenuating NOTCH2 signaling.Med. Sci. Monit.20192565666510.12659/MSM.912813 30670679
    [Google Scholar]
  103. SuW. FengS. ChenX. Silencing of long noncoding RNA MIR22HG triggers cell survival/death signaling via oncogenes YBX1, MET, and p21 in lung cancer.Cancer Res.201878123207321910.1158/0008‑5472.CAN‑18‑0222 29669758
    [Google Scholar]
  104. PanJ. HuangZ. LinH. ChengW. LaiJ. LiJ. M7G-Related lncRNAs predict prognosis and regulate the immune microenvironment in lung squamous cell carcinoma.BMC Cancer2022221113210.1186/s12885‑022‑10232‑z 36333719
    [Google Scholar]
  105. HuX. TanZ. YangY. YangP. Long non‐coding RNA MIR22HG inhibits cell proliferation and migration in cholangiocarcinoma by negatively regulating the Wnt/β‐catenin signaling pathway.J. Gene Med.2019215e308510.1002/jgm.3085 30856284
    [Google Scholar]
  106. ZhouQ. LeiR. LiangY. LiS. GuoX. HuB. Oxaliplatin related lncRNAs prognostic models predict the prognosis of patients given oxaliplatin-based chemotherapy.Cancer Cell Int.202323110310.1186/s12935‑023‑02945‑3 37245016
    [Google Scholar]
  107. WuS. ChengC. ZhuW. Whole transcriptome analysis reveals that immune infiltration- lncRNAs are related to cellular apoptosis in liver transplantation.Front. Immunol.202314115274210.3389/fimmu.2023.1152742 37081883
    [Google Scholar]
  108. FioreD. GianfrilliD. GiannettaE. PDE5 inhibition ameliorates visceral adiposity targeting the miR-22/SIRT1 pathway: Evidence from the CECSID trial.J. Clin. Endocrinol. Metab.201610141525153410.1210/jc.2015‑4252 26964730
    [Google Scholar]
  109. LimaV.M. LiuJ. BrandãoB.B. miRNA-22 deletion limits white adipose expansion and activates brown fat to attenuate high-fat diet-induced fat mass accumulation.Metabolism202111715472310.1016/j.metabol.2021.154723 33549579
    [Google Scholar]
  110. López-RieraM. CondeI. QuintasG. Non-invasive prediction of NAFLD severity: A comprehensive, independent validation of previously postulated serum microRNA biomarkers.Sci. Rep.2018811060610.1038/s41598‑018‑28854‑4 30006517
    [Google Scholar]
  111. JiD. LiB. ShaoQ. LiF. LiZ. ChenG. MiR-22 suppresses BMP7 in the development of cirrhosis.Cell. Physiol. Biochem.20153631026103610.1159/000430276 26112332
    [Google Scholar]
  112. ZhaiL. ShenH. ShengY. GuanQ. ADMSC Exo‐MicroRNA‐22 improve neurological function and neuroinflammation in mice with Alzheimer’s disease.J. Cell. Mol. Med.202125157513752310.1111/jcmm.16787 34250722
    [Google Scholar]
  113. RussoT. KolisnykB. BsA. The SATB1-MIR22-GBA axis mediates glucocerebroside accumulation inducing a cellular senescence-like phenotype in dopaminergic neurons.bioRxiv202310.1101/2023.07.19.549710
    [Google Scholar]
  114. HaoL.Y. ZhangM. TaoY. miRNA-22 upregulates Mtf1 in dorsal horn neurons and is essential for inflammatory pain.Oxid. Med. Cell. Longev.2022202212310.1155/2022/8622388 35242280
    [Google Scholar]
  115. LiR. LiB. CaoY. Long non-coding RNA Mir22hg-derived miR-22-3p promotes skeletal muscle differentiation and regeneration by inhibiting HDAC4.Mol. Ther. Nucleic Acids20212420021110.1016/j.omtn.2021.02.025 33767916
    [Google Scholar]
  116. YangF. ChenQ. HeS. miR-22 is a novel mediator of vascular smooth muscle cell phenotypic modulation and neointima formation.Circulation2018137171824184110.1161/CIRCULATIONAHA.117.027799 29246895
    [Google Scholar]
  117. ZhangM. HuY. LiH. GuoX. ZhongJ. HeS. miR-22-3p as a potential biomarker for coronary artery disease based on integrated bioinformatics analysis.Front. Genet.20221393693710.3389/fgene.2022.936937 36105099
    [Google Scholar]
  118. GalluzzoA. GalloS. PardiniB. Identification of novel circulating microRNAs in advanced heart failure by next‐generation sequencing.ESC Heart Fail.2021842907291910.1002/ehf2.13371 33934544
    [Google Scholar]
  119. LuW. LiuX. ZhaoL. MiR ‐22‐3p in exosomes increases the risk of heart failure after down‐regulation of FURIN.Chem. Biol. Drug Des.2023101355056710.1111/cbdd.14142 36063111
    [Google Scholar]
  120. NejatiK. AlivandM. ArabzadehA. MicroRNA-22 in female malignancies: Focusing on breast, cervical, and ovarian cancers.Pathol. Res. Pract.202122315345210.1016/j.prp.2021.153452 33993061
    [Google Scholar]
  121. GorurA. BayraktarR. IvanC. ncRNA therapy with miRNA-22-3p suppresses the growth of triple-negative breast cancer.Mol. Ther. Nucleic Acids20212393094310.1016/j.omtn.2021.01.016 33614241
    [Google Scholar]
  122. WanW. ZhangY. WangX. Down-regulated miR-22 as predictive biomarkers for prognosis of epithelial ovarian cancer.Diagn. Pathol.20149117810.1186/s13000‑014‑0178‑8 25257702
    [Google Scholar]
  123. PeiC. GongX. ZhangY. LncRNA MALAT-1 promotes growth and metastasis of epithelial ovarian cancer via sponging microrna-22.Am. J. Transl. Res.2020121169776987 33312345
    [Google Scholar]
  124. SongS.J. ItoK. AlaU. The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation.Cell Stem Cell20131318710110.1016/j.stem.2013.06.003 23827711
    [Google Scholar]
  125. CaraccioloD. Di MartinoM.T. AmodioN. miR-22 suppresses DNA ligase III addiction in multiple myeloma.Leukemia201833487498 30120376
    [Google Scholar]
  126. SongS.J. PandolfiP.P. miR-22 in tumorigenesis.Cell Cycle2014131111210.4161/cc.27027 24231768
    [Google Scholar]
  127. NaakkaE. Barros-FilhoM.C. Adnan-AwadS. miR-22 and miR-205 drive tumor aggressiveness of mucoepidermoid carcinomas of salivary glands.Front. Oncol.20221178615010.3389/fonc.2021.786150 35223452
    [Google Scholar]
  128. ChenS. PuJ. BaiJ. EZH2 promotes hepatocellular carcinoma progression through modulating miR-22/galectin-9 axis.J. Exp. Clin. Cancer Res.2018371310.1186/s13046‑017‑0670‑6 29316949
    [Google Scholar]
  129. CuiS. ChenY. GuoY. WangX. ChenD. Hsa-miR-22-3p inhibits liver cancer cell EMT and cell migration/invasion by indirectly regulating SPRY2.PLoS One2023182e028153610.1371/journal.pone.0281536 36749775
    [Google Scholar]
  130. IshaqY. IkramA. AlzahraniB. KhurshidS. The role of miRNAs, circRNAs and their interactions in development and progression of hepatocellular carcinoma: An insilico approach.Genes20221411310.3390/genes14010013 36672755
    [Google Scholar]
  131. HuY. SetayeshT. VaziriF. miR-22 gene therapy treats HCC by promoting anti-tumor immunity and enhancing metabolism.Mol. Ther.20233161829184510.1016/j.ymthe.2023.04.019 37143325
    [Google Scholar]
  132. XiaoJ. NiuS. ZhuJ. miR 22 3p enhances multi chemoresistance by targeting NET1 in bladder cancer cells.Oncol. Rep.20183962731274010.3892/or.2018.6355 29620229
    [Google Scholar]
  133. WangJ. LiY. DingM. ZhangH. XuX. TangJ. Molecular mechanisms and clinical applications of miR-22 in regulating malignant progression in human cancer. (Review)Int. J. Oncol.201750234535510.3892/ijo.2016.3811 28000852
    [Google Scholar]
  134. TomevaE. KrammerU.D.B. SwitzenyO.J. HaslbergerA.G. HippeB. Sex-specific miRNA differences in liquid biopsies from subjects with solid tumors and healthy controls.Epigenomes202371210.3390/epigenomes7010002 36648863
    [Google Scholar]
  135. StreeseL. DemouginP. IborraP. Untargeted sequencing of circulating microRNAs in a healthy and diseased older population.Sci. Rep.2022121299110.1038/s41598‑022‑06956‑4 35194110
    [Google Scholar]
  136. PuckerA.D. NgoW. PostnikoffC.K. FortinberryH. NicholsJ.J. Tear film miRNAs and their association with human dry eye disease.Curr. Eye Res.202247111479148710.1080/02713683.2022.2110597 35930289
    [Google Scholar]
  137. LvW. YuM. SuY. miR-22-5p regulates the self-renewal of spermatogonial stem cells by targeting EZH2.Open Med.202217155656510.1515/med‑2022‑0429 35415251
    [Google Scholar]
  138. YadavS.K. PandeyA. KumarL. The thermo-sensitive gene expression signatures of spermatogenesis.Reprod. Biol. Endocrinol.20181615610.1186/s12958‑018‑0372‑8 29859541
    [Google Scholar]
  139. BeheshtiR. HalsteadE.S. CusackB. HicksS.D. Multi-omic factors associated with frequency of upper respiratory infections in developing infants.Int. J. Mol. Sci.202324293410.3390/ijms24020934 36674462
    [Google Scholar]
  140. TrummerO. FoesslI. SchweighoferN. Expression profiles of mir-22-5p and miR-142-3p indicate hashimoto’s disease and are related to thyroid antibodies.Genes202213217110.3390/genes13020171 35205216
    [Google Scholar]
  141. WangY. ChangW. ZhangY. Circulating miR‐22‐5p and miR‐122‐5p are promising novel biomarkers for diagnosis of acute myocardial infarction.J. Cell. Physiol.201923444778478610.1002/jcp.27274 30256407
    [Google Scholar]
  142. LiH. ZhangP. LiF. Plasma miR-22-5p, miR-132-5p, and miR-150-3p are associated with acute myocardial infarction.BioMed Res. Int.2019201911310.1155/2019/5012648 31179325
    [Google Scholar]
  143. EliasG.A. TajesM. BisbeY.L. Atrial fibrillation in heart failure is associated with high levels of circulating microRNA-199a-5p and 22–5p and a defective regulation of intracellular calcium and cell-to-cell communication.Int. J. Mol. Sci.202122191037710.3390/ijms221910377 34638717
    [Google Scholar]
  144. WenW. ChenX. HuangZ. Resveratrol regulates muscle fiber type gene expression through AMPK signaling pathway and miR-22-3p in porcine myotubes.Anim. Biotechnol.202233357958510.1080/10495398.2022.2046599 35264052
    [Google Scholar]
  145. YangX. ZhangY. LiY. WenT. MALAT1 enhanced the proliferation of human osteoblasts treated with ultra high molecular weight polyethylene by targeting VEGF via miR 22 5p.Int. J. Mol. Med.20184131536154610.3892/ijmm.2018.3363 29328414
    [Google Scholar]
  146. LiW. LiL. CuiR. ChenX. HuH. QiuY. Bone marrow mesenchymal stem cells derived exosomal Lnc TUG1 promotes bone fracture recovery via miR-22-5p/Anxa8 axis.Hum. Cell20233631041105310.1007/s13577‑023‑00881‑y 36952210
    [Google Scholar]
  147. WuC BianX ZhangL Long noncoding RNA LINC00968 inhibits proliferation, migration and invasion of lung adenocarcinoma through targeting miR-22-5p/CDC14A axis.3 Biotech202111433
    [Google Scholar]
  148. HanX. LiH. LiuS. ZhaoZ. Study on the potential mechanism of miR-22-5p in non-small-cell lung cancer.Dis. Markers2022202211210.1155/2022/3750734 36111260
    [Google Scholar]
  149. ZhaoH. ChenC. SongH. DNA topoisomerase II-α regulated by miR-22-5p promotes hepatocellular carcinoma invasion and migration through the hippo pathway.Oxid. Med. Cell. Longev.2022202212510.1155/2022/4277254 36299605
    [Google Scholar]
  150. JinQ. HuH. YanS. lncRNA MIR22HG-derived miR-22-5p enhances the radiosensitivity of hepatocellular carcinoma by increasing histone acetylation through the inhibition of HDAC2 activity.Front. Oncol.20211157258510.3389/fonc.2021.572585 33718133
    [Google Scholar]
  151. JusohA.R. MohanS. Lu PingT. Plasma circulating mirnas profiling for identification of potential breast cancer early detection biomarkers.Asian Pac. J. Cancer Prev.20212251375138110.31557/APJCP.2021.22.5.1375 34048164
    [Google Scholar]
  152. WangJ. ZhangH. ZhouX. Five serum-based miRNAs were identified as potential diagnostic biomarkers in gastric cardia adenocarcinoma.Cancer Biomark.201823219320310.3233/CBM‑181258 30198863
    [Google Scholar]
  153. PalaE. DenkçekenT. Evaluation of miRNA expression profiles in schizophrenia using principal-component analysis-based unsupervised feature extraction method.J. Comput. Biol.20202781253126310.1089/cmb.2019.0412 31855458
    [Google Scholar]
  154. HeH. LiuA. ZhangW. Novel plasma miRNAs as biomarkers and therapeutic targets of alzheimer’s disease at the prodromal stage.J. Alzheimers Dis.202183277979010.3233/JAD‑210307 34366343
    [Google Scholar]
  155. TimofeevaA.V. FedorovI.S. SukhovaY.V. IvanetsT.Y. SukhikhG.T. Prediction of early- and late-onset pre-eclampsia in the preclinical stage via placenta-specific extracellular miRNA profiling.Int. J. Mol. Sci.2023249800610.3390/ijms24098006 37175711
    [Google Scholar]
  156. SundraniD. KarkhanisA. RandhirK. PanchanadikarT. JoshiS. MicroRNAs targeting peroxisome proliferator-activated receptor (PPAR) gene are differentially expressed in low birth weight placentae.Placenta2023139516010.1016/j.placenta.2023.06.006 37311266
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366282339240604042154
Loading
/content/journals/mirna/10.2174/0122115366282339240604042154
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test