Skip to content
2000
Volume 7, Issue 1
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Previously, we reported that vitamin K3, which consists of a quinone component, inhibits the activity of human DNA polymerase γ (pol γ). In this study, we investigated the inhibitory effects of 4 quinone derivatives (1,4-benzoquinone (BQ), 1,4-naphthoquinone (NQ), 9,10-anthraquinone (AQ) and 5,12-naphthacenequinone (NCQ)) on the activity of mammalian pols. BQ and NQ potently inhibited the activity of all the pol species: pols α, β, γ, δ, ε and λ, and NQ was a stronger pol inhibitor than BQ. Because we previously found a positive relationship between pol λ inhibition and antiinflammatory action, we examined whether these quinone derivatives could inhibit inflammatory responses. BQ and NQ caused a marked reduction in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced acute inflammation in mouse ear, although AQ and NCQ did not. In a cell culture system using mouse macrophages, NQ displayed the strongest suppression in the production of tumor necrosis factor (TNF)-α induced by lipopolysaccharide (LPS) among the quinone derivatives tested. Moreover, NQ was found to inhibit the action of nuclear factor (NF)-κB. In an in vivo mouse model of LPSevoked acute inflammation, intraperitoneal injection of BQ and NQ to mice led to suppression of TNF-α production in serum. These anti-inflammatory responses of NQ were more potent than those of BQ. In conclusion, this study has identified several quinone derivatives, such as NQ, that are promising anti-inflammatory candidates.

Loading

Article metrics loading...

/content/journals/mc/10.2174/157340611794072742
2011-01-01
2025-05-23
Loading full text...

Full text loading...

/content/journals/mc/10.2174/157340611794072742
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test